Thèse de Lucas Groleaz
Sujet :
Date de soutenance : 07/06/2021
Encadrant : Christine Solnon
Co-encadrant : Samba Ndojh Ndiaye
Résumé :
Basée sur une problématique réelle rencontrée par les clients de la société Infologic, la thèse a pour but de développer des algorithmes permettant d'optimiser la partie préparation de commandes dans des chaînes de production. La problématique peut être modélisée sous la forme d'un problème d'ordonnancement avec différentes contraintes. En outre l'ensemble des jobs à traiter dans ce problème d'ordonnancement n'est pas connu à l'avance. Ainsi, le problème est étudié de trois façon différentes : un cas statique où l'on considère que l'on connaît, à l'avance, tous les jobs à préparer, un cas dynamique (cas réel) dans lequel les jobs sont révélés à l'algorithme à mesure qu'ils arrivent et un cas stochastique, identique au cas dynamique, mais où l'on dispose en outre de l'historique des commandes des journées précédentes, ce qui permet, par apprentissage, d'orienter les algorithmes vers de meilleures solutions. Les évaluations expérimentales des différents algorithmes développés sont réalisées sur des données réelles fournies par la société Infologic.
Jury :
Mr Artigues Christian | Directeur(trice) de recherche | CNRS | Rapporteur(e) |
Mr Deville Yves | Professeur(e) | Université Catholique de Louvain | Rapporteur(e) |
Mme Brauner Nadia | Professeur(e) | Université Grenoble Alpes | Examinateur(trice) |
Mr Laborie Philippe | Docteur | IBM | Examinateur(trice) |
Mme Solnon Christine | Professeur(e) | INSA Lyon | Directeur(trice) de thèse |
Mr Ndojh Ndiaye Samba | Maître de conférence | Université Lyon 1 | Co-directeur (trice) |