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This supplementary material gives the mathematical proofs for the various theorems and corollaries.

1 Proof of the wavejets decomposition

Equation 1 of the paper contains terms such as xk−jyj , which can be rewritten as linear combinations of
powers of eiθ.
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with b(k, j, n) = 0 if k and n do not have the same parity and b(k, j, n) = 1
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Using Equations 2 of the paper we get:

φk,n =

k∑
j=0

b(k, j, n)

j!(k − j)!
fxk−jyj (0, 0). (2)

2 Proof of the stability theorem (theorem 1)

Let us first recall the setting of this theorem. Let us call T (p) the true tangent plane and P(p) the chosen
parameterization plane, also passing through p. One can find an axis (p, u) and angle γ such that the
rotation of axis (p, u) and angle γ transforms P(p) into T (p). Since p belongs to both planes, (p, u) is
aligned with line T (p) ∩ P(p). Let us parameterize T (p) and P(p) so that a point of the surface has
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coordinates (x = r cos θ, y = r sin θ, h) over T (p) and (x = R cos Θ, y = R sin Θ, H) over P(p). Let us first
assume that θ (resp. Θ) corresponds to the angular coordinate of point q with respect an origin vector
aligned with u in T (p) (resp. with u in P(p)). We will state our main theorem in this setting and the
generalization will follow naturally. In this setting the surface wavejets decomposition at point q writes∑∞
n=0

∑∞
k=0 φk,nr

keinθ over the tangent plane T (p) and as
∑∞
n=0

∑∞
k=0 Φk,nr

keinΘ over P(p). We can
express the Φk,n coefficients with respect to φk,n and the rotation angle γ. To generalize the theorem to
arbitrary origin vectors for the angular coordinate in T (p) and P(p) for θ and Θ, recall that a change of
reference vector in T (p) amongs to a phase shift µ, one can always change the origin vector, compute the
wavejets coefficients φk,n and recover the real wavejets coefficients as φk,ne

inµ (similar formulas hold for
Φk,n).

Theorem 1. The new coefficients Φk,n can be expressed with respect to the φk,n as follows:

Φ0,0 = 0

Φ1,1 = Φ∗1,−1 =
γ

2
e−i

π
2 + o(γ)

Φk,n = φk,n + γF (k, n) + o(γ)

(3)

Proof. The rotation matrix R of axis u = (1, 0, 0)P and angle γ transforms the coordinates (X,Y,H)
of a surface point p in the parameterization of P(p) into coordinates (x, y, h) in the parameterization of
P(p). Let us assume that γ2 is small enough. Then the rotation has the following expression:

R =

1 0 0
0 1 −γ
0 uγ 1

+ o(γ) (4)

Thus, relation between (x, y, f(x, y) = h) and (X,Y, F (X,Y ) = H) is the following: x = X + o(γ)
y = Y − γH + o(γ)
h = γY +H + o(γ)

(5)

Let us switch to polar coordinates (r, θ) (resp. (R,Θ)) such that x = r cos θ and y = r sin θ (resp.
X = R cos Θ and Y = sin Θ). Let z = x+ iy and Z = X + iY . Equation (5) yields:

h = H + γRT (Θ) + o(γ) (6)

With T (Θ) = 1
2

(
ei(Θ−π2 ) + e−i(Θ−π2 )

)
.

The following equation for r follows from z = x+ iy and Equation 5:
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Similarly, we have for all n ∈ N:

zn = RneinΘ + nRn−1Hγei((n−1)Θ+µ−π2 ) + o(γ) (8)

which yields, since einθ = (z/|z|)n = (z/r)n:

einθ = einΘ +
nH

2R
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+ o(γ) (9)

Combining Equations 7 and 9, and setting Ak,n = (k+n)
2 e−i

π
2 yields:

rkeinθ=RkeinΘ+Rk−1einΘγH
(
Ak,ne

−iΘ +A∗k,−ne
iΘ
)

+ o(γ) (10)

Plugging Equation 10 in Equation 6, one has:
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Recall that if k and n do not share the same parity, φk,n = 0, then if m = −j − 1, φj+1,m+1 = 0.
Furthermore by definition of A, if m = −j − 2 then Aj+1,m+1 = 0. Thus we can write:
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Finally:
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A similar computation yields:
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Since H =
∑∞
k=0

∑k
n=−k R

keinΘ, by coefficient identification one has Φ0,0 = φ0,0 + o(γ) and Φ1,1 =

φ1,1 + γ
2 e
−iπ2 +o(γ), however since φ0,0 = φ1,1 = 0 (since T (p)) is the tangent plane, we have: Φ0,0 = o(γ)

and Φ1,1 = γ
2 e
−iπ2 + o(γ).
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For k > 1, one has the following relationship:

Φk,n = φk,n +γ

k∑
j=0

∑
p+m=n
|p|≤k−j
|m|≤j

φk−j,p(φj+1,m+1Aj+1,m+1 + φj+1,m−1A
∗
j+1,−m+1) + o(γ)

= φk,n + γF (k, n) + o(γ)

(17)

3 Proof of Corollary 1

Corollary 1. It follows from Theorem 1 that γ = 2|Φ1,1|+ o(γ) and arg(Φ1,1) = π
2 + o(γ). Thus if the

rotation is small enough, it is possible to correct the parameterization by performing a rotation along axis
(1, 0, 0) with rotation angle 2|Φ1,1|.

Proof. From Theorem 1, we have Φ1,1 = γ
2 e
−iπ2 +o(γ). Then |Φ1,1| = γ/2+o(γ) and argΦ1,1 = −π2 +o(γ).

To recover the tangent plane, one has thus to perform a rotation of angle 2|Φ1,1| around the rotation axis
(p, u).

4 Proof of Corollary 2

Corollary 2. One can recover the true coefficients φk,n iteratively by the following formula:

φk,n = Φk,n − γ
k−2∑
j=1

∑
p+m=n
|p|≤k−j
|m|≤j

φk−j,p(φj+1,m+1Aj+1,m+1 + φj+1,m−1A
∗
j+1,−m+1) + o(γ) (18)

In particular, φ2,0 = Φ2,0 + o(γ), φ2,2 = Φ2,2 + o(γ) and φ2,−2 = Φ2,−2 + o(γ) which means that the mean
curvature is also stable in o(γ).

Proof. Let us rewrite Equation 17 as:

φk,n = Φk,n − γ
k∑
j=1

sj,k,n + o(γ) (19)

• For j = 0, s0,k,n = φk,n(φ1,1A1,1 + φ1,−1A
∗
1,1) since φ1,1 = φ1,−1 = 0.

• For j = k − 1, sk−1,k,n = φ1,1(φk,nAk,n + φk,n−2A
∗
k,−n+2) = 0 since φ1,1 = 0

• For j = k, sk,k,n = φ0,0(φk+1,n+1A− k + 1, n+ 1 + φk+1,n−1A
∗
k+1,−n+1) = 0 since φ0,0 = 0

Equation 17 thus yields:

φk,n = Φk,n − γ
k−2∑
j=1

∑
p+m=n
|p|≤k−j
|m|≤j

φk−j,p(φj+1,m+1Aj+1,m+1 + φj+1,m−1A
∗
j+1,−m+1) + o(γ) (20)

One can notice that all φl,p coefficients appearing in the sum are such that l < k. The correction
procedure is straightforward: assuming we have corrected all Φl,n for all l < k and −l ≤ n ≤ l and have
therefore access to φl,n for all l < k and −l ≤ n ≤ l, up to some error in o(γ), one can use Equation 20
to correct coefficients Φk,n for all −k ≤ n ≤ k.
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