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ABSTRACT

Multiple cartographic providers propose services displaying points of interests (POI) on maps.
However, the provided POIs are often incomplete and contradictory from one provider to
another. Previous works proposed solutions for detecting correspondences between spatial
entities that refer to the same geographic object. Although one can visualize the result of the
integration of corresponding entities, users do not have any information about the quality of
this integration. In this paper, we propose a solution to visualize the uncertainty inherent to a
spatial integration algorithm. We present an integration process that identifies three levels of
confidence for spatial and terminological integration results. Based on perceptual tests, we
select visual variables to portray these three levels of confidence and we choose a visualization
strategy. A prototype has been implemented to present the benefits of our proposal in a use-

Spatial integration

case scenario. This work has been realized within the framework of UNIMAP' project.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Location-based services (LBS) are daily used in various
applications, and cartographic providers play an essential
role in displaying points of interest (POI) such as restaurants,
hotels, and tourist places. A POl can be defined as a
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geographic object that has a point geometric shape. A POI
has spatial attributes longitude and latitude, and termino-
logical (non-spatial) attributes such as name and type (e.g.,
restaurant, hotel). Some providers may supply additional
terminological attributes such as address, phone number,
Website, customers' ratings, etc. A provider usually repre-
sents a POI on a map with a specific symbol or icon. Due to
lack of completeness, noisy, inaccurate and contradictory
data, it is interesting to propose solutions for detecting
corresponding entities (i.e.,, which refer to the same POI)
from different providers. This challenge aims at improving
the quality and the relevance of information, which has
a significant impact in tourist applications.

The integration of spatial information issued from different
sources has been studied [9]. Earlier works so called “map
conflation” were specifically devoted to vector objects such as
roads [22]. In the last decade, the integration problem mainly
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refers to the “entity matching” research domain, enhanced by
a spatial aspect. The discovery of corresponding entities is
performed either by exploiting only spatial information [25]
or by computing and combining terminological similarities for
selected attributes (e.g., name, type) [21]. Machine learning
algorithms may be applied for tuning the parameters (e.g.,
weights) of a matching process [27]. When corresponding
entities have been detected, an interesting use case aims at
displaying a merged entity, i.e., to use a crafted algorithm to
fusion the attributes' values of these corresponding entities.
Such merging algorithms are not 100% confident. For instance,
two corresponding entities may have a different location and
the algorithm needs to determine the correct position. Simi-
larly, the names or the phone numbers of two corresponding
entities may differ, and the choice of the correct values relies
on the merging algorithm. A merged entity may therefore
include at different levels some uncertainties, which have to
be presented to end-users [18].

In this paper, we are interested in visualizing the
uncertainty resulting from the merging process of spatial
entities. Our contributions can be summarized as follows:
(i) identifying the “dimensions” which have to be taken
into account for uncertainty, i.e., the POI type, the spatial
attributes and the terminological (non-spatial) attributes;
(ii) measuring the confidence level for each dimension as
well as a global confidence score; (iii) proposing many
visualizations of a merged entity and its uncertainty and
testing them to select the best; (iv) implementing a
prototype to demonstrate in a scenario the benefits for
end-users.

The next section describes the related work, both in
spatial integration and uncertainty visualization. Section 3
provides a detailed explanation of our solutions, tested
among different users, to represent and visualize various
criteria about a merged entity. In Section 4, we demon-
strate the benefits of our approach in a scenario, and we
conclude in Section 5.

2. Related work

This section covers the existing works in two domains:
the methods for integrating spatial data and the visualiza-
tion of uncertainty in a spatial context.

2.1. Spatial integration

The same reality is described with a multiplicity of
geographical information. This information growth rapidly
over the Internet, some may be incomplete, inaccurate or
contradictory. Integration of several sources of geographical
information is necessary in order to update information that
changes daily [12] or to produce a more complete and
accurate information [7]. In [32], authors define three cate-
gories of imperfection that occurs when integrating several
spatial data sources, namely (i) inaccuracy, which concerns
wrong spatial information that do not correspond to reality,
(ii) imprecision, which deals with spatial information that
corresponds to reality but is not sufficiently precise and (iii)
vagueness, which is about ambiguity of spatial information (e.
g., boundaries heterogeneity). Geospatial integration has been

widely studied under the term “map conflation” where two
whole maps are integrated. Integration of maps consists in
identifying the corresponding entities and to fuse them [5]. In
[22], authors describe existing works in map conflation
regarding their formats (raster and vector) and their criteria
such as spatial data, terminological data and topological
relationships between entities. Some works have been pro-
posed in map conflation using points [23,6,30], lines [24,10,31]
and polygons [1,11,19].

In [2,25], the authors use only the spatial information
(location) to detect the corresponding entities with a similar-
ity measure based on probabilistic consideration. The prob-
ability that two entities are corresponding is estimated using
the Euclidean distance between them. In order to improve the
quality of integration, some works propose to combine
similarity measures that use spatial information with similar-
ity measures that use terminological information to identify
correspondences. In [26], three algorithms were proposed
using a first similarity measure to filter the entities and a
second to detect the corresponding entities. For example, a
string similarity measure can be applied on the name of the
POI, then for each pair of entities that are not considered as
corresponding, the distance between them is increased. The
final step is to apply a similarity measure on spatial informa-
tion with the new distances. Note that increasing the distance
between two entities lowers the probability that they will be
considered as corresponding entities when we apply a simi-
larity measure on spatial information. A variety of learning-
based methods including logistic regression, support vector
machines and voted perceptron has been proposed to find out
how to combine and tune several similarity measures in order
to identify the corresponding entities [27].

The “Theory of Evidence”, also called “Dempster-Shafer
theory” [28], combines an evidence measure of different
sources and finds a degree of belief that takes into account all
the available evidence. That is, a belief mass represented by a
belief function, is associated to each evidence, then Demp-
ster's rule is used to combine them. The “Theory of Evidence”
is proposed to integrate geospatial databases [21] and to
match geospatial entities of several LBS providers [14].

Kang et al. propose a visual interface to detect the
corresponding geospatial entities based on a neighbor-
hood similarity [13]. It takes two sources of entities as
input, and then the user chooses a similarity measure to
apply on terminological information or on spatial informa-
tion. Detected entities are considered as potentially corre-
sponding. Then each pair of entities is visualized on the
screen. Their shared neighborhood of entities are placed
between them and non-shared neighbors on the sides.
Finally, the user has to make a decision for each pair to be
considered as corresponding or not.

2.2. Spatial uncertainty visualization

Thomson et al. [29] and MacEachren et al. [17] define
nine categories of uncertainty paired with three components
of geographic information: space, time and attribute (termi-
nological). On this basis, Thomson et al. [29] make an
empirical study to characterize the kind of visual significa-
tion that is appropriate for representing those different
categories of uncertainty. The authors use a set of visual
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variables corresponding to the visual variables defined by
[4,20,16]: Location, Size, Color Hue, Color Value, Grain,
Orientation, Shape, Color Saturation, Arrangement, Clarity,
Resolution and Transparency. Their symbol sets are points
and for each visual variable, three levels are specified coming
from high to low certainty (Fig. 1). They add iconic/pictorial
symbols to compare their efficiency according to abstract/
geometric symbols such as Smiley, Filled bar with Slider, and
Thermometer (Fig. 2). Two tests are realized to judge the
suitability of different symbol sets for representing variation
in uncertainty by manipulating one single visual variable for
all the categories of certainty in all the components of
geographic information or for one specific category of
certainty (accuracy, precision, trustworthiness) in each com-
ponent of the geographic information.

3. Representing uncertainty

This section covers our contributions for representing
uncertainty in spatial integration. We first introduce an
overview of our approach. Next we focus on the integra-

tion process, which produces confidence scores, and on
uncertainty visualization on maps.
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Fig. 1. Visual variables proposed by [18].
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Fig. 2. Smiley, Filled bar with Slider, and Thermometer icons proposed by
[18]

3.1. Approach overview

A (semi-)automatic integration process does not achieve
perfect results. Depending on data quality of providers, an
integration process may have to deal with various kinds of
uncertainty and to take decisions. In our geospatial context,
the quality is strongly variable from one provider to
another, and we need to take into account the uncertainty
inherent to the process. Besides, this uncertainty should be
represented, especially on a map. Our integration approach
consists of three consecutive processes, namely “mediation

»ows

process”, “integration process” and “visualization process”.

® Mediation process: it is in charge of processing and
rewriting a spatial query. For each LBS provider, the
initial query is rewritten to comply with the schema or
model of each provider. In addition, the mediation
process performs a blocking process, which reduces
the set of returned entities based on the location (within
a radius) and the POI type specified in the query. As an
example, let us imagine that a user is interested in
finding the hotels in Pittsburgh. This query may be
rewritten as “accommodations in Pittsburgh” for a first
provider, and as “hotels in Pittsburgh, PA” for another
provider. The output of this process is a set of entities
returned from each provider to the mediator that are
ready for the integration part. Note that the mediation is
not further discussed in this paper, since the schema
heterogeneity of the providers has been beforehand
manually solved and that the blocking processes are
performed using the providers' querying systems.

® [ntegration process: it aims at detecting and merging
spatial entities which refer to the same POI (corre-
sponding entities). It takes the sets obtained from the
mediation process to produce a single set of entities, in
which corresponding entities from different providers
are merged into a single entity. Our integration process
produces various confidence scores between the attri-
butes of corresponding entities (see Section 3.2). The
lower the uncertainty, the higher the confidence levels.
Note that any spatial integration system, which takes
the same inputs, could be used in replacement.

® Visualization process: its main objective is the trans-
formation of the confidence scores into visual repre-
sentation of confidence levels (see Section 3.3). In this
process, the merged entities resulting from the integra-
tion are displayed on a map.

3.2. Integration and uncertainty computation

The challenges in entity integration traditionally deal
with the selection of data and transformation functions to
be used for merging. In our context, we can add the
computation of relevant and useful confidence scores for
spatial and terminological attributes. In this part, we
describe a simple solution for detecting and matching
corresponding entities and for computing confidence levels.

Many generic approaches for “entity matching” have
been proposed [15]. Getting inspired by these generic
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approaches, we propose a simple entity matching process
based on sophisticated similarity measures. The matching
process is performed between all entities resulting from
the mediation process. Given two entities from different
sets, we compute confidence scores between their attri-
butes. A score close to 0 means that two entities are totally
dissimilar. Conversely, a score equal to 1 indicates that
both entities are equivalent. The coordinates of two
entities are compared according to the Euclidian distance.
The shorter the distance between both entities, the closer
to 1 the similarity value for coordinates is. All terminolo-
gical attributes (e.g., name, phone) are compared using the
Levenshtein measure. This measure is the most effective
with regard to other string similarity measures [27]. Using
several metrics to match the same attribute involves a new
problem for combining the different similarity scores.
When all the individual scores have been computed, we
may also compute a global score. A weighted average is
traditionally used for combining the individual similarity
scores. A decision step is finally required to select the
correspondences. Various methods such as a threshold or
the top-K enable this automatic selection [3]. In our context,
proposing the corresponding entities with the highest
global score is sufficient. To select which attributes of
corresponding entities should be merged, we apply statistics
(mainly value frequency). This simple proposition of entity
matching and merging aims at illustrating our uncertainty
visualization solutions. Note that any integration algorithm,
which takes the same inputs, can replace our proposition.

Concerning the output of the confidence scores, they
are deduced from the similarity scores computed during
the entity matching. The score computed between the
coordinates constitutes the spatial confidence score. All
terminological scores (between names, phones, etc.) are
averaged to become the terminological confidence score.
The global confidence score aims at evaluating the global
confidence about a merged entity. For instance, the inte-
gration process produces a high score of spatial confidence
when two providers locate the same POI at the same place
and a low score of terminological confidence when two
providers provide the user with totally different names,
addresses, telephones, websites, etc. At the end of the
integration process, corresponding entities have been
merged and three confidence scores have been computed
for each merged entity. The next step consists in visualiz-
ing these scores on a map.

3.3. Uncertainty visualization proposal and assessment

Visualization of integrated information may be insuffi-
cient in various cases. For instance, a user needs to check
original information when observing strange outcome
from the integration process. Therefore, the user requires
to estimate himself the confidence of integration process
visualizing (i) the spatial and terminological uncertainty
for each integrated POI and (ii) the whole providers' source
information. This requirement generates a large amount of
information that might become an issue to visualize. To
meet this requirement, in our approach, we first convert
the spatial, terminological and global scores output from
the integration process into three confidence levels

(similar to the three uncertainty levels in [29,18]): uncer-
tain (low confidence level), moderately certain (medium
confidence level), certain (high confidence level). The first
range [0, 0.5] is associated to the uncertain level. The
middle range (]0.5, 0.75]) includes the moderately certain
values. And the certain level stands for highest values in
the range |0.75, 1]. These ranges have been fixed according
to experiments performed with similarity measures [8].
In the future, we intend to learn the best ranges for
each level.

We are interested in monitoring uncertainty of two
dimensions: the confidence level of spatial attributes (the
spatial confidence score from integration process) and the
confidence level of terminological attributes (the termino-
logical confidence score from integration process). More-
over, to create a map easier to read and understand for a
tourist, we propose to group these two dimensions of
confidence to display one global confidence level. Then, a
POI has a global (spatial and terminological) high con-
fidence level when the data of the providers are consistent
and complete between them. On the contrary, a POI has a
global low confidence level when the providers are not
consistent and/or not complete between them.

An analysis of the results obtained by [18] leads us to
select the most relevant data useful in our context. Loca-
tion, Size associated to Fuzziness variables are relevant to
portray spatial uncertainty. Smiley, Filled bar associated
with Slider and Thermometer are interesting to portray
terminological uncertainty. Finally, Fuzziness, Location and
Color Value are well suited to portray global uncertainty.

We define various cartographic proposals to portray
confidence levels of POI that are oriented in two direc-
tions: first the choice of the visual variables, second the
choice of the dimension(s) of the geographic information
to display on the map.

3.3.1. Visual variables to portray confidence levels

On the basis of conclusions made in Section 2.2, we
propose two alternative visual variables to portray the
confidence level of each dimension of geographic informa-
tion (spatial, terminological, global). Fig. 3 illustrates them.

Concerning the spatial attributes, we decide to compare
Location with Size associated to Fuzziness. We choose
Location because it is intuitively connoted to space. We
aggregate Size and Fuzziness. The taller the sign is, the
fuzzier the sign is. We do this combination because
independently, an order would be created between the
signs with large or distinct signs seen before the others.
This combination reduces this perception of order.

Concerning the terminological attributes, the proposals
of [29,18] have been investigated. For our application,
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- - 0@ ™
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Fig. 3. Visual variables chosen for our study.
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Smiley is too connoted to a score relative to the quality of a
POI obtained from the opinions of different users. Then if
the smiley is happy, it will be interpreted as a good POI for
the public (e.g., a “good” restaurant) and this is not what
we want to represent. Concerning Filled bar associated
with Slider, we think it is difficult to correctly perceive the
differences between its three degrees because only one
small element of the slider is modified. For the previous
reasons, the Thermometer icon is selected and is com-
pared to a new visual variable: Frequency, based on
graphic representations created to show uncertain chaotic
behaviors of signals in Electronics Science.

Finally, for the global confidence level (spatial and
terminological attributes together), we choose to combine
Fuzziness with Color Value, the Location visual variable is
eliminated because it is too connoted to the spatial
dimension.

Perceptual tests have been conducted to determine which
semiotic solution is best perceived and understood for each
level of confidence based on the statistical Student t-test [34]
with a threshold p of acceptability of risk up to 5% (i.e., if p is
lower than 5% then the results are significant). For each visual
variable (Location, Size associated to Fuzziness, Thermometer
icon, Frequency, Fuzziness, Color Value), a couple of icons
(weak vs. medium, strong vs. weak, strong vs. medium) are
presented to 36 participants (14 men and 22 women, aged
18-30 years) based on a map. Participants must indicate as
quickly as possible which icon represents the highest degree
of confidence. These tests are repeated for each level of
confidence with a counterbalance in the order of proposals to
avoid learning effect. These tests enable us to evaluate the
comprehension level of variables' icons between each others.

Results are measured in terms of response time and
correctness. The Student t-test reveals significant effects in
both results (p < 3,14%) for Size associated to Fuzziness
(spatial level), Thermometer (terminological level) and
Color Value (global level), according to both response time
and correctness. These three visual variables are then
selected for the next step of assessment.

3.3.2. Dimensions of geographic information to be displayed
on map

Portraying whole uncertainty information may over-
load the interface. Our approach proposes instead to
portray the confidence levels with a cartographic inter-
active application that gives the advantage to provide the
user with only main confidence information and get more
confidence details on demand opening a tool-tip to display
complementary information. The user can also interact
with the map (zoom in/out, move around, etc.). In such an
application, various visualization strategies can be pro-
posed depending on various confidence information we
can highlight on the map.

A new test has been realized with 25 participants (14
men and 11 women, aged 22-59 years) to determine
which confidence level is the most important to the user.
This test is conducted in two stages. Results have been
analyzed based on Chi-squared test »? [35] in order to
ensure the significance of responses and to reject any
random behaviors, always with a threshold p of accept-
ability of risk up to 5%.

First, we explain to the participants the meaning of the
three distinct geographic dimensions. Then we ask them to
rank the dimensions without considering any map or
legend. Significantly (?=20.8, p=0.034%), participants
place the spatial confidence level as the most important
(for 13 participants) followed by the global confidence
level (for 7 participants).

Secondly, participants see five different proposals. In
the first two proposals (proposal 1 and proposal 2), spatial
and terminological confidence levels are represented
respectively. In these proposals, for each POI, we portray
only the confidence level of this more significant dimen-
sion whereas the other one is shown in its tool-tip (Fig. 4
and 5). In the third proposal, both spatial and terminolo-
gical levels are represented (proposal 3). In Fig. 6, spatial
and terminological confidence levels are both portrayed on
each POI using two signs. In the fourth proposal, a global
confidence level is displayed for each POI, corresponding
to the confidence combination of spatial and terminologi-
cal attributes (proposal 4). In this case, the tool-tip of each
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POI shows the spatial and terminological confidence levels
(Fig. 7). Finally, global, spatial and terminological confi-
dence levels are all portrayed together for each POI as
shown in Fig. 8 (proposal 5).

After presenting the five proposals to the participants,
they must give an appreciation of the application on a
scale of O (not satisfied) up to 7 (totally satisfied). The
retrieved data were subjected to analysis of variance
(ANOVA), based on Fisher's test [33], with repeated mea-
sures which reveal significant effect on the type of the
proposal (F=3.19, p=1.6%). Proposal 1 (spatial confidence)
and proposal 4 (global confidence) are the most popular.
Fig. 9 represents the average score on the appreciation
scale according to proposals. It shows that the preferences
do not increase neither by adding the terminological
confidence (proposal 3) nor by presenting together the
spatial and global confidences (proposal 5).
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Fig. 7. Proposal 4: global confidence level is portrayed. Spatial and
terminological confidence levels are displayed in the tool-tip.
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Table 1
Number of times the POIs were selected based on strategies.

Strategy Number of selected POIs
Precision of global level 74
Precision of spatial level 17
Precision of terminological level 11
Map 14
Other 9

Then participants must choose, among the five propo-
sals, the one that is the most relevant. A Chi-squared test
»* has been conducted on the distribution of preferred
proposals for participants. A trend effect (;*=117.64,
p=5.6%>5%) has confirmed a preference for proposal 1
(spatial confidence) and proposal 4 (global confidence).

Finally, on each proposal, a set of POIs are presented to
participants and we ask them to freely choose a POl where
they would like to go by explaining their strategy of choosing.
Emerged strategies may be based either on the confidence
levels of geographical dimensions or on other elements such
as the background map, the type of POI, etc. Table 1 shows
various strategies and for each the number of times the POIs
were selected based on this strategy. The analysis of POIs
choices shows significantly (= 117.64, p < 0.1%) that partici-
pants select, as a priority, the POIs where the level of
confidence is the highest for the global dimension of whatever
proposal. Choosing a POl is less frequent based on the level of
spatial confidence or according to other elements on the map
(e.g., proximity to transportations, green spaces) and even less
frequent according to the terminological confidence level.

The next section illustrates some of our proposals by
describing a use-case navigation scenario of a prototype
we have implemented. The proposal retained for the
selection of visual variables is the result of the cognitive
test namely Color Value for global confidence level and in
the tool-tip of each POI: Size and Fuzziness to portray
spatial confidence level and Thermometer to portray
terminological confidence level.

4. Prototype

Our proposal has been integrated in a LBS prototype.
The POISs of this service are the result of the integration of
the POIs from several LBS providers. This prototype imple-
ments the choice of solution presented above for visualiz-
ing uncertainty of integrated spatial data.

The prototype runs on an ad-hoc POI database that has
been created collecting POIs of several types from three
real providers using their Application Programming Inter-
face (API). The integration process is pre-performed on the
whole POI database and the prototype interface navigates
through the result. The prototype interface is composed of
three components as shown in Fig. 10: (1) POI types
selector: a list that the user check/uncheck to display or
hide, (2) legend: the visualization solution used to portray
global, spatial and terminological confidence levels and (3)
map inheriting OpenStreetMap background and features
(zoom in/out, satellite/map view, etc.). The user can choose
two modes for the map, the former denoted as “Integrated
mode” displays integrated POIs with their global
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Fig. 10. The prototype interface is composed of three components: (1) POI types, (2) legend and (3) map (here in Integrated mode).
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Fig. 11. Comparison of terminological information offered by several
providers for the same POI.

confidence levels. The latter, denoted as “Source mode”,
portrays the POIs of the source providers of an integrated
POI with full information.

When the user starts navigating, the prototype detects
and centers the map at user location, and the “Integrated
mode” is set by default. The user selects the POI types from
the selector. All the POIs of the selected types that are near
the user location are collected from the integrated dataset
and displayed on the map. The map window of Fig. 10
illustrates the POIs of type Restaurant, Color Value variable
indicating global confidence. Two deep colored restaurants
have a high global confidence level (top and bottom), two
light colored restaurants have a low global confidence
level (in the center) and the three remaining have a
medium global confidence level. The user can click on a
POI to display the tool-tip that contains the full POI
terminological information, spatial confidence and termi-
nological confidence of the integration as shown in Fig. 10.
At the right top corner of the tool-tip, the Thermometer
icon indicates that the terminological confidence is

medium while the Location, Size, Fuzziness icon indicates
that the spatial confidence is low for the selected POI.

As well, the user can check the source providers of an
integrated POI by switching to the “Source mode” where
all the integrated POIs are hidden except the checked one.
In this mode, the user can consult the full POI information
delivered by all the source providers. This mode shows the
location of the integration result and of all source provi-
ders that the user can compare. The user can also check
out terminological information of every source and com-
pare them all. A table that contains POI terminological
information delivered by each provider can be displayed
(Fig. 11). Also, the distance between each source POI and
the integrated one is indicated at the bottom of the table
for each provider.

5. Conclusion

In this paper, we have proposed and studied different
representations of uncertainty in a spatial integration
context. Our approach is generic and the simple integra-
tion process that we have presented can be replaced by
another generic approach possibly based on different
assumptions. The integration process merges correspond-
ing entities and produces confidence scores at spatial,
terminological and global levels. These confidence scores
are converted into confidence visualization solutions that
have been evaluated among many users. Solutions have
been implemented into a first application prototype to
demonstrate the feasibility and the benefits in a scenario.

One of our future objectives is to customize the visual
representation and the navigation process according to
users' profiles. To reach this goal, we plan to explore and
evaluate how tourists navigate with interactive maps.
These evaluations should allow us to select the solution
that is both the best perceived and the most useful for the
tourists according to their expectations. They could also



1002 B. Berjawi et al. / Journal of Visual Languages and Computing 25 (2014) 995-1002

demonstrate how such uncertainty representation is partly
user-dependent. In that case, learning automatically the
best representation for a new user could be an interesting
challenge. For instance, a dynamic prototype which allows
users to customize the mode of representation would
allow us to evaluate the preferred solutions and to identify
their correlations with various criteria such as user profile
and device type (e.g., computer or smart phone). Other-
wise, the prototype should also allow users to send their
feedback about the quality of integrated POIs in order to
improve the quality of data and the integration process.
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