Thesis of Mathilde Guillemot
Subject:
Apprentissage par la machine et big data cosmétique en vue de la modélisation mathématique et analyse statistique prédictive sur l’efficacité de formules cosmétiques
Defense date: 01/12/2020
Advisor: Liming Chen
Summary:
In order to address the needs of her customers, the cosmetic industry has to be innovative and must offer new products increasingly efficient and regulatory compliant. The tests that are used to prove their performance on humans, whether instrumental (such as the measurement of relief, firmness or hydration) or clinic, are very expensive.
Faced with these constraints, machine learning technics can provide a preprocessing solution in order to be able to predict the efficacy of cosmetic products, while saving time and money.
This dissertation is aimed to developed predictive models of the cosmetic efficacy based on their formulas, but also from the expected efficacy results.
Jury:
Mr Nait-Ali A. | Professeur(e) | Université Paris-Est Créteil | Rapporteur(e) |
Mr Hammami M. | Professeur(e) | Faculté des Sciences de Sfax Tunisie | Rapporteur(e) |
Mr Canu Stéphane | Professeur(e) | INSA Rouen | Président(e) |
Mme Godin C. | Ingénieur(e) de recherche | MINATEC - CEA/LETI | Examinateur(trice) |
Mme Heusele C. | Docteur | Responsable de l'Open Innovation - LVMH Recherche | Co-encadrant(e) |
Mr Korichi R. | Docteur | Responsable de la recherche in vivo et de l'évaluation des performances de produits - LVMH Recherche | Co-encadrant(e) |
Mr Chen Liming | Professeur(e) | LIRIS - ECL | Directeur(trice) de thèse |