Creatis

Détection et suivi d'aiguille de biopsie en échographie 3D temps réel

Christian Cachard, Yue Zhao, Bakary Diarra, Hervé Liebgott CREATIS, Lyon, France <u>christian.cachard@creatis.univ-lyon1.fr</u>

- Medical context
- 2D US probe for 3D imaging
- Needle detection and tracking
- Future work

Contexte médical

Suivi de micro-outils

- Prélèvement ciblé (tumeur) ou non (maladie diffuse)
 - o aiguille de biopsie
 - o foie/prostate/sein/thyroïde
- Thérapie, aiguille (RF ou micro-ondes), foie

Enjeux

- Biopsie du foie:
 - o prélever au bon endroit, éviter les mauvais diagnostics
 - éviter les structures vasculaires , risque d'hémorragie et/ou dissémination
 - limiter les trajets dans le parenchyme hépatiques , risque de lésions
- Traitement par aiguille RF
 - positionner au bon endroit : traitement complet de la tumeur plus marge saine

JNIVERSITE DE LYOI

Biopsie: where is the needle?

The radiologist guides (moves) the probe to align the ultrasound plane with the axis of the needle

Robot and MRI

Creatis

The Image-Guided Autonomous Robot (IGAR), which works in combination with a magnetic resonance imaging (MRI), aims to make breast biopsies more precise and automated. It has a precision to insert the needle within about 8 mm.

Creatis

A steerable needle robot setup attached to a phantom skull. This robot is designed for treating brain clots. An ultrasound imaging combined with a computer model of deformation of brain tissue could be implemented in future work [J. Burgner, 2013].

Creatis

An Ultrasound needle guided devices with a robotic arm attach to the ultrasound probe (left) and its diagrammatic sketch (right) [L. Brattain, 2011]

Creatis

Different kinds of guide attached to the ultrasound probe

Contexte médical: biopsie

- Sous contrôle ultrasonore
 - non invasif,
 - peu couteux
 - imagerie temps réel
- Limites actuelles
 - Imagerie 2D alors que l'orientation est 3D : nécessite une grande expertise
 - simple visualisation, pas d'aide au geste
- Objectifs
 - imagerie ultrasonore 3D
 - aide au geste (segmentation tumeur, détection et suivi aiguille, indication de trajectoire)
 - modification minimale du système: pas de système de navigation ou autre dispositif

Creatis

2 axes de recherche

- Echographie 3D à partir de sonde matricielle
- Détection et suivi d'aiguille à partir de données ultrasonores 3D

UNIVERSITE DE LYOI

- Frequency (f) range between 2 and 20 MHz
- Image is formed by echoes from the scatterers

UNIVERSITE DE LYOI

Creatis

Barrette linéaire 1D

Matrice 2D

3D ultrasound imaging

Principe de l'échographie 3D

Un faisceau US balaye un volume 3D

- Balayage manuel
- Balayage mécanique (moteur pas à pas)
 - disponible sur les échographes commerciaux
 - lent (de l'ordre de 1 volume / seconde)
- Balayage électronique: sonde matricielle, grand nombre d'éléments (64x64 = 4096)

JNIVERSITE DE LYO

- connectique
- pilotage
- matériel à développer

Creatis

Beam visualization

2D array beam

Three main barriers to break down

Dense array

UNIVERSITE DE LYOI

Parameters	Values
Central frequency	3.5 MHz
Element number	64x16=1024
Element dimensions (w)	$\lambda/2 = 0.22 \text{ mm}$
Pitch (d)	$3\lambda/5 = 0.264 \text{ mm}$

Simulations with **FIELD II software**

Jensen et al, 1992

Jensen, 1996

Creatis

Creatis

Cachard GDR 02 décembre 2013

Creatis

Sparse array means an array containing more zeros than any other value

There are two types of sparse array

- The periodic sparse array
- The random sparse array

Periodic sparse array

Creatis

Creatis

- **Active number elements**
- Main lobe width
- Level of sidelobes
- **Energy loss**

Creatis

Optimization \longrightarrow Element number minimization

• The new version gives at least the same properties as the reference

• Used in the rest of the study

Motivation and objectives

- Remove the regular grid in element positioning
 - \rightarrow Reduce the grating lobes
 - \rightarrow Favor the use wide elements to
 - Maximize the array sensitivity (energy)
 - Reduce the element number for a given footprint

Two strategies are proposed

• Constant element size and random pitch **Non-grid array**

UNIVERSITE DE LYOI

Random element size and pitch

Variable-size array

Constant element size - random pitch

Diarra, IEEE IUS, 2012

Random element size - random pitch

- Increase the randomness in element positioning
- Diarra, *IEEE IUS*, 2013
 Considerable reduction of the grating lobes

JNIVERSITE DE LYOI

Optimized variable-size array

Summary of the results

Dens	se array	standard sparse array	Non-grid array	Variable-size array
Number of elements	828	256	256	256
Element size	λ/2	5λ/10	7λ/10	6λ/10- 8λ/10
Lateral / Elevation main lobe width at -6 dB (degree)	.7 / 6	0.6 / 4.6	0.6/ 3.7	0.6/ 3.8
Lateral/ Elevation grating- lobe level (dB)	6/-17.3	-39/-20	-48/-48	-52/-51
Energy (dB)	0	-13	0	0
Active surface (mm ²)	19.5	12.4	26	25

Legend Best array Worst array

Cachard GDR 02 décembre 2013

Creatis

***** For fixed beam properties

- The non-grid array provides a reduction of about 20% (177→ 142) compared to the sparse array
- Grating lobes are reduced of 6 dB (39 dB→45 dB) and 21 dB (19 dB→40 dB) in lateral and elevation directions
- The energy loss is only **8 dB** against **15 dB** in sparse array
- ***** For the element number fixed to 256
 - The grating lobes reduction is 9 dB and 31 dB in lateral and elevation directions

UNIVERSITE DE LYOI

• The energy loss is negligible against **13 dB** in sparse array

- Medical context
- 2D US probe for 3D imaging
- Needle detection and tracking

Future work

Suivi d'objet de géométrie linéaire en imagerie ultrasonore 3D Creativ

UNIVERSITE DE LYO

Méthodes existantes

- Analyse en composantes principales
- Projections

Nos travaux: ROI-RK method

- RANSAC
- Line filtering
- Region of interest (ROI)
- Kalman filter
- Logiciels développés
- Conclusions perspectives

Hypothèses

Objet de géométrie linéaire

- Aiguille de biopsie (1-3 mm) OK
- Électrode + fine (200 µm) → faible courbure acceptée
- Objet + échogène que tissu environnant
 - Autres structures fortement echogènes
 - Aiguille non visible suivant l'angle d'insonnification

36

Introduction

Creatis

a. 3D probe , tissue and needle

b. 3D volume

c. The plane containing the needle

3D volume from simulated data

RANSAC algorithm

- Step 1: Thresholding Reducing the number of voxels
- Step 2: Axis localization Using RANSAC algorithm to estimate an approximate position of the needle
- Step 3: Local optimization Finding a more accurate solution
- Step 4: Tip localization Indentifying the tip position of the tool along the tool axis

UNIVERSITE DE LYOI

- Hypothèse : voxels aiguille de grande intensité
- On les sépare en deux classes
- TI

$$\begin{aligned} \mathcal{X}_t &= \{ \mathbf{x} \in \mathcal{X} : I(\mathbf{x}) \ge T_I \} \\ \mathcal{X}_b &= \mathcal{X} \setminus \mathcal{X}_t, \end{aligned}$$

- un apprentissage
- sinon 5% des pixels de + haute intensité

RANSAC - RANdom SAmple Consensus

Creatis

RANSAC - RANdom SAmple Consensus

Creatis

Ransac

Creatis

Cachard GDR 02 décembre 2013

ROI definition

• The ROI is a cylinder liked region chosen around the needle position

 $\chi_{roi} = \{ \mathbf{x} \in \chi_n \mid d(\mathbf{x}, l(t; \mathbf{A})) \le R_{ROI} \}$

 R_{ROI} -- Radius of ROI, $d(\mathbf{x}, l(t; \mathbf{A}))$ --Distance from voxel to the estimate axis

Automatically initialize ROI

• A 3D line filter [Frangi et al] is used to enhance the contrast in the 3D US volume

Motion estimation

- Speckle tracking (3D)
- Normalized cross correlation

- Parcours des données le long de l'axe
- Recherche d'un gap important

UNIVERSITE DE LYO

Inhomogeneous background

• simulated from real tissue

simulated needle

• Position of needle

 $\alpha = 0^{\circ}, 30^{\circ}, 60^{\circ}, 90^{\circ}$ $\beta = 107^{\circ}$

- Velocity of insertion $v_{tip} = 1mm / s$
- Intensity from real distribution

Useful parameters in one volume

Name of parameter	Value
Size of the phantom [mm ³]	50*50*50
Length of needle [mm]	6 ~ 25
Radius of needle [mm]	0.5
Number of planes / volume	55
Number of beams / plane	64
Number of samples / beam	160
Number of trials	20

Table I Simulation parameters of one volume

The tool planes found by the two method compared with ground truth (α = 90°, the needle is perpendicular with the scan plane).

Creatis

X Visible diameter is far bigger than real diameter in real US image

Pre-processing: deconvolution

× Accurate motion estimation method

Mean shift algorithm

× Clinical software

Manual interaction

Logiciels associés: embarqué sur échographe

Creatis

- Echographe Ultrasonix
 - SDK Porta et Propello
 - sonde à balayage mécanique
- Interface temps réel en ligne
 - ≅1 volume:s
 - acquisition
 - traitement
- Affichage
 - image courante acquise
 - plan incident de l'aiguille
 - plan perpendiculaire
- Possibilité de fonctionner sans échographe

• données préalablement acquises

Logiciels associés: embarqué sur échographe

Cachard GDR 02 décembre 2013

Logiciels associés: Matlab

- Chargement de différents types de données
 - Simulations, fantôme, biopsie
- Réglage de paramètres simples
 - ROI traitée, diamètre aiguille
- Lance le traitement
 - Affiche résultat
 - Temps de calcul
 - Précision

UNIVERSITE DE LYOI

Creatis

Démonstration Matlab

Cachard GDR 02 décembre 2013