Biomechanical Modeling to Prevent Ulcers

Vincent Luboz⁽¹⁾, Antoine Perrier⁽¹⁾⁽²⁾⁽³⁾, Marek Bucki⁽²⁾, Olivier Chenu⁽²⁾, Francis Cannard⁽²⁾, Bruno Diot⁽⁴⁾, Nicolas Vuillerme⁽³⁾, Yohan Payan⁽¹⁾

vincent.luboz@imag.fr yohan.payan@imag.fr

- 1. Laboratoire TIMC-IMAG, Université Joseph Fourier, La Tronche, France ;
- 2. TexiSense, Montceau-les-Mines, France;
- 3. Laboratoire AGIM, Université Joseph Fourier, La Tronche, France;
- 4. IDS, Montceau-les-Mines, France.

CIERCIS

Pressure ulcers prevention

Pressure ulcers prevention for disabled, paraplegic and diabetic persons

Over-pressures: paraplegics

Over-pressures: paraplegics

Pressure ulcer prevention

□ Three questions :

What kind of artificial sensor for the measurement of the pressure at the buttocks / seat interface? When deciding that there is a risk for pressure ulcer?

How to alert the person in case of a risk?

An Utility / Utilisability / Acceptability Study

Tekscan Inc.

- Conclusions of the Utility / Utilisability / Acceptability Study:
 - The pressure mat has to be low cost
 - The pressure mat has to be comfortable (on or around the cushion)

The pressure mat has to be washable

An embedded pressure mat made of textile (technology provided by Texisense company)

An embedded pressure mat made of textile (technology provided by Texisense company)

- Two outer layers form a matrix that defines the spatial resolution of the sensor: the nylon fibers coated with silver conduct current
- Any normal forces exerted onto the middle layer change the electrical resistance of the material : fibers are coated with polymers

Pressure ulcer prevention

Three questions :

What kind of artificial sensor for the measurement of the pressure at the buttocks / seat interface?

When deciding that there is a risk for pressure ulcer?

How to alert the person in case of a risk?

When deciding that there is a risk for PU?

When deciding that there is a risk for PU?

How to estimate the deformations thresholds from the measured pressures at the buttocks / cushion interface for a given patient?

The use of a patient-specific biomechanical model of the buttocks bone / soft tissues

 Explicit 3D Finite Element modeling: not real time

 Semi implicit 3D Finite Element modeling: close to real time

2011].

 Using ArtiSynth, 3D biomechanical simulation platform (http://www.artisynth.org/) [Stavness,

 CT scan of the patient on his back -> too much deformations of the tissues.

- CT scan of the patient on his back -> too much deformations of the tissues.
- CT scan of the patient on his side -> only one side deformed.
- Segmented on the left side to avoid the constraints and reconstruct the morphology.

- Using ITK-Snap
 - Segmentation of the bones

- Using ITK-Snap
 - Segmentation of the bones
 - Segmentation of the skin and muscles

 Using ModelEditor (TIMC-IMAG), symetry to get the full morphology

Finite Element model corresponding to the patient:

 Using TxMesher (Texisense), filling the surfaces with hexahedrons and tetrahedrons, leaving holes for the bones (fixed red nodes).

Finite Element model corresponding to the patient:

The role of the ischial tuberosities:

Ischium

Finite Element model corresponding to the patient:

Separating the different soft tissues layers:

Finite Element model corresponding to the patient:

- Separating the different soft tissues layers into 3 different Neo Hookean materials:
 - Skin: E = 200 kPa, v = 0,49
 - Muscles: E = 40 kPa, v = 0,49
 - Fat: E = 10 kPa, v = 0,49

Patient-specific biomechanical model of the buttocks Validation:

• From pressure measurements under the patient buttocks while seating (on a zebris platform)

Validation:

Simulation results

Patient-specific biomechanical model of the buttocks Validation:

Simulation (only measured on one side)

Patient-specific biomechanical model of the buttocks Validation:

Simulation (only measured on one side)

Internal overpressures monitoring, in real time

Pressure ulcer prevention

Three questions :

What kind of artificial sensor for the measurement of the pressure at the buttocks / seat interface? When deciding that there is a risk for pressure ulcer?

How to alert the person in case of a risk?

How to alert the person in case of a risk?

Conclusions of the Utility / Utilisability / Acceptability Study:

□ In case of risk for pressure ulcer, the alert sent to the person should:

be easily perceived

□ remain discrete, i.e. avoid the visual or auditory canals that are daily used

The use of the tactile modality

How to alert the person in case of a risk? A tactilo-visual signal sent in case of alert

alert: tactile vibration simple message

alert: tactile vibration more complex messages

Clinical evaluation

On going qualitative evaluation:

A paraplegic volunteer equipped at home with our embedded prototype + video cameras, during a recording period of six months.

Clinical evaluation

On going qualitative evaluation:

A paraplegic volunteer equipped at home with our embedded prototype + video cameras, during a recording period of six months.

The "smart sock" [Bucki, 2011]:

- Developed by TexiSense (http://www.texisense.com/).
- Network of textile pressure sensors monitoring the stresses applied around the

foot.

- Goals:
 - Estimate the internal strains,
 - Warn the patient when they reach a critical level.

The "smart sock" [Bucki, 2011]:

- Developed by TexiSense (http://www.texisense.com/).
- Network of textile pressure sensors monitoring the stresses applied around the

foot.

- Goals:
 - Estimate the internal strains,
 - Warn the patient when they reach a critical level.

Biomechanical modeling

Foot anatomy:

- 26 bones, 33 joints and more than 100 muscles, tendons and ligaments plus a network of blood vessels, nerves, skin, and soft tissues.
- Complex interactions between those structures and the external environment.

Foot biomechanical modeling

Several existing models:

- [Ledoux, 2004] modeled:
 - The soft tissues as a FE mesh with homogeneous elastic properties,
 - The bones as rigid FE meshes,
 - Contact between bones for the joints,
 - Ligaments for the mid foot.

Foot biomechanical modeling

Several existing models:

- [Chen, 2010] modeled:
 - The soft tissues as a FE mesh with a Mooney Rivlin constitutive law with large deformations,
 - The bones as rigid FE meshes,
 - Main articulations modeled as contacts between bones.

Our model proposes:

- Realistic mechanical properties,
- Light modeling,
- Computationally fast to be embedded in the "smart sock" device.
- Developed using the 3D biomechanical simulation platform, Artisynth (http://www.artisynth.org/) [Stavness, 2011].

Bone and joint modeling:

- 28 bones (26 + tibia and fibula) as rigid bodies (geometry from www.zygote.com) with a density of 3000,
- 33 joints simulated by cylindrical or spherical pivots.

Bone and joint modeling:

- 28 bones (26 + tibia and fibula) as rigid bodies (geometry from www.zygote.com) with a density of 3000,
- 33 joints simulated by cylindrical or spherical pivots.
- Only one cylindrical joint between talus and calcaneus:

Bone and joint modeling:

• All other joints simulated by spherical pivots:

Spherical pivot with 3 DOFs

Bone and joint modeling:

- All other joints simulated by spherical pivots:
 - Phalanges: with a possible rotation angle of 45 degrees,
 - Metatarsi: with a possible rotation angle of 30 degrees,
 - Mid and back foot: with a possible rotation angle of 0-5 degrees.

Soft tissue modeling:

 Muscles, fat, and skin modeled as 3 different layers using a Finite Element mesh adapted from the Zygote database using an automatic meshing method [Lobos, 2010].

36,894 elements and 22,774 nodes

- Muscle layer limited to below the foot arch.
- Skin layer separated into 2 parts: high stiffness plantar layer and softer rest of the skin.
- Fat layer encapsulates all the other elements.

- Each layer modeled as a neo Hookean material [Sopher 2011]:
 - Muscle layer: E = 50 kPa, nu = 0.495,
 - Fat layer: E = 4 kPa, nu = 0.495,
 - Planter skin layer: E = 6 MPa, nu = 0.495.

- Each layer modeled as a neo Hookean material [Sopher 2011]:
 - Muscle layer: E = 50 kPa, nu = 0.495,
 - Fat layer: E = 4 kPa, nu = 0.495,
 - Planter skin layer: E = 6 MPa, nu = 0.495,
 - Skin layer (except plantar skin): E = 200 kPa, nu = 0.495, and determined by LASTIC (aspiration device for characterizing the soft tissues' elasticity) [Schiavone, 2008]:

- Bones rigidly coupled to the soft tissues.
- Realistically rigidify the foot.
- Decreases the FE matrix size and speed up the simulation.

- Cables representing the real ligaments interconnecting the bones through the FE nodes, with a stiffness of 200 MPa in extension and of 0 MPa in compression.
- Four main ligaments integrated in the simulation:

- Cables representing the real ligaments interconnecting the bones through the FE nodes.
- Four main ligaments:
 - Outer plantar fascia

- Cables representing the real ligaments interconnecting the bones through the FE nodes.
- Four main ligaments:
 - Outer plantar fascia
 - Inner plantar fascia

- Cables representing the real ligaments interconnecting the bones through the FE nodes.
- Four main ligaments:
 - Outer plantar fascia
 - Inner plantar fascia
 - Transversal metatarsal head ligament

- Cables representing the real ligaments interconnecting the bones through the FE nodes.
- Four main ligaments:
 - Outer plantar fascia
 - Inner plantar fascia
 - Transversal metatarsal
 - head ligament
 - Achilles tendon

- Cables representing the real ligaments interconnecting the bones through the FE nodes.
- Three smaller ligaments:
 - Triangular ligament
 between navicular, calcaneus
 and cuboid bones

Ligaments modeling:

• Cables representing the real ligaments interconnecting the bones through the FE nodes.

• Three smaller ligaments:

- Triangular ligament
 between navicular, calcaneus
 and cuboid bones
- Internal ligament between calcaneus and navicular,
- Internal ligament between talus and navicular.

Boundary conditions:

- Foot weight: 2 Kg, and subject to gravity.
- Tibia and fibula bones fixed to constrain the foot.

Evaluation

Evaluation

Pressure assessment

 Measuring the plantar foot pressure distribution under the right foot of a young healthy volunteer while standing on a commercially available pressure sensor system (Zebris platform, http://www.zebris.de/):

Pressures range from 0 (green) to 10.5 N.cm⁻² (red)

Simulation of the standing position:

• While tibia and fibula bones are fixed, the rest of the foot is let loose under the influence of gravity for 0.2 s to reach a resting position.

Evaluation

Simulation of the standing position:

- While tibia and fibula bones are fixed, the rest of the foot is let loose under the influence of gravity for 0.2 s to reach a resting position.
- From t = 0.2 s to 3 s, application of the measured pressures to the nodes of the foot sole following a ramp (0% at 0.2 s and 100 % at 3 s) to model normal standing.

Observing the foot deformation at t = 3 s

• Von Mises strains:

Evaluation

Observing the foot deformation at t = 3 s

• Von Mises strains on the skin surface and below the bones (internally):

Evaluation

Observing the foot deformation at t = 3 s

• Von Mises strains on the skin surface and below the bones (internally):

	Location	Foot surface VM strain	Internal VM strain
	5 th toe MT	2.7 %	63.3 %
	4 th toe MT	5.2 %	96.8 %
	3 rd toe MT	8.0 %	63.0 %
	2 nd toe MT	4.1 %	84.2 %
	1 st toe MT	5.1 %	43.0 %
•	Heel	5.0 %	69.8 %

Realistic higher internal strains

- New biomechanical models to prevent buttock and foot ulcer, associated with new devices (mat and sock)
- Realistic behavior in terms of external and internal strains,
- Provide tools to study the mechanical behavior of the buttock and foot and the creation of pressure ulcers.

Perspectives

- Apply pressures measured with the Texisense sensor to the buttock and foot surfaces:
 - To study their behavior when submitted to real pressures,
 - To develop a precise patient specific process to prevent pressure ulcer.
- Use a more realistic model to simulate the soft tissues (Mooney Rivlin, anisotropy...).
- Speed up the simulation to reach interactive time (for now, 8 min for the buttocks and 22 min for the foot...) and embed it in the Texisense controller for daily evaluation of the internal strains.

Biomechanical Modeling to Prevent Ulcers

Vincent Luboz⁽¹⁾, Antoine Perrier⁽¹⁾⁽²⁾⁽³⁾, Marek Bucki⁽²⁾, Olivier Chenu⁽²⁾, Francis Cannard⁽²⁾, Bruno Diot⁽⁴⁾, Nicolas Vuillerme⁽³⁾, Yohan Payan⁽¹⁾

vincent.luboz@imag.fr yohan.payan@imag.fr

- 1. Laboratoire TIMC-IMAG, Université Joseph Fourier, La Tronche, France ;
- 2. TexiSense, Montceau-les-Mines, France;
- 3. Laboratoire AGIM, Université Joseph Fourier, La Tronche, France;
- 4. IDS, Montceau-les-Mines, France.

CIERCIS

Perspectives

• Dynamic analysis of subject walking:

Location	(a) Ext.	(a) Int.	(b)Ext.	(b) Int.
	strain	strain	strain	strain
5 th MTT	1.8%	72.7%	3.7%	171%
4 th MTT	2.8%	83.4%	6.3%	204%
3 rd MTT	4.5%	81.8%	6.5%	152%
2 nd MTT	3.2%	33.4%	5.1%	31.6%
1 st MTT	3.3%	37.5%	7.7%	92.6%
Heel	1.8%	137%	0.6%	59.3%

Foot and ulcers

Foot and ulcers

Evolution du maximum de déformation en fonction des différents paramètres matériaux

• Application de la pression d'un seul côté

Color scale: frame	max -			3.76
				1.25

Nappes	Déformation maximum(%)
Nappe initiale zebris	57.1
Nappe unilatérale	61.6

• Patient assis

Patient assis

Position	Déformation maximum(%)
Avachie	57.1
Assise	70.4

Ischions plus saillants à 90 °

Buttocks and ulcers Influence de la diminution de l'épaisseur du muscle

• Influence de la diminution de l'épaisseur du muscle

Epaisseur du muscle	Déformation max (%)
Initiale	57.1
Moyenne	108.9
Fine	140.9

 Donc une personne qui a très peu de muscles et beaucoup de graisse a plus de chances de développer des escarres qu'une personne plus musclée.

Etude de la taille du capteur

résolution d'un capteur 0.8 cm²

1 capteur sous chaque côté

25 capteurs sous chaque côté

9 capteurs sous chaque côté

49 capteurs sous chaque côté

Etude de la taille du capteur

