Thèse de Samuel Berlemont


Sujet :
Apprentissage automatique de métrique non-linéaire / Application à la reconnaissance de gestes

Résumé :

Cette thèse explore la reconnaissance de gestes à partir de capteurs inertiels pour Smartphone. Ces gestes consistent en la réalisation d’un tracé dans l'espace présentant une valeur sémantique, avec l'appareil en main. Notre étude porte en particulier sur l'apprentissage de métrique entre signatures gestuelles grâce à l'architecture Siamoise(réseau de neurones siamois, SNN), qui a pour but de modéliser les relations sémantiques entre classes afin d'extraire des caractéristiques discriminantes. Cette architecture est appliquée au perceptron multicouche (Multi Layer Perceptron). Les stratégies classiques de formation d'ensembles d'apprentissage sont essentiellement basées sur des paires similaires et dissimilaires, ou des triplets formés d’une référence et de deux échantillons respectivement similaires et dissimilaires à cette référence. Ainsi, nous proposons une généralisation de ces approches dans un cadre de classification, où chaque ensemble d’apprentissage est composé d’une référence, un exemple positif, et un exemple négatif pour chaque classe dissimilaire. Par ailleurs, nous appliquons une régularisation sur les sorties du réseau au cours de l'apprentissage afin de limiter les variations de la norme moyenne des vecteurs caractéristiques obtenus. Enfin, nous proposons une redéfinition du problème angulaire par une adaptation de la notion de « sinus polaire », aboutissant à une analyse en composantes indépendantes non-linéaire supervisée. A l'aide de deux bases de données inertielles, la base MHAD (Multimodal Human Activity Dataset) ainsi que la base Orange, composée de gestes symboliques inertiels réalisés avec un Smartphone, les performances de chaque contribution sont caractérisées. Ainsi, des protocoles modélisant un monde ouvert, qui comprend des gestes inconnus par le système, mettent en évidence les meilleures capacités de détection et rejet de nouveauté du SNN. En résumé, le SNN proposé permet de réaliser un apprentissage supervisé de métrique de similarité non-linéaire, qui extrait des vecteurs caractéristiques discriminants, améliorant conjointement la classification et le rejet de gestes inertiels.


Encadrant : Christophe Garcia
Co-encadrant : Stefan Duffner

Date de soutenance : jeudi, 11 février, 2016