Thesis of Maxime Gasse


Subject:
Statistical learning of Bayesian networks applied to process control in the semiconductor industry

Defense date: 13/01/2017

Advisor: Alexandre Aussem
Coadvisor: Haytham Elghazel

Summary:

Design of algorithms for Bayesian networks structure learning in large data volumes. Application to process control in the semiconductor industry, with a view towards in-line equpments drift detection, which may have an impact on cycle duration, performance and manufacturing costs. This work is part of the Integrated Solutions for Agile Manufacturing in High-mix Semiconductor Fabs european project (INTEGRATE), which was initiated by the European Nanoelectronics Initiative Advisory Council (ENIAC) and is funded by the EU’s Seventh Framework Programme for Research (FP7).


Jury:
Christophe GONZALESProfesseur(e)Université Paris 6Rapporteur(e)
Jose M. PEÑAProfesseur(e) associé(e)Linköping UniversityRapporteur(e)
Elisa FROMONTMaître de conférenceUniversité Jean MonnetExaminateur​(trice)
Willem WAEGEMANProfesseur(e)Ghent UniversityExaminateur​(trice)
Veronique DELCROIXMaître de conférenceUniversité de ValenciennesExaminateur​(trice)
Céline ROBARDETProfesseur(e)INSA LyonExaminateur​(trice)
Alexandre AUSSEMProfesseur(e)Université Lyon 1Directeur(trice) de thèse
Haytham ELGHAZELMaître de conférencePolytech LyonCo-directeur (trice)