

BIOMECHANICS OF VULNERABLE PLAQUE

Jacques Ohayon, Professor of Mechanics

Laboratory TIMC-DynaCell, UJF, CNRS UMR 5525, In³S, Grenoble, France University of Savoie, Engineering School Polytech Savoie, Chambéry, France

Ohayon et al., Am. J. Physiol 2007 Ohayon et al., Am. J. Physiol 2008 Le Floc'h et al., IEEE, 2009

10 Center Drive Bethesda, MD 20892 (301) 496 3141 www.cc.nih.gov

Collaborators

GEMM Group of Structural Mechanics and Materials Modelling

France

Gérard Finet, MD, PhD Philippe Tracqui, PhD Simon Le Floc'h, PhD Nicolas Mesnier, PhD Std

Roderic I. Pettigrew, MD Ahmed M. Gharib, MD Julie Heroux, MSc, PhD Std

CANADA

USA

Guy Cloutier, PhD Roch Maurice, PhD

ESPAGNE

Manuel Doblare, PhD Miguel-Angel Martinez, PhD Estefania Pena, PhD

Biomechanics of Atheroma Plaque

- 1st Remarkable Finding -

Left main coronary bifurcation

Fry , Circ Res 1968 – Caro et al., Proc. R Soc London B Biol Sci, 1971 - Malek et al., JAMA, 1999

Biomechanics of Atheroma Plaque - 2nd Remarkable Finding -

Solid Biomechanical Simulations

Peak cap stress can predict plaque rupture

Richardson et al., Lancet 1989 – Loree et al., Circ Res, 1992 - Cheng et al., Circulation, 1993

Investigations of the Biomechanics of Vulnerable Plaque

Biomechanics can help define vulnerable plaque morphology and critical parameters

Key Questions:

- 1. What are morphologic determinants of vulnerability?
- 2. What is the elasticity of plaque-wall constituents ?

Atheroma - Biological Processes

⁽Glass CK. Cell 2001)

Peak cap stress depends on:

a) Spatial Residual Stress Distribution
b) Plaque Morphology
c) Mechanical Properties of Plaque Constituents

Necrotic Core Thickness and Arterial Remodeling Index: Emergent Biomechanical Factors for Evaluating the Risk of Plaque Rupture

Ohayon et al., Am. J. Physiol 2008

Jacques Ohayon, PhD, France Gérard Finet, MD, PhD, France Roderic I. Pettigrew, MD, PhD, USA

BACKGROUND

Criteria for Defining Vulnerable Atherosclerotic Plaques

Illustration of the usual sequence in the development of the coronary atherosclerosis

Table 1

Criteria for Defining Vulnerable Plaques on the Basis of the Study of "Culprit" Plaques

Type of Criteria	Criterion
Major	Active inflammation: monocyte and macrophage and sometimes T-cell infiltration
	Thin cap with large lipid-necrotic core
	Endothelial denudation with superficial platelet aggregation
	Rssured plaque
	Stenosis >90%
Minor	Superficial calcified nodule
	Glistening yellow plaque seen at angioscopy
	Intraplaque hemorrhage
	Endothelial dysfunction
	Outward (positive) remodeling

Naghavi et al., Circulation 2003.

BACKGROUND

I. Plaque Vulnerability and Cap Thickness

BACKGROUND

II. Plaque Vulnerability and Necrotic Core Size

- Large lipid-necrotic core : But what is the critical necrotic core size ?

Large Variation, between 10% and 50% of plaque area

- Fujii et al., Circulation, 2003
- Gertz et al., Am. J. Cardiol, 1990
- Kolodgie et al., Curr Opin Cardiol, 2001
- Naghavi et al., Circulation, 2003
- Rioufol et al., Circulation, 2004

III. Plaque Vulnerability and Remodeling Index (RI)

- Few is known about the effect of remodeling index on plaque vulnerability

Plaque rupture often occurs often at sites with relatively small luminal stenosis

(Varnava et al., Circulation, 2002)

Thus, it still remains unclear how both, necrotic core size and plaque-growth process affect the peak cap stress – a predictor of rupture.

METHOD : Strategy 1 Structural Analysis Performed on Real Plaque Morphologies

RESULTS : Correlations Between Peak Cap Stress and Plaque Morphology

Unfortunately, 70% of our IVUS population had similar $\text{Remod}_{\text{index}}$ and $\text{Core}_{\text{area}}$, so that statistical analysis failed to disclose any influence on plaque stability of such parameters.

RESULTS: Clinical Study (n = 24 patients)

Description of Plaque Characteristics Detected by IVUS

Patient #	Age	Coronary Artery	Remodeling	External Elastic	Lumen	Core Area	Relative	Plaque	Core Arc	Relative Core	Cap
(n = 24)	(years)	Artery		(mm^2)	(mm^2)	(mm)		(%)	(degrees)	(%)	$(x \ 10^{-3} \text{ mm})$
1-M	67	LAD	1.52	19.93	3.24	5.69	44.0	83.8	96	77.92	< 90 (65)
2-M	69	LAD	1.22	15.95	6.01	1.15	15.5	62.3	67	62.50	< 90 (37)
3-M	52	OMA	1.35	19.16	5.34	2.48	25.0	72.1	95	55.56	< 90 (45)
4-M	56	OMA	1.54	21.47	3.61	2.10	15.0	83.2	67	63.16	< 90 (81)
5-M	59	LAD	1.33	20.32	6.06	2.04	18.5	70.2	88	73.53	< 90 (37)
6-M	71	OMA	1.46	21.5	5.72	1.77	15.2	73.4	88	45.00	< 90 (54)
7-M	72	LCX	1.24	19.85	4.27	4.41	38.8	78.5	178	64.86	< 90 (80)
8-M	68	RCA	1.32	23.32	5.94	4.59	31.6	74.5	61	35.56	93 (
9-M	49	RCA	1.70	34.62	4.34	2.72	10.5	87.5	60	42.22	< 90 (27)
10-M	65	LAD	1.22	26.22	6.80	1.97	15.7	74.1	79	62.50	< 90 (57)
11-M	65	LAD	1.29	20.31	4.06	2.95	24.7	80.0	79	46.67	< 90 (25)
12-M	65	LAD	1.34	25.73	8.44	1.33	10.4	67.2	55	42.86	< 90 (55)
13-M	76	LAD	1.47	28.91	7.67	1.87	11.2	73.5	72	60.00	106
14-M	52	RCA	1.16	19.13	10.63	0.46	6.7	44.4	42	41.67	116
15-M	59	LCX	1.12	14.73	5.30	0.80	11.1	64.0	56	45.24	< 90 (75)
16-M	45	RCA	1.37	17.71	6.26	0.70	7.4	64.7	76	40.91	100
17-M	61	RCA	1.30	25.22	10.63	0.88	8.0	57.8	53	28.00	< 90 (80)
18-M	68	RCA	1.43	17.86	4.18	2.88	26.1	76.6	111	43.48	155
19-M	79	LAD	1.46	24.46	6.75	1.70	11.8	72.4	74	6.00	90
20-M	65	LAD	1.20	19.73	4.53	3.54	32.8	77.1	144	53.13	< 90 (68)
21-M	60	LAD	1.20	11.44	2.79	1.36	20.7	75.6	106	57.89	114
22-M	60	LAD	1.24	20.16	7.41	1.97	19.9	63.3	101	39.29	170
23-M	57	RCA	1.36	14.67	2.75	1.81	20.5	81.2	99	48.48	370
Mean	62.61		1.34	20.97	5.77	2.22	19.17	72.06	84.65	49.41	
SD	8.49		0.14	5.06	2.17	1.32	10.16	9.63	30.78	15.59	
24 -M	63	LAD	1.40	25.10	6.86	1.92 / 0.47	12.873.1	68	79 / 31	57.20 / 24.12	90 / 90

In order to test the model's performance, cap thicknesses were randomly assigned (values in brackets) when found to be under the limit of the IVUS resolution (i.e., < 0.090mm). A 10 -months' follow-up IVUS was performed on patient # 24, who interestingly presented a vulnerable plaque with two necrotic cores. *Column 1:* M = male. *Column 3:* LAD = left anterior descending artery; OMA = obtuse left marginal artery; LCX = left circumflex artery.

METHOD : Strategy 2

Structural Analysis Based on a Dataset of Idealized PlaqueGeometriesMimicking Atherosclerotic Lesion Growth (5,500 morphologies)

For a given $Stenos_{deg}$ (N=14), all topologically admissible blunt crescentshaped necrotic cores were investigated (n=393)

METHOD : Validation

Structural Analysis

Real Plaque Morphologies (n = 24)

Finite Element

Simulation

'Real' peak cap stress

Associated Idealized Plaque Morphologies

Finite Element Simulation

Approximated Peak cap stress

Comparison

RESULT:

Model Validation

RESULT: Non Significant Influence of Necrotic Core Angle on Peak Cap Stress

RESULT: Importance of Necrotic Core Thickness when Evaluating Peak Cap Stress

lumen Von Mises Stress (kPa)

400

200

0

RESULT: Combined Effects of Remodeling Index and Necrotic Core

Thickness on Critical Cap Thickness

Definition:

Critical Cap_{thick} was defined as the value of Cap_{thick} at which Cap_{stress} reached the ultimate tensile stress of 300 kPa

Plaque with large relative necrotic $\text{Core}_{\text{thick}}$ and small $\text{Stenos}_{\text{deg}}$ were found more liable to rupture.

From Ohayon et al., 2008

RESULT: Potential Clinical Implications : Plaque Rupture Prediction

From Ohayon et al., 2008

Both cores had same: - $Cap_{thick} = 100 \ \mu m$ - $Remod_{index} = 1.40$

*: wire echo

CONCLUSIONS

Necrotic core thickness - rather than area – appears to be critical in determining plaque stability.

At the early stages of positive remodeling, atherosclerotic lesions were more prone to rupture, which could explain the progression and growth of clinically silent plaques. Biomechanical plaque instability is not a consequence of cap thickness alone, but rather of a subtle combination of cap thickness, necrotic core thickness and arterial remodeling index.

Peak cap stress depends on:

a) Spatial Residual Stress Distribution

b) Plaque Morphology

c) Mechanical Properties of Plaque Constituents

Why do we need a modulography's tool?

A essential tool also for Pharmacologists :

- Allows to explore non invasively the effects of any drug on Plaque Stability
- Challenge : WE NEED A TOOL TO ESTIMATE *IN-VIVO* THE MECHANICAL PROPERTIES

IVUS Virtual Histology

Limitations:

. Parametric Signal analysis – based

(Spectral analysis of ultrasound RF data), don't allow any stiffness quantification

. Don't satisfy the cardiologists

(not accurate enough to highlight cap thickness close to 100 µm)

Starting Point: *Strain Fields* (*clinical measurement*)

•

images

State of the Art in R&D: Parametric FE Model of Baldewsing (2001-2008)

- Initialization of necrotic core shape using High Strain Regions
- Update of the geometry during the optimization process

State of the Art in R&D :

Parametric FE Model of Baldewsing (2001-2008) - Limitations

LIMITATIONS

- Complex Plaques (neglects the interaction between inclusions)
- Initialization of the inclusion (Lipid far from the lumen may be omitted)
- Not able to detect calcium inclusions

Parametric FE Model : i-MOD *Mechanical Segmentation Criterion*

- Local equilibrium equation ∇ . $\left[\sigma\right] = \vec{0}$
- Linear elasticity, incompressible medium :
- Substitution of Eq.(2) into Eq. (1) leads to :
- Lagrange multiplier **p** cannot be measured

- luckily, **the second term** appears to be sensitive enough to highlight the modification of the material properties

Our Original Parametric FE Tool « i-MOD » (*imaging MODulography*)

++ Approach Based on Continuum Mechanics

Parametric FE Model : i-MOD

Iterative Watershed Segmentation Procedure

Determination of Ei with classical optimisation method

Successful Validation of i-MOD: Theoretical Framework *Plaque Morphologies and Mechanical Properties*

• With necrotic cores

• With necrotic cores & calcium

Successful Validation of i-MOD : Theoretical Framework

Forward and Inverse Problem: FEM Simulations (Strain)

i-MOD A Promising Tool for Vulnerable Plaque Detection Accurate detection of cap thickness <u>Targets</u>

i-MOD A Promising Tool for Vulnerable Plaque Detection Accurate detection of intra-plaque structure Targets

i-MOD A Promising Tool for Vulnerable Plaque Detection Accurate detection of calcium inclusions

Targets

Next Research Program

- <u>Phase 1</u>: *in vitro* study : **PVA** Phantoms Study

- * Invasive Ultrasound Modulography
- * Non Invasive MRI Modulography

- <u>Phase 2</u>: *in vivo* study : Animal Study

- * Invasive in vivo Ultrasound Carotid Modulography
- * Non Invasive in vivo Ultrasound Carotid Modulography

- <u>Phase 3</u>: *in vivo* study : Clinical Study

- * Patients with Coronary Disease (Invasive Ultrasound)
- * Patients with Carotid Disease (Non Invasive Ultrasound)
- * Patients with Carotid Disease (Non Invasive MRI)*

Collaborators

GËMM Group of Structural Mechanics and Materials Modelling

Gérard Finet, MD, PhD

Philippe Tracqui, PhD

Simon Le Floc'h, PhD Patrick Clarysse, PhD **Pierre Croisille, MD, PhD**

Nicolas Mesnier, PhD Std

USA

Roderic I. Pettigrew, MD Ahmed M. Gharib, MD Julie Heroux, MSc, PhD Std *

CANADA **Guy Cloutier, PhD**

Roch Maurice, FL

ESPAGNE

Manuel Doblare, PhD Miguel-Angel Martinez, PhD

Estefania Pena, PhD

