Thèse de Besma Khalfoun


Sujet :
Services basés sur la localisation préservant la confidentialité : des approches centralisées aux approches fédérées

Date de soutenance : 20/10/2022

Encadrant : Sonia Ben Mokhtar
Co-encadrant : Sara Bouchenak

Résumé :

De nos jours, la prolifération des appareils mobiles embarquant de multiples capteurs et la croissance rapide des technologies de communication et de traitement de la donnée ont contribué à l'émergence d'une grande variété de services en ligne, dont les services basés sur la localisation. Ces services facilitent la vie quotidienne des utilisateurs en leur offrant des informations personnalisées et customisées sur leur environnement en fonction de leur localisation. Tout en reconnaissant qu'il est indéniable que ces services sont devenus incontournables et indispensables à notre société actuelle et surtout future, il y a lieu de souligner et d'appréhender les risques et les dangers quant à la vie privée des utilisateurs. En effet, de grandes quantités de données de mobilité sont collectées, stockées et traitées par des fournisseurs de services ou des tiers, sans forcément respecter le cadre consenti par les utilisateurs. Par conséquent, la vie privée de ces derniers est menacée et donc plusieurs informations sensibles telles que l'identité de l'utilisateur, son lieu de domicile ou de travail ou même ses croyances religieuses ou son état de santé peuvent être inférées de ces données.

Dans ce contexte, il devient urgent de concevoir des mécanismes de protection qui permettent aux utilisateurs d'accéder en toute sécurité aux services basés sur la localisation sans la crainte de dévoiler leur intimité. Pour relever ce défi, de nombreux efforts visent à développer des mécanismes de protection appelés « Location Privacy Protection Mechanisms (LPPM)». Ces efforts ne sont pas seulement motivés par la communauté scientifique mais sont de plus en plus imposés par les autorités et les pouvoirs publics en établissant de nouvelles règles et lois pour recadrer la collecte, le stockage et la manipulation de ces données. Dans ce sens, l'évaluation des risques liés à la confidentialité de la mobilité appelée « Location Privacy Risk Assessment (LPRA) » est définie afin de sensibiliser les utilisateurs aux risques engendrés par le partage de leurs données de mobilité. Dans le cas de notre étude, cette notion se traduit par
l'évaluation du risque de réidentification, c'est-à-dire le risque de réassocier une donnée de mobilité anonyme à son utilisateur d'origine.

Dans ce cadre, nous proposons tout d'abord MOOD, un système de protection centralisé centré sur l'utilisateur qui a pour but de protéger les données de mobilité de tous les utilisateurs et, en particulier, les utilisateurs orphelins qui ne sont protégés par aucun LPPM individuel. MOOD utilise la composition de plusieurs LPPM et intègre l'évaluation du risque de réidentification avant de publier les données protégées. Cependant, il requiert un «serveur proxy de confiance» pour procéder à la protection et à l'évaluation du risque de réidentification. Bien que les méthodes de protection actuelles tendent à éliminer ce serveur proxy de confiance, l'évaluation du risque d'atteinte à la vie privée a toujours besoin de centraliser les données de mobilité. Pour cette raison, nous proposons SAFER, une nouvelle mesure d'évaluation du risque de confidentialité, développée du côté utilisateur pour estimer le risque de confidentialité en utilisant l'unicité des données de mobilité appelée « uniqueness ». SAFER suit une approche basée sur l’apprentissage fédéré pour construire une connaissance globale sans avoir accès aux données brutes des utilisateurs de façon centralisée. Enfin, nous proposons EDEN, un système de protection des données de mobilité, développé du côté utilisateur. EDEN sélectionne automatiquement le meilleur LPPM et sa configuration correspondante sans envoyer les données de mobilité brutes en dehors du dispositif de l'utilisateur grâce au paradigme de l’apprentissage fédéré.


Jury :
M. Nguyen BenjaminProfesseur(e)INSA Val de LoireRapporteur(e)
M. Musolesi MircoProfesseur(e)Université Collège LondonRapporteur(e)
Mme Goga OanaChargé(e) de RechercheCNRS GrenobleExaminateur​(trice)
M. Lamarre PhilippeProfesseur(e)LIRIS - INSA LyonExaminateur​(trice)
Mme Ben Mokhtar SoniaDirecteur(trice) de rechercheLIRIS CNRS UMR 5205 - INSA LyonDirecteur(trice) de thèse
Mme Bouchenak SaraProfesseur(e)LIRIS - INSA LyonCo-directeur (trice)