Thesis of Sara Makki
Subject:
Defense date: 20/12/2019
Advisor: Mohand-Said Hacid
Summary:
There are different types of risks in financial domain such as, terrorist financing, money laundering, credit card fraudulence and insurance fraudulence that are usually detected using classification algorithms. In classification problems, the skewed distribution of classes also known as class imbalance, is a very common challenge in financial fraud detection.
We developed two approaches: A Cost-Sensitive Cosine Similarity K-Nearest Neighbor (CoSKNN) as a single classifier, and a K-modes Imbalance Classification Hybrid Approach (K-MICHA) as an ensemble learning methodology. In CoSKNN, our aim was to tackle the imbalance problem by using cosine similarity as a distance metric and by introducing a cost sensitive score for the classification using the KNN algorithm. On the other hand, the aim of K-MICHA is to cluster similar data points in terms of the classifiers outputs. Then, calculating the fraud probabilities in the obtained clusters in order to use them for detecting frauds of new transactions.
At the end, we applied K-MICHA to a credit card, mobile payment and auto insurance fraud data sets. In all three case studies, we compare K-MICHA with stacking using voting, weighted voting, logistic regression and CART. We also compared with Adaboost and random forest. We prove the efficiency of K-MICHA based on these experiments.
Keywords: Financial fraud, Class imbalance, F1 – score, Cost Sensitive Classification, Cosine similarity, K-Nearest Neighbors, Ensemble learning, K-modes.
Jury:
Mme Murisasco Elisabeth | Professeur(e) | Université de Toulon | Rapporteur(e) |
Mme Soule-Dupuy Chantal | Professeur(e) | Université Toulouse | Rapporteur(e) |
M. Boucelma Omar | Professeur(e) | Université Aix-Marseille | Examinateur(trice) |
Mme Assaghir Zainab | Professeur(e) associé(e) | Université Libanaise | Examinateur(trice) |
M. Taher Yehia | Maître de conférence | Université de Versailles | Examinateur(trice) |
Mme Seba Hamida | Maître de conférence | LIRIS - Université Claude Bernard Lyon 1 | Examinateur(trice) |
M. Hacid Mohand-Saïd | Professeur(e) | LIRIS - Université Claude Bernard Lyon 1 | Directeur(trice) de thèse |
M. Zeineddine Hassan | Professeur(e) | Université Libanaise | Directeur(trice) de thèse |
M. Haque Akm Rafiqul | Directeur(trice) de recherche | Cognitus | Invité(e) |