

GDR STIC-Santé : Biomécanique des Tissus Mous, Lyon 26 Novembre 2009

Caractérisation exérimentale et modélisation de tissus biologiques

remy.willinger@imfs.u-strasbg.fr

University of Strasbourg, IMFS-CNRS, Strasbourg, France

- Présentation générale des modèles
- Methodes expérimentales
 - O Rhéométrie
 - O Elastographie par RMN
 - O Elastographie impulsionnelle
- Matière hépathique
 - O In vivo
 - O In vitro
- Matière cérébrale
 - O Caractérisation et modélisation
 - O Limites de tolérance au choc
- Développements futurs

Biomécanique du traumatisme crânio-cérébral et cervical

Choix des modèles

-élément ressort-

-élément amortisseur-

Fig.2-4: Les éléments de base d'un modèle mécanique.

 $\sigma = E\varepsilon$ $\sigma = G\gamma$ $a) \qquad \sigma \qquad b) \qquad \bullet$ $b) \qquad \bullet$ compression. déformation en cisaillement.

Fig. 2-2: les deux types de déformation de base .

Choix des modèles

Fig.2-5: Le Modèle de Maxwel (M)

Fig.I-4: Modèle de Kelvin voight (K.V.).

Fig.I-5: Modèle de Maxwel-Kelvin voight (M.KV).

Fig.2-10 : la réponse en fluage du modèle de Kelvin-voight

Choix des modèles

Fig. 2-1: les trois comportements(élastique, visqueux et viscoélastique) des matériaux.

Méthodes expérimentales

$$G^* = G' + iG''$$
 $G' = \frac{\sigma_0}{\gamma_0} \cos \delta$ $G'' = \frac{\sigma_0}{\gamma_0} \sin \delta$ $\frac{G''}{G'} = \tan \delta$

Rhéométrie classique (DMA)

Synthèse

La rhéométrie : Le rhéomètre

AR 2000 : rhéomètre à contrainte contrôlée

Géométrie : plane

Hypothèses de travail : tissue étudié dans le domaine de viscoélasticité linéaire

(petites déformations)

Paramètres enregistrés : G', G", raw phase

Lien entre les deux méthodes

 $G = \sqrt{G'^2 + G''^2}$

 $E = 3\rho V_S^2 = 3G$ Hypothèse d'un matériau purement élastique

Elastographie par RMN

The Magnetic Resonance Elastography system

Experimental device with horizontal excitation

Assumption of a purely
elastic mediumAssumption of a purely
elastic mediumAssumption of a
viscoelastic mediumWave equation inversion
2D-algorithm $G = \rho \cdot \left(\frac{\omega}{k}\right)^2$
 $\rho : density$
 $k : wavenumber
<math>\omega : frequency$
 $\lambda : wavelength$ $G' = \rho \omega^2 \frac{K'^2 - K''^2}{(K'^2 + K''^2)^2}$

Elastographie Impulsionnelle

Synthèse

L'élastographie impulsionnelle : Le Fibroscan

Fréquence de travail : 50 Hz

Hypothèses de travail : foie élastique, isotrope, li

$$E = 3\rho V_s^2$$

 $\rho = 1 \,\mathrm{g.cm^{-3}}$

Vs Vitesse de propagation de l'onde de cisaillement

Matière hépatique

ETUDE BIBLIOGRAPHIQUE

Les méthodes de caractérisation des propriétés mécaniques des tissus mous de la littérature (liste non exhaustive)

Auteur	Année	Méthode	Organe	Conditions	Type d'individu	Fréquence (Hz)	E (kPa)	G (kPa)
Brown	2003	ultrason	foie	in vivo	porc	1	80	
Chen	1996	ultrason	foie	in vitro	bovin	-	0,62 +/- 0,24	
Klatt	2006	MRE	foie	in vivo	homme malade	50 - 80		3 +/- 0,24
Kruse	2000	MRE	foie	in vitro	porc	100		2,5 – 4
Kruse	2000	MRE	foie	in vitro	porc	300		4-6,2
Carter	2001	indentation	foie	in vivo	homme sain	statique	270	
Carter	2001	indentation	foie	in vivo	homme malade	statique	740	
Kim	2003	indentation	foie	in vivo	porc	100	31,8	
Ottensmeyer	2001	indentation	foie	in vitro	porc	0,1 - 60	2,2	
Samur	2005	indentation	foie	in vitro	porc	statique	15	

ETUDE BIBLIOGRAPHIQUE

Auteur	Tissu	Conditions	Technique	E (en kPa)	G (en kPa)
Huwart	Foie homme	In vivo	MRE	7	
Klatt	Foie homme	In vivo	MRE		2,26 +/- 0,23
Ottensmeyer	Foie homme	In vivo	indentation	2,2	
Roulot	Foie homme	In vivo	Fibroscan	5,49 +/- 1,59	

General experimental protocol

5 female pigs (25 to 35kg)

In vivo Transient Elastography tests

3 in vivo US-TE configurations:

- (a) In vivo inter-costal (anesthetized closed animal)
- (b) In vivo sub-costal (anesthetized closed animal)
- (c) In situ (anesthetized or dead opened animal)

For each configuration: 5 pigs 10 measurements/pig

1 mean shear modulus value

In vivo Transient Elastography results

Ex vivo US-TE configuration (d):

• Ex vivo

(dead animal after hepatectomy)

• Clamped liver:

maintained blood pressure

Controlled temperature

In vitro DMA tests (e):

- Ex vivo
- Clamped liver:
 - maintained blood pressure
- Temperature monitoring

Ex vivo results: TE versus DMA

Mean storage G' (square) and loss G'' (triangle) moduli obtained by Dynamic Mechanical Analysis on *in vitroporcine* hepatic tissue samples

Ex vivo results: TE versus DMA

Shear Modulus G versus Frequency for Liver Tissue: comparison with the results from the literature

In vitro rheometry

- ----- Liu & Bilston 2000 Bovine Rheometry
- - Huwart 2006 Human Rheometry
- ---- Author's Porcine Rheometry

Indentation

- ---- Ottensmeyer 2001 Porcine Indentation
 - Kim 2003 Porcine Indentation

MR-elastography

- Kruse 2000 Porcine MRE
- Suga 2003 Porcine MRE
- Klatt 2006 Human MRE

US-based elastography

- Lehdingen 2006 Human US
- Foucher 2006 Human US
- Castera 2008 Human US
- Roulot 2008 Human US
- Author's Porcine US

US-TE validated

Analyse in vitro et modélisation

Conclusions

Conclusions

- All the tests on the same 5 porcine livers
 - O 3 in vivo configurations comparison
 - O Ex vivo US-TE / In vitro DMA
- Mean shear modulus value at 50Hz:
- Mean shear modulus value at 50Hz:
 - O In vivo: G = 2.0 ± 0.5 kPa
 - O In vitro: $G = 1.2 \pm 0.4$ kPa
- Hepatic tissue characterization
 - O Homogeneous
 - O Isotropic
 - O High post mortem time dependence

Perspectives and limits

- More significant number of animals
- Same protocol to characterize fibrosis
- No in vivo viscosity measurement, but elastic assumption validated

Matière Cérébrale

Objectives

Enhance the Knowledge of the Shear Linear Behavior of Brain Tissue

Highlight the Effect of Experimental Conditions

Improve the Modeling of the Brain Tissue

Experimental Setups

Use for translational shear tests:

- Small strains (Disp_{max} = 50 Å)
- Frequency sweep (f < 10 kHz)

"Low Frequency Rheometer" (LFR)

Use for <u>torsional</u> shear tests:

- Small and large strains
- Frequency sweep (f < 150 Hz)
- *Time sweep (t > 0.01 s)*

Samples Origin and Preparation

Linear Characterization

Experimental

Protocol

Introduction

Strain-Dependant Behavior

Sequence of the Tests

Experimentariscon Bettore Effects

Inter Spinier Elementissom Linear Viscoelasticecimit

- Anisotropy Effect - Gime an abitain Tissue
- Strain Effect

Experimental Results: Linear Domain

Linear Viscoelastic Limit: ~1%

Experimental Results: Frequency Domain

Experimental Results: Time Domain

Experimental Results: Inter-Species

Introduction Experimental Constitution Experimental Characterization Strain-Dependant Behavior

Experimental Results: Inter-Region

Introduction Experimental Characterization Strain-Dependant Protocol Characterization Behavior

Experimental Results: Comparison with Literature

- Human (Fallenstein, 1969)
- 2. Human (Shuck, 1972)
- 3. Human (Galford, 1970)
- 4. Human (Galford, 1970)
- 5. Human (Donnelly, 1997)
- 6. Human (Mendis, 1995)
- 7. Monkey (Galford, 1970)
- 8. Monkey (Galford, 1970)
- 9. Bovine (Bilston, 1997)
- 10. Porcine (Arbogast, 1997)
- 11. Porcine (Brands, 2002)
- 12. Porcine (Miller, 1997)
- 13. Infant pig (Thibault, 1998)
- 14. In vivo pig (Miller, 2000)
- In vivo human (Manduca 2001)
- 16. Human & Porcine (Author)

Modeling Results: Shear Linear Behavior

Analysis of the Shear Strain Softening of Brain Tissue

Towards a Visco-Hyperelastic Model

Hypothesis _I

- <u>Time/Strain Factorization</u>: Time Dependent Behavior Is+ $\sum_{norm} C_{norm}$
- $\underbrace{A \ddagger \text{Long Times}}_{0} \quad \sigma(\lambda, t \to \infty) = \sum_{k} \mu_{k}^{e} \cdot \frac{\lambda^{\alpha_{k}} \lambda^{\alpha_{k}}}{\lambda + \lambda^{-1}} |_{\gamma \text{ increased}}$
- Strain ^{ex}Ger kalized Maxwe Mode i 3 2 C0.9 0.53 0.4 Visco-H $0.13_{x_{k}}$ 1.76 31 ${\mathcal T}$ 0,1 100 •1 exp. $\gamma_{0} = 50\%$ $\mathcal{R}^{0}+\lambda^{-1}$ 10 t (s)

Towards a Visco-Hyperelastic Model

$$\sigma(\lambda,t) = \sum_{k} \mu_{k} \left(1 + \sum_{j=1}^{n} C_{j} e^{-t/\tau_{j}} \right) \frac{\lambda^{\alpha_{k}} - \lambda^{-\alpha_{k}}}{\lambda + \lambda^{-1}}$$

Rang k	1	2	3
μ _k	60000	560	1.25
α _k	0.0451	-3.9	16.3
Mode i	1	2	3
C_{j}	0.9	0.53	0.4
$ au_{j}$	0.13	1.76	31

CARACTERISATION DU CERVEAU IN VIVO

In vivo tests :

preliminary results on 7 rats

Rat brain distribution maps of G' and G" with a manually selected region of interest

Mean shearing moduli at 180*Hz* for the 7 tested rats :

G'=7600±650Pa G"=7500±1600Pa

Limite de tolérance au choc

HUMAN SEGMENTS

Biomécanique du Traumatisme Crânien

- Aspect historique
- Modélisation et validation du modèle de la tête
- Limites de tolérances spécifiques à un mécanisme

Existing Head Injury Criteria

- Head substitute: Headform mass of M = 4.5 to 4.8 kg
- Injury mechanism related to linear head acceleration
- Based on cadaver head tests(Wayne State University 1960)

Wayne State Tolerance Curve

Head Injury Criteria (HIC, 1972)

$$HIC = (t_{2} - t_{1}) \left[\frac{1}{(t_{2} - t_{1})} \int_{t_{1}}^{t_{2}} a dt \right]^{2.5}$$

Limites du HIC

- Non prise en compte de l'accélération rotatoire
- Non direction dépendant
- Ne tiens pas compte des mécanismes de lésion

HEAD INJURY MECHANISMS AND RELATED PARAMETER

STRASBOURG UNIVERSITY FE HEAD MODEL

NAHUM (1977)

TROSSEILLE (1992)

INPUT

Rotational accelerations

OUTPUT (3 accelerations, 5 pressures)

Simulation de Trauma Crâniens

MODEL BASED INJURY CRITERIA

MODELLING OF THE PROTECTION SYSTEMS

HEAD INJURY MECHANISMS AND RELATED PARAMETER

UdS TOLERANCE LIMIT TO SDH

UdS TOLERANCE LIMIT TO DAI

UdS HEAD INJURY CRITERIA

- Sub-arachnoidal haematoma (50% risk) OCSF Minimum pressure : 135 kPa
- Moderate neurological injuries (50% risk)
 O Intra-cerebral Von Mises stress > 26 kPa
 O Intra-cerebral Von Mises strain > 25 %
- Severe neurological injuries (50% risk)
 O Intra-cerebral Von Mises stress > 33 kPa
 O Intra-cerebral Von Mises strain > 35 %
- Skull fractures (50% risk) O Global strain energy of the skull > 0.865

Développements futurs

- Investigations in vivo (humain et aniimal)
- Caractérisation aux grandes déformations
- Anisotropie / hétérogénéité
- Effets des vaisseaux sanguins et pressurisation
- Limites de tolérance sur modèle animal

Remerciements

Chatelin S, Constantinesco A.,

Deck C., Kang H. Nicolle S.,

Oudry J, Soleur L., Vappou J

IRCAD, ENSPS

Références

Nicolle S., Lounis M., Willinger R : Shear properties of brain tissue over a frequency range relevant for automotive impact situations : New experimental data. Stapp Car Crash J. 2004, Vol 48, 239-258

Nicolle, S., Lounis, M., Willinger, R. and Palierne J-F. (2005). Shear Linear Behavior of Brain Tissue over a Large Frequency Range. Biorheology 42(3), 209-223.

Vappou J., Willinger R., Breton E., Choquet P., Goetz C., Constantinesco A., "Dynamic viscoelastic shear properties of soft matter by Magnetic Resonance Elastography using a low-field dedicated system", J. Rheol, 2006, Vol 50, Issue 4, pp531, 541.

Vappou J., Breton E, Choquet P, Goetz C., Willinger R., Constantinesco A. : Magnetic resonance elastography compared with rotational rheometry for in vitro brain tissue viscoelasticity measurment. Accepté dans MAGMA en decembre 2007.

Vappou J., Breton E., Choquet P., Willinger R., Constantinesco A. : Assessment of in-vivo and post-mortem mechanical behaviour of brain tissue using magnetic resonance elastography. J Biomech. 2008, Vol 41, pp2954-2959.

Deck C, Willinger R : Improved Head Injury Criteria Based on Head FE Modeling. Int J of Crashworthiness, 2008, Vol 13, N°6, pp 667-679.

Oudry J, Bastard C., Miette V., Willinger R., Sandrin L: Copolymer-in-oil phantom materials for elastography. Ultrasound in Med & Biol. 2009, Vol 35, N7, 1185-1197.

J. Oudry, J. Vappou, P. Choquet, R. Willinger, L. Sandrin, and A. Constantinesco, Ultrasound-based Transient Elastography compared to Magnetic Resonance Elastography in soft tissue-mimicking gels, Phys Med Biol, 2009, N°54, 6979-6990. Oudry J, J. Chen, K.J. Glaser, V. Miette, L. Sandrin, R.L. Ehman, Cross-Validation of Magnetic Resonance Elastography and

Ultrasound-Based Transient Elastography: A Preliminary Phantom Study, J Magn Res, accepted, 2009

GDR STIC-Santé : Biomécanique des Tissus Mous, Lyon 26 Novembre 2009

Caractérisation exérimentale et modélisation de tissus biologiques remy.willinger@imfs.u-strasbg.fr

Rémy Willinger^a

University of Strasbourg, IMFS-CNRS, Strasbourg, France