Multivariate Image Processing with the Tree of Shapes

Edwin Carlinet ${ }^{1,2}$, Thierry Géraud ${ }^{1}$

${ }^{1}$ EPITA Research and Development Laboratory (LRDE), France

Featuring

- Connected compo-

ป nents without holes

- - Self duality
- Many morphological
invariances

At a Glance

- Motivation. The Tree of Shapes (ToS) provides a high-level representation of the image structure and has many applications.
- Objective. Extend the ToS computation on color images.
- Problem. A natural tree does not exist for color images, "standard" approaches are not satisfactory.
- Contribution. A method that:
- does not rely on any total ordering of colors,
- is invariant by any marginal change of contrast,
- is invariant by any marginal inversion of contrast,
- is equivalent to the "normal" ToS in the gray level case.

Method Description

1. Compute the marginal $\operatorname{ToS} \mathcal{T}_{1}, \mathcal{T}_{2}$ and \mathcal{T}_{3}.
2. Merge them into a single graph structure \mathcal{G} (the Graph of Shapes (GoS)).
3. Compute the depth ρ of each shape S in \mathcal{G}. The depth is the longest path from the root to that shape.
4. Reconstrust $\omega(x)=\max _{S \mid x \in S} \rho(S)$
5. Compute the hole-filled maxtree of ω to get the final tree \mathcal{T}_{ω}.

The ToS is invariant by contrast and inversion change of contrast \rightarrow these images have the same tree
(a) A 2-channel image and its
$\begin{array}{rrr}2 & 2 \\ 3 & 3\end{array}$
(c) ω image built from \mathcal{G} shapes.

$\mathcal{T}_{1} \Omega_{0}$	$\mathcal{T}_{2} \Omega_{0}$	$\mathcal{G}_{\Omega_{0}}$	\mathcal{T}_{ω}
A_{1}	D_{1}	$\mathrm{~A}_{1}$	A
$\mathrm{~B}_{2}$	E_{2}	$\mathrm{~F}_{2}$	$\mathrm{~B}_{2}$
C_{3}			D_{3}
			E_{4}

(b) The marginal $\operatorname{ToS} \mathcal{T}_{1}, \mathcal{T}_{2}$ and the GoS (the depth in light gray)
(d) The hole-filled max-tree \mathcal{T}_{ω} of ω

Applications: Image Simplification (left) and Interactive Segmentation (right)

112 over 288 k level lines selected

Markers (top row) and segmented images (bottom row)

