Thesis of Maxime Gasse
Subject:
Statistical learning of Bayesian networks applied to process control in the semiconductor industry
Defense date: 13/01/2017
Advisor: Alexandre Aussem
Coadvisor: Haytham Elghazel
Summary:
Design of algorithms for Bayesian networks structure learning in large data volumes. Application to process control in the semiconductor industry, with a view towards in-line equpments drift detection, which may have an impact on cycle duration, performance and manufacturing costs. This work is part of the Integrated Solutions for Agile Manufacturing in High-mix Semiconductor Fabs european project (INTEGRATE), which was initiated by the European Nanoelectronics Initiative Advisory Council (ENIAC) and is funded by the EU’s Seventh Framework Programme for Research (FP7).
Jury:
Christophe GONZALES | Professeur(e) | Université Paris 6 | Rapporteur(e) |
Jose M. PEÑA | Professeur(e) associé(e) | Linköping University | Rapporteur(e) |
Elisa FROMONT | Maître de conférence | Université Jean Monnet | Examinateur(trice) |
Willem WAEGEMAN | Professeur(e) | Ghent University | Examinateur(trice) |
Veronique DELCROIX | Maître de conférence | Université de Valenciennes | Examinateur(trice) |
Céline ROBARDET | Professeur(e) | INSA Lyon | Examinateur(trice) |
Alexandre AUSSEM | Professeur(e) | Université Lyon 1 | Directeur(trice) de thèse |
Haytham ELGHAZEL | Maître de conférence | Polytech Lyon | Co-directeur (trice) |