
Context-based modules deployment specification

Deliverable 5.2 (version 1)

Mehdi Terdjimi, Lionel Médini and Michael Mrissa

31 December 2015

Project ASAWoO

Adaptive Supervision of Avatar / Object Links for the Web of Objects

Grant Agreement: ANR-13-INFR-0012-04

Deliverable 5.2

Abstract
Web of Things applications require advanced solutions to provide adaptation to different purposes from
common context models. While such models are application-specific, the adaptation itself is based on
questions (i.e. concerns) that are orthogonal to application domains. In this deliverable, we present a generic
solution to provide reusable and multi-purpose context-based adaptation for smart environments. We rely
on semantic technologies and reason about contextual information to evaluate, at runtime, the pertinence
of each adaptation possibility to adaptation questions covering various concerns. We evaluate our solution
against a smart agriculture scenario using the ASAWoO platform, and discuss how to design context models
and rules from “classical” information sources (e.g. domain experts, device QoS, user preferences).

Contents
1 Introduction 2

2 Smart agriculture scenario 2

3 Multi-purpose adaptation in WoT applications 4
3.1 Context model instantiation . 4
3.2 Transformation rules . 5
3.3 Adaptation rules . 6
3.4 Adaptation question answering . 7

4 Evaluation 7
4.1 Qualitative evaluation . 8
4.2 Quantitative evaluation . 8

5 Related work 9

6 Discussion on WoT application design 10

7 Conclusion 10

1

Deliverable 5.2

1 Introduction
The Web of Things (WoT) relies on Web technologies and standards to build applications that make het-
erogeneous objects (i.e. things) interoperate in diverse situations. As WoT applications cover numerous
domains such as healthcare, smart cities, smart factories and smart agriculture, their development has been
substantially gaining interest in the past few years.
In the ASAWoO project, we have defined a virtual extension for a thing called avatar. Just like a servient [1],
an avatar allows access to and control over a thing. An avatar is a component-based software artifact that
relies on a semantic architecture to process and reason about semantically-annotated information. This way,
in the ASAWoO platform, avatars can communicate with one another and expose high-level functionalities
to form WoT applications involving several things that achieve a common goal. A WoT application consists
of a hierarchy of functionalities: composed functionalities may require several devices to communicate
and terminal ones are implemented using device capabilities (sensors, actuators, processing units). WoT
application execution relies on several research fields [9], among which semantic web services and multi-
agent systems. The functionality composition approach is not detailed here, but is precised in [11].
Avatars must also adapt their behaviors to comply with non-functional concerns such as quality of service
(QoS), energy efficiency and security, with respect to several factors like environmental and natural condi-
tions, computing resources and user preferences. To do so, they embed a generic, multi-purpose adaptation
process designed to answer adaptation questions. Due to the set of concerns addressed in the ASAWoO
project, we herein target the following adaptation questions [15]:
Q1 Which protocols should the application use to communicate with things?
Q2 Where should the application code be executed?
Q3 Which thing capability should be involved in a given terminal functionality?
Q4 Which functionality should be involved in a given composed functionality?
Q5 Which functionality should be exposed to clients and other avatars?1

They may relate to concerns that are independent of the application domain, so that any application can
be deployed on the ASAWoO WoT platform. And so must be the hardware and software architecture that
provides adaptation facilities to the avatars. However, the actual data about sensors, domain concepts or
users’ preferences are application-dependent. As adaptation questions must be answered using these data,
these questions need to be related to the application domain and actors.
In this deliverable, we provide a multi-purpose context adaptation process, able for any WoT application to
simultaneously answer domain-independent adaptation questions, including modules deployment, with data
originating from application-specific sources. To do so, we turn data into semantically-explicit contextual
information, transform these information into context model instances, and infer all adaptation possibili-
ties, along with their pertinence values. We detail the different types of rules involved in the adaptation
process, and show how reifying RDF sets of triples that represent adaptation possibilities allows keeping
the genericity of adaptation questions and preserving the domain-agnostic nature of avatar components.
Section 2 presents a smart agriculture scenario that illustrates our approach. Section 3 details our adaptation
and question answering processes. Section 4 presents our implementation and evaluates it in terms of accu-
racy and performance. Section 5 presents related work in context description and management. Section 6
discusses our results and compares our solution to the state of the art. Section 7 provides a summary of our
results and insights for future work.

2 Smart agriculture scenario
We use the following scenario from the sustainable agriculture domain. The considered WoT application
aims at watering a vineyard (aka field) according to its local water needs. The field is divided in several
parts, each of which can be watered separately using an irrigation network. Even though each object has
its own avatar, this scenario only focuses on drones that are in charge of taking photos of the field parts to
detect which parts lack water. The application takes into account current weather conditions and forecast,

1Functionalities must be exposed by avatars prior to be called by clients and executed.

2

Deliverable 5.2

in order not to water if precipitations are expected and to only provide each field part with the necessary
quantity of water otherwise.
The application is designed as a hierarchy of functionalities, on top of which ManageFieldWatering, which
is composed of several ManagePartOfFieldWatering functionalities, each of which requires DetectWater-
ingNeeds, which implies TakePicture, ProcessPicture, TransferPicture, etc. Drones can collaborate to
achieve a composed functionality such as DetectWateringNeeds. In this case, a drone “takes the lead”
and selects its most appropriate collaborators to take pictures. In the same way, drones can serve as network
relays to transmit information between drones over the field and a gateway connected to the cloud. Complex
processing task can also be executed on the platform cloud.
The application is deployed in a WoT platform that comprises a cloud infrastructure and several wireless
gateways around the field. The field is equiped with an anemometer and a pluviometer to sense actual
weather conditions. However, it is not covered with a wide wireless network. 3 Drones can be used. They
are equiped with a GPS sensor, a camera that can take photos of different qualities, two wireless network
interfaces (Wifi and Bluetooth), and can sense their own current capabilities (battery, memory availability,
CPU usage, storage space). Lastly, the application is connected to a weather forecast service.
As there are multiple ways to achieve these functionalities, the WoT application must adapt its behavior.
To precise our scenario, we consider an example of situation in which an avatar has to answer the five
adaptation questions described in Section 1. We hereafter instantiate each adaptation question and precise
the elements that would allow a human operator to answer it in this situation.
Q1 Chosing a network interface to transfer a picture depends on the distance between the drones and on

the energy consumption of available interfaces.
Conditions: The drone has to transmit data to another drone located at 11 meters and has 45% of
battery left.
Deduction: The distance is too high for using Bluetooth and the battery level is sufficient for both.
Decision: Use Wifi to perform TransferPicture.

Q2 The application module that processes pictures to determine water needs may be executed either on
the drone or on the cloud. It requires high CPU availability and a minimum battery level. In addition,
executing it on the cloud requires high bandwidth to transfer the picture in acceptable time.
Conditions: CPU availability is 80% and battery 45%.
Deduction: The CPU level is sufficient to do the processing on the drone and the battery level is
sufficient for both.
Decision: Execute the ProcessPicture code on the drone.

Q3 Taking HD pictures is preferable when implementing the functionality DetectWateringNeeds. However,
this requires a high-resolution camera and sufficient storage capacity.
Conditions: The drone has the capability to take HD pictures and 2.5Gb of free internal storage.
Deduction: The picture can be taken and stored in high definition.
Decision: Use the TakeHdPicture capability to realize the TakePicture functionality.

Q4 Choosing the right drone to identify if part of field #1 needs to be watered depends on the remaining
battery power and on distance from the part of the field of each drone.
Conditions: Drone1 (resp. drone2, resp. drone3) is at 120 (resp. 20, resp. 70) meters from part of field
#1, and has 90 (resp. 45, resp. 70)% battery left.
Deduction: All drones can fulfill the functionality, but drone 2 is closer.
Decision: Choose drone 2 to perform DetetWateringNeeds on field part 1.

Q5 Drones may deteriorate if they are exposed to strong wind or to the rain. They should not be able to go
outside if the weather is inconvenient.
Conditions: No rain, but a 55km/h wind.
Deduction: Drones 1, 2 and 3 have no risk to be deteriorated by rain, but have significant risk to be
damaged by wind.
Decision: Do not expose the GoOutside functionality on drones 1, 2 and 3. Consequently, do not
expose the TakePicture and DetectWaterNeeds either.

3

Deliverable 5.2

Figure 1: The adaptation process and its actors.

3 Multi-purpose adaptation in WoT applications
Multi-purpose context adaptation in WoT applications originates from several processes in which vari-
ous actors take part. WoT platform designers create complex execution environments that need to handle
several concerns to support a variety of use cases and applications; they document these concerns and the
corresponding adaptation questions. Appliance manufacturers describe device characteristics (QoS) in their
documentations. Domain experts identify application concepts and processes, along with all the environ-
mental sensors and Web services able to provide useful contextual data. Users specify their preferences
(e.g. working hours, prefered devices, privacy levels, etc.).
WoT application designers then need to interpret all those instances of contextual dimension and to integrate
them in a comprehensive adaptation process. Their work consists in designing a context model and two
sets of rules: transformation and adaptation. Then, they wire the model to the available data sources.
The ASAWoO platform does the rest. At configuration time, static data (e.g. application context model,
appliance configuration, user preferences) are stored in semantic repositories [11]. At runtime, an avatar
receives raw data from various sources, including devices and Web services. These data are semantically
annotated and transformed into instances of the context model, using transformation rules. Adaptation rules
are then applied to the instantiated context model to infer each possible adaptation choice. When avatar
components require adaptation decisions, they send adaptation questions to the avatar context manager,
which retrieves the best candidate. The querying process is the same, regardless of whether the question
relies on filtering (e.g. can I expose a given functionality) or on ranking (e.g. which communication protocol
is the most suitable). The whole process is based on the management workflow described in [15], depicted
in Figure 1. In this section, we focus on the following activities: identifying semantic instances of the
context model, building transformation and adaptation rules, and solving adaptation questions. We apply
these processes on our scenario, which involves three drones in the ManageFieldWatering functionality.
3.1 Context model instantiation
We use hereafter the following formalization.
• The context model M is structured according to contextual dimensions D j [15], that correspond to the

conditions described in the example in Section 2. M = tD j, j ∈ {1, ...,n}, where n is the number of
dimensions.

• A contextual dimension D is a set of possible contextual instances i.

4

Deliverable 5.2

D j = {i jk,k = 1, ...,Card(D j)}, where Card(D j) depends on the transformation rules defined in Sec-
tion 3.2

• An instantiated context model is called a contextual situation ς . It denotes a semantized observation of
all available contextual data at a given instant t, at which each dimension can be valued or empty.
ςt = {it j}, it j ∈ D j ∪∅, j ∈ {1, ...,n}

In our scenario, we identify the sets of contextual instances in our WoT infrastructure below:
Dwind = {NoWind,Breeze,StrongWindForGoOutside}
Drain = {NoRain,Rainy}
Ddistance = {CloseToFieldPart1,CloseToFieldPart2,CloseToFieldPart3,
FarFromFieldPart1,FarFromFieldPart2,FarFromFieldPart3}
Dbandwidth = {HighBandwidthForTrans f erPicture,
LowBandwidthForTrans f erPicture}
Dstorage = {HighCapacityForStorePicture,LowCapacityForStorePicture}
Dbattery = {HighBatteryForMoving,LowBatteryForMoving,
HighBatteryForTakePicture,LowBatteryForTakePicture,
HighBatteryForTrans f erPicture,LowBatteryForTrans f erPicture,
HighBatteryForProcessPicture,LowBatteryForProcessPicture}
DCPU = {HighCPUAvailabilityForProcessPicture,
LowCPUAvailabilityForProcessPicture}
Dprotocols = {Wi f i,Bluetooth}
Dresolution = {LowQuality,AverageQuality,HighQuality}

3.2 Transformation rules

Figure 2: The relation between contextual dimensions, data sources, raw value types and contextual instance
thresholds.

Transformation rules aim at pre-processing continuous data and transforming them into discrete contextual
instances, to facilitate the adaptation step. To do so, a transformation rule applies a condition on seman-

5

Deliverable 5.2

tically annotated data from a given data source. Let src be the data source, vsrc its value, d a contextual
dimension indicating the type of the data source, i a contextual instance, and a the avatar on which this
transformation process is performed. The condition is based on a set T of contextualization thresholds
t = (o,vt) with o ∈ {>,<,>=,<=}, vt ∈ R. Figure 2 depicts these elements for our smart agriculture
scenario. A transformation rule is formed as follows:
src ∧ vsrc ∧ T → [d :hasContextualInstance i] :hasContextualSource a
The inferred graph is composed of two triples. The subject of the first one is the URI of the contextual
dimension, its predicate hasContextualInstance and its object the URI of the contextual instance. The
second one has the first as subject (by applying triple reification [8]), hasContextualSource as predicate
and the avatar URI as object. An example of transformation rule is the following:

3.3 Adaptation rules
Adaptation rules infer adaptation possibilities from contextual instances. An adaptation possibility is a
triple that is a potential answer to an adaptation question. The head of an adaptation rule is a conjunction
of reified graphs Gi, i ∈ N produced using transformation rules. Its body is a new reified graph with three
triples, stating the adaptation candidate triple p, the source avatar a of this candidate triple, and its contextual
ranking value r. Thus, an adaptation rule has the form: ∧ Gi → p, p :hasContextualSource a, p rd f :value r
The form of an adaptation possibility triple varies according to adaptation questions. Its subject is the URI
of either a preferred protocol (Q1), a code location (Q2), a local capability (Q3), another avatar functionality
(Q4) or a local functionality (Q5). Its predicate is the URI of the adaptation question itself, and the object
is the URI of the functionality to adapt. The ranking value determines the accuracy of a candidate in the
current contextual situation. An example of adaptation rule is the following:

Figure 3 depicts the reifications in the semantized contextual data both on the transformation scope (i.e.
ready-to-provide adaptation possibilities) and on the adaptation scope (i.e. ready-to-provide adaptation
answers).

6

Deliverable 5.2

Figure 3: Linked graph of reified results of transformation and adaptation rules.

3.4 Adaptation question answering
Answering an adaptation question aims at retrieving the subject of the best valued adaptation possibility
triple (along with its avatar), for a given adaptation question and regarding a given functionality. The con-
text manager converts such questions into SPARQL SELECT queries with two variables: the adaptation
question answer ?answer and the contextual source ?ctxSrc. The adaptation decision either relies on
filtering (e.g. the functionality can be exposed or not as in [10]) or on ranking (e.g. select the appropriate
features as in [4]). While Q5 acts as a filter, answering Q1, Q2, Q3 and Q4 require adaptation possibilities
to be ranked. For ranking-based adaptation questions, the SPARQL query includes an ORDER BY clause
depending on the rank value ?rank, along with a LIMIT 1 clause to only return the optimal answer. An
example of adaptation question that determines the suitable location to execute ProcessPicture is the fol-
lowing:
SELECT ?answer ?ctxSrc { ?candidate rdf:subject ?answer .
?candidate rdf:predicate <suitableCodeLocationForFunctionality> .
?candidate rdf:object <ProcessPicture> .
?candidate <hasContextualSource> ?ctxSrc .
?candidate rdf:value ?rank } ORDER BY ?rank LIMIT 1

4 Evaluation
We base our evaluation prototype on the ASAWoO platform described in [9]. This platform provides a WoT
runtime environment that instantiates and runs one avatar for each connected device, and provides facilities
to store application and contextual data in semantic repositories. Avatars are implemented in Java and their
components are OSGi bundles. Each avatar exposes its device functionalities and context data to the other
platform elements using Web standards. Inside an avatar, components ask adaptation questions at runtime
to the context manager, which delegates answering to a local semantic reasoner by interpreting them as
SPARQL queries. At the same time, the context manager constantly acquires raw data from various sources
and transmits them to the semantic reasoner as described in Section 3.
As, to the best of our knowledge, there exists no similar work that led to the design and implementation of
a domain-agnostic, semantic-based and multi-purpose adaptation platform for the Web of Things, we could
not compare our work to the state of the art. We then chose to evaluate our prototype according to two
criteria based on the work of Bass et al [2]. First, we evaluate its accuracy, i.e. its ability to do the work

7

Deliverable 5.2

for which it was intended. Second, we evaluate its performance for both the data integration and query
answering tasks. All experiments were performed using the HyLAR semantic reasoner [14].

4.1 Qualitative evaluation
We evaluate the accuracy of our solution by simulating the scenario from Section 2 by connecting three
drones to our WoT platform, with the objective of realizing the ManageWatering functionality. For the
sake of simplicity, we focused on the tasks that only required drones and did not consider other appliances
such as the automatic irrigation system. The experimental setup was the following: our platform is the
ASAWoO platform and runs in an Ubuntu 16.04 VM with 2 VCPUs and 4Gb of RAM, in an OpenStack
cloud infrastructure. We vary the contextual parameters identified in Section 3 in a 2-days time interval.
In this interval, we ask our five adaptation questions to each drone avatars, at different times t1, t2, t3 and
t4, as depicted in Figure 4. We expect the answers to these questions to correspond to the adaptation rules
described in 3.3.

Figure 4: Variation of contextual data during a simulated 2-days time interval.

Figure 5 shows the answers returned to the adaptation questions by the five managers. At t2, we see that
the optimal protocol for the TransferPicture functionality between drone 1 and drone 2 is Wifi as they are
in different parts of the field. At t2 and t3, executing ProcessPicture in devices is preferable due to ping
timeouts or long delays caused by the weather conditions. At t2, drone 1 capabilities are preferred as drone
3 capacity is too low. We also see that drone 2 is not a good choice for detecting parts of field to water
due to its insufficient resolution. At t1 and t3, drone 3 is the optimal choice to take pictures due to its
proximity to part-of-field 1. However, drone 1 is preferred at t2 due to its high battery level. At t2 and t3,
the functionality GoOutside is not exposed as either the wind is too strong or it rains.
In all cases, we verified that all avatar context managers provided the expected answers to all adaptation
questions. The correctness of our system is enforced by the use of a standard semantic reasoner, which
ensures that any other rule-based solution would have given the same answers. In addition, this evaluation
shows that our solution allows performing accurate multi-purpose adaptation from a common semantic
contextual model.

4.2 Quantitative evaluation
In this section, we evaluate the performance of our prototype in terms of processing times. These experi-
ments were performed on a Dell OptiPlex 780 - Core 2 Duo E8400 @ 3 GHz. As the integration (semanti-

8

Deliverable 5.2

Time

t1 Drone 3 Drone 3
t2 Device Drone 1 Drone 2
t3 Device Drone 3 Drone 3
t4 Drone 3 Drone 1

Q1 – Protocol for
TransferPicture
(Drones 1 & 2)

Q2 – Location of
ProcessPicture

Q3 – Implementation of
DetectWateringNeeds

Q4 – Composition
with TakePicture

(FieldPart1)

Q5 – Exposability
of GoOutside

Bluetooth Cloud Exposable
Wifi Not exposable
Bluetooth Not exposable
Bluetooth Cloud Exposable

Figure 5: Answers to five adaptation questions in four different times.

zation, transformation and application of adaptation rules) and adaptation question answering processes can
run in parallel, we evaluate them in separate runs, and with different goals (i.e. maximum processing times).
Contextual data integration runs as a background task, but must not monopolize all computing capabilities
allocated to the avatar, especially if this avatar runs on a constraint device. Hence, it must be lightweight
but does not need to be immediate. We then chose a threshold of 1 second as success for this experiment2.
Adaptation question answering, however, is time-critical, as it is required for the current functioning of the
avatar and of the WoT application. We then limit its acceptable response time to 100ms.
For both processes, we ran two experiments varying the number of rules and of triples in the knowledge
base. The results of these experiments are depicted in Figure 6. They show that we reach by far our two
initial goals as the respective processing times for integration and answering do not exceed 650ms and
30ms.

0

200

400

600

800

10 triples 100 triples 1000
triplesContextual Value Processing

Question Answering

0

200

400

600

800

1 Rule 10 Rules 100 rules

Contextual Value Processing
Question Answering

Time (ms) Time (ms)

Figure 6: Context processing and question answering times on different situtations.

5 Related work
This section overviews related work on context identification, as well as on context management lifecycles
in pervasive environments.
The definition of context depends on the domain concepts, the actors of the tasks, the application’s infras-
tructure, etc. In [5], Brézillon describes the focus as the identification of context elements that are relevant
for the current task. He separates the contextual knowledge (related to the current focus) and the exter-
nal knowledge (which is not relevant to the current focus of the task operator). In [6], he identifies and
represents the type of knowledge using expert maps, where the expert is the task operator. This differs
from our work, where the task operator is actually the application user. Brézillon’s context representation
varies across operators and allows flexibility in terms of users, while our avatar-centered vision of context
provides reusability of the context model amongst each object of the infrastructure and allows capitalizing
on the reasoning process. In [13], Schaap et al. propose four steps that rely on stakeholders expertise and
existing data about the domain. Their solution is based on specific climate risks that are linked to the adap-

2One second is the commonly admitted threshold upon which the user’s attention stops focusing on the current task.

9

Deliverable 5.2

tation process. This specificity and the lack of context representation both make their solution difficult to
reuse in general cases. We instead provide a loose coupling between adaptation possibilities and contextual
information, allowing applications from any domain to fit our infrastructure.
The management of contextual information also varies across context-aware adaptation solutions. Based
on the literature, Perera et al. propose in [12] a context lifecycle in four steps: context acquisition, context
modeling, context reasoning, and context dissemination to other devices. The context modeling step implies
structuring the context as part of the lifecycle. Our solution separates context modeling from context instan-
tiation, as the model is fixed throughout the lifecycle of the application, while the instances vary according
to a given contextual situation. The workflow proposed by Bernardos et al. [3] (acquisition, processing,
reasoning and decision) separates context processing from reasoning. We instead process reasoning tasks
simultaneously at context instantiation time and at adaptation possibility generation time. Thus, we pro-
vide straightforward decision-making through generic adaptation questions. Ferscha et al. propose in [7]
the sensing, transformation, representation, rule-base and actuation steps. The context changes trigger this
last step and propagates information to several actuators, which can be problematic if several context man-
agers send the same information to the same actuators. We instead provide ready-to-answer adaptation
possibilities that are queried only when needed.

6 Discussion on WoT application design
This section discusses the role of a WoT Application Designer (WAD) regarding the definition of the con-
textual management cycle in an application. It complements Section 3, which deals with automated aspects
of the management process, and defines the knowledge required for a WAD to bridge functional and non-
functional concerns. It provides guidelines to link "classic" sources (i.e. appliance documentation, domain
expert knowledge, user preferences, etc.) with other data sources (devices, Web services) to realize the
adaptation.
The choice of contextual dimensions to build the context model requires knowledge of the main concepts
and processes of the domain. At this stage, the WAD asks the domain expert which factors may change the
behavior of the application (environmental occurrences, defects, etc.) to provide the appropriate solutions.
The WAD then interprets these factors as contextual instances to build the context model. When designing
transformation rules, the WAD confronts the expert’s assessments to the appliance’s technical constraints.
The context meta-model we have presented in [15] can validate the choice of contextual dimensions and
instances to ensure they fit the infrastructure needs. Designing transformation rules requires expressing
thresholds using comparison operators and associate data sources to their value using two triple patterns,
where the first pattern describes the carried value and the second pattern describes the nature of the data
source. The WAD also identifies possible user preferences as triple patterns that link data sources to prefer-
ential characteristics, such as service fee, type of technology, brand, etc. Designing adaptation rules consists
in interpreting expert answers as adaptation possibilities for a given contextual situation. Finally, the WAD
determines the rank values, based on device properties and quality-of-service agreements.
As we aim to ease joint work between WADs and domain experts, the design of the adaptation solution
itself can be adapted all along the application use. In addition to easing the WAD’s work by mutualising
contextual data collection for various adaptation purposes (which would anyway have been collected and
processed separately otherwise), our adaptation solution design cycle is iterative and incremental, similarly
to agile methods used in software development. It supports changes in domain knowledge, as well as
in appliances and actors’ description through the use of generic semantic methods. For instance, in our
scenario, if the user buys new drones with different characteristics (in terms of battery, storage or computing
capabilities), the platform will seamlessly integrate them and adapt the application to these new devices, to
the cost of a simple configuration task.

7 Conclusion
We propose an adaptation solution for Web of Things platforms that simultaneously supports several adap-
tation concerns, ensures compatibility across devices, applications and domains, and relies on extensible

10

Deliverable 5.2

sets of context dimensions. This solution is based on semantic reasoning and limits the reasoning extent
to a closed world determined by semantization thresholds. After presenting the general framework of our
proposition (i.e. the ASAWoO platform), we focus on the definition of the following elements: set of con-
text model instances, transformation rules that turn semantized sensor data into actual contextual model
instances, adaptation rules that infer adaptation possibilities from contextual situations, and multi-purpose
adaptation questions answering to make adaptation decisions. We evaluate our solution in a smart agricul-
ture scenario both in terms of accuracy and performance. Results validate adaptation answers and reach
performance goals on context processing and adaptation question answering. We compare our approach to
the literature regarding context identification and management. Finally, we describe the role of WoT appli-
cation designers in the collection of contextual data and specification of application context management
workflows, and open a discussion on the design of adaptive solutions that can in turn diachronically evolve
while managing dynamic data that synchronically change.
Our perspectives include the automatic generation of domain-specific transformation and adaptation rules
through meta-rules. We also aim at formalizing a method to rank adaptation possibilities using discretization
techniques.

References
[1] Web of Things Architecture, Unofficial Draft: General Description of WoT Servient.

https://w3c.github.io/wot/architecture/wot-architecture.html#general-description-of-wot-servient, 09
September 2016.

[2] Len Bass. Software architecture in practice. Pearson Education India, 2007.

[3] Ana M Bernardos, Paula Tarrio, and Jose R Casar. A data fusion framework for context-aware mo-
bile services. In Multisensor Fusion and Integration for Intelligent Systems, 2008. MFI 2008. IEEE
International Conference on, pages 606–613. IEEE, 2008.

[4] Arnaud Blouin, Brice Morin, Olivier Beaudoux, Grégory Nain, Patrick Albers, and Jean-Marc
Jézéquel. Combining aspect-oriented modeling with property-based reasoning to improve user in-
terface adaptation. In Proceedings of the 3rd ACM SIGCHI symposium on Engineering interactive
computing systems, pages 85–94. ACM, 2011.

[5] Patrick Brézillon. Task-realization models in contextual graphs. In International and Interdisciplinary
Conference on Modeling and Using Context, pages 55–68. Springer, 2005.

[6] Patrick Brézillon. Modeling expert knowledge and reasoning in context. In International and Inter-
disciplinary Conference on Modeling and Using Context, pages 18–31. Springer, 2015.

[7] Alois Ferscha, Simon Vogl, and Wolfgang Beer. Context sensing, aggregation, representation and
exploitation in wireless networks. Scalable Computing: Practice and Experience, 6(2), 2001.

[8] Patrick Hayes and Brian McBride. Rdf semantics. W3C recommendation, 10, 2004.

[9] Lionel Médini, Michael Mrissa, Mehdi Terdjimi, El-Mehdi Khalfi, Nicolas Le Sommer, Philippe
Capdepuy, Jean-Paul Jamont, Michel Occello, and Lionel Touseau. Building a Web of Things with
Avatars. In Lina Yao Michael Sheng, Yongrui Qin and Boualem Benatallah, editors, Managing the
Web of Things: Linking the Real World to the Web. Morgan Kaufmann, Elsevier, October 2016. Do-
mains (unavailable categories): Internet of Things, Web of Things.

[10] Rabeb Mizouni, Mohammad Abu Matar, Zaid Al Mahmoud, Salwa Alzahmi, and Aziz Salah. A
framework for context-aware self-adaptive mobile applications spl. Expert Systems with applications,
41(16):7549–7564, 2014.

[11] Michael Mrissa, Lionel Médini, Jean-Paul Jamont, Nicolas Le Sommer, and Jérôme Laplace. An
avatar architecture for the web of things. IEEE Internet Computing, 19(2):30–38, 2015.

11

Deliverable 5.2

[12] Charith Perera, Arkady Zaslavsky, Peter Christen, and Dimitrios Georgakopoulos. Context aware
computing for the internet of things: A survey. IEEE Communications Surveys & Tutorials,
16(1):414–454, 2014.

[13] Ben F Schaap, Pytrik Reidsma, Jan Verhagen, Joost Wolf, and Martin K van Ittersum. Participatory
design of farm level adaptation to climate risks in an arable region in the netherlands. European
Journal of Agronomy, 48:30–42, 2013.

[14] Mehdi Terdjimi, Lionel Médini, and Michael Mrissa. HyLAR+: Improving Hybrid Location-Agnostic
Reasoning with Incremental Rule-based Update. WWW ’16: 25th International World Wide Web
Conference Companion, April 2016.

[15] Mehdi Terdjimi, Lionel Médini, Michael Mrissa, and Nicolas Le Sommer. An avatar-based adap-
tation workflow for the web of things. In 2016 IEEE 25th International Conference on Enabling
Technologies: Infrastructure for Collaborative Enterprises (WETICE), pages 62–67. IEEE, 2016.

12

	Introduction
	Smart agriculture scenario
	Multi-purpose adaptation in WoT applications
	Context model instantiation
	Transformation rules
	Adaptation rules
	Adaptation question answering

	Evaluation
	Qualitative evaluation
	Quantitative evaluation

	Related work
	Discussion on WoT application design
	Conclusion

