Wavejets: A Local Frequency Framework for Shape Details Amplification

Supplementary Material

Yohann Béarzi Julie Digne Raphaëlle Chaine

This supplementary material gives the mathematical proofs for the various theorems and corollaries.

1 Proof of the wavejets decomposition

Equation 1 of the paper contains terms such as $x^{k-j} y^{j}$, which can be rewritten as linear combinations of powers of $e^{i \theta}$.

$$
\begin{align*}
& x^{k-j} y^{j}=r^{k} \cos ^{k-j} \theta \sin ^{j} \theta \\
& =r^{k}\left(\frac{e^{i \theta}+e^{-i \theta}}{2}\right)^{k-j}\left(\frac{e^{i \theta}-e^{-i \theta}}{2 \boldsymbol{i}}\right)^{j} \\
& = \\
& =\frac{r^{k}}{2^{k} \boldsymbol{i}^{j}}\left(\sum_{l=0}^{k-j}\binom{k-j}{l} e^{(k-j-2 l) i \theta}\right)\left(\sum_{l=0}^{j}\binom{j}{l}(-1)^{l} e^{(j-2 l) i \theta}\right) \\
& = \tag{1}\\
& =\frac{r^{k}}{2^{k} \boldsymbol{i}^{j}} \sum_{l_{1}=0}^{k-j} \sum_{l_{2}=0}^{j}(-1)^{l_{2}}\binom{k-j}{l_{1}}\binom{j}{l_{2}} e^{\left(k-2 l_{1}-2 l_{2}\right) i \theta} \\
& \\
& =\frac{r^{k}}{2^{k} \boldsymbol{i}^{j}} \sum_{l=0}^{k} \sum_{h=0}^{l}(-1)^{h}\binom{k-j}{h}\binom{j}{l-h} e^{(k-2 l) i \theta} \\
& = \\
& =\frac{r^{k} 2^{k} \boldsymbol{i}^{j}}{\substack{n=-k \\
n \\
\text { same parity }}} \sum_{h=0}^{k}\binom{k-j}{h}\binom{j}{\frac{n-k}{2}-h}(-1)^{h} e^{i n \theta} \\
& =r^{k} \sum_{n=-k}^{k} b(k, j, n) e^{n i \theta}
\end{align*}
$$

with $b(k, j, n)=0$ if k and n do not have the same parity and $b(k, j, n)=\frac{1}{2^{k} \boldsymbol{i}^{j}} \sum_{h=0}^{\frac{n-k}{2}}\binom{k-j}{h}\binom{j}{\frac{n-k}{2}-h}(-1)^{h}$ otherwise.

Using Equations 2 of the paper we get:

$$
\begin{equation*}
\phi_{k, n}=\sum_{j=0}^{k} \frac{b(k, j, n)}{j!(k-j)!} f_{x^{k-j} y^{j}}(0,0) . \tag{2}
\end{equation*}
$$

2 Proof of the stability theorem (theorem 1)

Let us first recall the setting of this theorem. Let us call $\mathcal{T}(p)$ the true tangent plane and $\mathcal{P}(p)$ the chosen parameterization plane, also passing through p. One can find an axis (p, u) and angle γ such that the rotation of axis (p, u) and angle γ transforms $\mathcal{P}(p)$ into $\mathcal{T}(p)$. Since p belongs to both planes, (p, u) is aligned with line $\mathcal{T}(p) \cap \mathcal{P}(p)$. Let us parameterize $\mathcal{T}(p)$ and $\mathcal{P}(p)$ so that a point of the surface has
coordinates $(x=r \cos \theta, y=r \sin \theta, h)$ over $\mathcal{T}(p)$ and $(x=R \cos \Theta, y=R \sin \Theta, H)$ over $\mathcal{P}(p)$. Let us first assume that θ (resp. Θ) corresponds to the angular coordinate of point q with respect an origin vector aligned with u in $\mathcal{T}(p)$ (resp. with u in $\mathcal{P}(p))$. We will state our main theorem in this setting and the generalization will follow naturally. In this setting the surface wavejets decomposition at point q writes $\sum_{n=0}^{\infty} \sum_{k=0}^{\infty} \phi_{k, n} r^{k} e^{i n \theta}$ over the tangent plane $\mathcal{T}(p)$ and as $\sum_{n=0}^{\infty} \sum_{k=0}^{\infty} \Phi_{k, n} r^{k} e^{i n \Theta}$ over $\mathcal{P}(p)$. We can express the $\Phi_{k, n}$ coefficients with respect to $\phi_{k, n}$ and the rotation angle γ. To generalize the theorem to arbitrary origin vectors for the angular coordinate in $\mathcal{T}(p)$ and $\mathcal{P}(p)$ for θ and Θ, recall that a change of reference vector in $\mathcal{T}(p)$ amongs to a phase shift μ, one can always change the origin vector, compute the wavejets coefficients $\phi_{k, n}$ and recover the real wavejets coefficients as $\phi_{k, n} e^{i n \mu}$ (similar formulas hold for $\left.\Phi_{k, n}\right)$.

Theorem 1. The new coefficients $\Phi_{k, n}$ can be expressed with respect to the $\phi_{k, n}$ as follows:

$$
\begin{align*}
& \Phi_{0,0}=0 \\
& \Phi_{1,1}=\Phi_{1,-1}^{*}=\frac{\gamma}{2} e^{-i \frac{\pi}{2}}+o(\gamma) \tag{3}\\
& \Phi_{k, n}=\phi_{k, n}+\gamma F(k, n)+o(\gamma)
\end{align*}
$$

Proof. The rotation matrix \mathbf{R} of axis $\boldsymbol{u}=(1,0,0)_{\mathcal{P}}$ and angle γ transforms the coordinates (X, Y, H) of a surface point p in the parameterization of $\mathcal{P}(p)$ into coordinates (x, y, h) in the parameterization of $\mathcal{P}(p)$. Let us assume that γ^{2} is small enough. Then the rotation has the following expression:

$$
\mathbf{R}=\left(\begin{array}{ccc}
1 & 0 & 0 \tag{4}\\
0 & 1 & -\gamma \\
0 & u_{\gamma} & 1
\end{array}\right)+o(\gamma)
$$

Thus, relation between $(x, y, f(x, y)=h)$ and $(X, Y, F(X, Y)=H)$ is the following:

$$
\left\{\begin{array}{l}
x=X+o(\gamma) \tag{5}\\
y=Y-\gamma H+o(\gamma) \\
h=\gamma Y+H+o(\gamma)
\end{array}\right.
$$

Let us switch to polar coordinates (r, θ) (resp. (R, Θ)) such that $x=r \cos \theta$ and $y=r \sin \theta$ (resp. $X=R \cos \Theta$ and $Y=\sin \Theta$). Let $z=x+\boldsymbol{i} y$ and $Z=X+\boldsymbol{i} Y$. Equation (5) yields:

$$
\begin{equation*}
h=H+\gamma R T(\Theta)+o(\gamma) \tag{6}
\end{equation*}
$$

With $T(\Theta)=\frac{1}{2}\left(e^{i\left(\Theta-\frac{\pi}{2}\right)}+e^{-i\left(\Theta-\frac{\pi}{2}\right)}\right)$.
The following equation for r follows from $z=x+\boldsymbol{i} y$ and Equation 5:

$$
\begin{equation*}
r^{k}={\sqrt{\left|z z^{*}\right|^{k}}}^{k}=R^{k}+\frac{k R^{k-1} H}{2} \gamma\left(e^{i\left(\Theta+\frac{\pi}{2}\right)}+e^{-i\left(\Theta+\frac{\pi}{2}\right)}\right)+o(\gamma) \tag{7}
\end{equation*}
$$

Similarly, we have for all $n \in \mathbb{N}$:

$$
\begin{equation*}
z^{n}=R^{n} e^{i n \Theta}+n R^{n-1} H \gamma e^{i\left((n-1) \Theta+\mu-\frac{\pi}{2}\right)}+o(\gamma) \tag{8}
\end{equation*}
$$

which yields, since $e^{i n \theta}=(z /|z|)^{n}=(z / r)^{n}$:

$$
\begin{equation*}
e^{i n \theta}=e^{i n \Theta}+\frac{n H}{2 R} \gamma\left(e^{i\left((n-1) \Theta-\frac{\pi}{2}\right)}-e^{i\left((n+1) \Theta+\frac{\pi}{2}\right)}\right)+o(\gamma) \tag{9}
\end{equation*}
$$

Combining Equations 7 and 9, and setting $A_{k, n}=\frac{(k+n)}{2} e^{-i \frac{\pi}{2}}$ yields:

$$
\begin{equation*}
r^{k} e^{i n \theta}=R^{k} e^{i n \Theta}+R^{k-1} e^{i n \Theta} \gamma H\left(A_{k, n} e^{-i \Theta}+A_{k,-n}^{*} e^{i \Theta}\right)+o(\gamma) \tag{10}
\end{equation*}
$$

Plugging Equation 10 in Equation 6, one has:

$$
\begin{align*}
H & =\frac{\left(\sum_{k=0}^{\infty} \sum_{n=-k}^{k} \phi_{k, n} R^{k} e^{i n \Theta}\right)-\gamma R T(\Theta)}{1-\gamma \sum_{k=0}^{\infty} \sum_{n=-k}^{k} \phi_{k, n} R^{k-1}\left(A_{k, n} e^{i(n-1) \Theta}+A_{k, n}^{*} e^{i(n+1) \Theta}\right)}+o(\gamma) \tag{11}\\
& =\left(\sum_{k=0}^{\infty} \sum_{n=-k}^{k} \phi_{k, n} R^{k} e^{i n \Theta}\right)-\gamma(R T(\Theta)+F(\Theta)+G(\Theta))+o(\gamma)
\end{align*}
$$

With:

$$
\begin{gather*}
F(\Theta)=\left(\sum_{k=0}^{\infty} \sum_{n=-k}^{k} \phi_{k, n} R^{k} e^{i n \Theta}\right)\left(\sum_{j=1}^{\infty} \sum_{m=-j}^{j} \phi_{j, m} A_{j, m} R^{j-1} e^{i(m-1) \Theta}\right) \\
G(\Theta)=\left(\sum_{k=0}^{\infty} \sum_{n=-k}^{k} \phi_{k, n} R^{k} e^{i n \Theta}\right)\left(\sum_{j=1}^{\infty} \sum_{m=-j}^{j} \phi_{j, m} A_{j,-m}^{*} R^{j-1} e^{i(m+1) \Theta}\right) \tag{12}\\
F(\Theta)=\left(\sum_{k=0}^{\infty} \sum_{n=-k}^{k} \phi_{k, n} R^{k} e^{i n \Theta}\right)\left(\sum_{j=0}^{\infty} \sum_{m=-j-1}^{j+1} \phi_{j+1, m} A_{j+1, m} R^{j} e^{i(m-1) \Theta}\right) \\
=\left(\sum_{k=0}^{\infty} \sum_{n=-k}^{k} \phi_{k, n} R^{k} e^{i n \Theta}\right)\left(\sum_{j=0}^{\infty} \sum_{m=-j-2}^{j} \phi_{j+1, m+1} A_{j+1, m+1} R^{j} e^{i m \Theta}\right) \tag{13}
\end{gather*}
$$

Recall that if k and n do not share the same parity, $\phi_{k, n}=0$, then if $m=-j-1, \phi_{j+1, m+1}=0$. Furthermore by definition of A, if $m=-j-2$ then $A_{j+1, m+1}=0$. Thus we can write:

$$
\begin{align*}
F(\Theta) & =\left(\sum_{k=0}^{\infty} \sum_{n=-k}^{k} \phi_{k, n} R^{k} e^{i n \Theta}\right)\left(\sum_{j=0}^{\infty} \sum_{m=-j}^{j} \phi_{j+1, m+1} A_{j+1, m+1} R^{j} e^{i m \Theta}\right) \\
& =\sum_{\ell=0}^{\infty} \sum_{s=0}^{\ell} R^{\ell}\left(\sum_{n=-\ell+s}^{\ell-s} \phi_{\ell-s, n} e^{i n \Theta}\right)\left(\sum_{m=-s}^{s} \phi_{s+1, m+1} A_{s+1, m+1} e^{i m \Theta}\right) \tag{14}\\
& =\sum_{\ell=0}^{\infty} \sum_{s=0}^{\ell} R^{\ell}\left(\sum_{n=-\ell+s}^{\ell-s} \phi_{\ell-s, n} e^{i n \Theta}\right)\left(\sum_{m=-s}^{s} \phi_{s+1, m+1} A_{s+1, m+1} e^{i m \Theta}\right)
\end{align*}
$$

Finally:

$$
\begin{equation*}
F(\Theta)=\sum_{k=0}^{\infty} \sum_{n=-k}^{k}\left(\sum_{j=0}^{k} \sum_{\substack{p+m=n \\|p| \leq k-j \\|m| \leq j}} \phi_{k-j, p} \phi_{j+1, m+1} A_{j+1, m+1}\right) R^{k} e^{i n \Theta} \tag{15}
\end{equation*}
$$

A similar computation yields:

$$
\begin{equation*}
G(\Theta)=\sum_{k=0}^{\infty} \sum_{n=-k}^{k}\left(\sum_{j=0}^{k} \sum_{\substack{p+m=n \\|p| \leq k-j \\|m| \leq j}} \phi_{k-j, p} \phi_{j+1, m-1} A_{j+1,-m+1}^{*}\right) R^{k} e^{i n \Theta} \tag{16}
\end{equation*}
$$

Since $H=\sum_{k=0}^{\infty} \sum_{n=-k}^{k} R^{k} e^{i n \Theta}$, by coefficient identification one has $\Phi_{0,0}=\phi_{0,0}+o(\gamma)$ and $\Phi_{1,1}=$ $\phi_{1,1}+\frac{\gamma}{2} e^{-i \frac{\pi}{2}}+o(\gamma)$, however since $\phi_{0,0}=\phi_{1,1}=0($ since $\mathcal{T}(p))$ is the tangent plane, we have: $\Phi_{0,0}=o(\gamma)$ and $\Phi_{1,1}=\frac{\gamma}{2} e^{-i \frac{\pi}{2}}+o(\gamma)$.

For $k>1$, one has the following relationship:

$$
\begin{align*}
\Phi_{k, n} & =\phi_{k, n}+\gamma \sum_{j=0}^{k} \sum_{\substack{p+m=n \\
|p| \leq k-j \\
|m| \leq j}} \phi_{k-j, p}\left(\phi_{j+1, m+1} A_{j+1, m+1}+\phi_{j+1, m-1} A_{j+1,-m+1}^{*}\right)+o(\gamma) \tag{17}\\
& =\phi_{k, n}+\gamma F(k, n)+o(\gamma)
\end{align*}
$$

3 Proof of Corollary 1

Corollary 1. It follows from Theorem 1 that $\gamma=2\left|\Phi_{1,1}\right|+o(\gamma)$ and $\arg \left(\Phi_{1,1}\right)=\frac{\pi}{2}+o(\gamma)$. Thus if the rotation is small enough, it is possible to correct the parameterization by performing a rotation along axis $(1,0,0)$ with rotation angle $2\left|\Phi_{1,1}\right|$.

Proof. From Theorem 1, we have $\Phi_{1,1}=\frac{\gamma}{2} e^{-i \frac{\pi}{2}}+o(\gamma)$. Then $\left|\Phi_{1,1}\right|=\gamma / 2+o(\gamma)$ and $\arg \Phi_{1,1}=-\frac{\pi}{2}+o(\gamma)$. To recover the tangent plane, one has thus to perform a rotation of angle $2\left|\Phi_{1,1}\right|$ around the rotation axis (p, u).

4 Proof of Corollary 2

Corollary 2. One can recover the true coefficients $\phi_{k, n}$ iteratively by the following formula:

$$
\begin{equation*}
\phi_{k, n}=\Phi_{k, n}-\gamma \sum_{j=1}^{k-2} \sum_{\substack{p+m=n \\|p| \leq k-j \\|m| \leq j}} \phi_{k-j, p}\left(\phi_{j+1, m+1} A_{j+1, m+1}+\phi_{j+1, m-1} A_{j+1,-m+1}^{*}\right)+o(\gamma) \tag{18}
\end{equation*}
$$

In particular, $\phi_{2,0}=\Phi_{2,0}+o(\gamma), \phi_{2,2}=\Phi_{2,2}+o(\gamma)$ and $\phi_{2,-2}=\Phi_{2,-2}+o(\gamma)$ which means that the mean curvature is also stable in $o(\gamma)$.

Proof. Let us rewrite Equation 17 as:

$$
\begin{equation*}
\phi_{k, n}=\Phi_{k, n}-\gamma \sum_{j=1}^{k} s_{j, k, n}+o(\gamma) \tag{19}
\end{equation*}
$$

- For $j=0, s_{0, k, n}=\phi_{k, n}\left(\phi_{1,1} A_{1,1}+\phi_{1,-1} A_{1,1}^{*}\right)$ since $\phi_{1,1}=\phi_{1,-1}=0$.
- For $j=k-1, s_{k-1, k, n}=\phi_{1,1}\left(\phi_{k, n} A_{k, n}+\phi_{k, n-2} A_{k,-n+2}^{*}\right)=0$ since $\phi_{1,1}=0$
- For $j=k, s_{k, k, n}=\phi_{0,0}\left(\phi_{k+1, n+1} A-k+1, n+1+\phi_{k+1, n-1} A_{k+1,-n+1}^{*}\right)=0$ since $\phi_{0,0}=0$

Equation 17 thus yields:

$$
\begin{equation*}
\phi_{k, n}=\Phi_{k, n}-\gamma \sum_{j=1}^{k-2} \sum_{\substack{p+m=n \\|p| \leq k-j \\|m| \leq j}} \phi_{k-j, p}\left(\phi_{j+1, m+1} A_{j+1, m+1}+\phi_{j+1, m-1} A_{j+1,-m+1}^{*}\right)+o(\gamma) \tag{20}
\end{equation*}
$$

One can notice that all $\phi_{l, p}$ coefficients appearing in the sum are such that $l<k$. The correction procedure is straightforward: assuming we have corrected all $\Phi_{l, n}$ for all $l<k$ and $-l \leq n \leq l$ and have therefore access to $\phi_{l, n}$ for all $l<k$ and $-l \leq n \leq l$, up to some error in $o(\gamma)$, one can use Equation 20 to correct coefficients $\Phi_{k, n}$ for all $-k \leq n \leq k$.

