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Abstract. Recently, 3D aided face recognition, concentrating on improving per-

formance of 2D techniques via 3D data, has received increasing attention due to 

its wide application potential in real condition. In this paper, we present a novel 

3D aided face recognition method that can deal with the probe images in differ-

ent viewpoints. It first estimates the face pose based on the Random Regression 

Forest, and then rotates the 3D face models in the gallery set to that of the probe 

pose to generate specific gallery sample for matching, which largely reduces the 

influence of head pose variations. Experiments are carried out on a subset of the 

FRGC v1.0 database, and the achieved performance clearly highlights the effec-

tiveness of the proposed method. 
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1 Introduction 

Due to its scientific challenges and application potential, machine-based face recogni-

tion has always been an active topic in the field of computer vision and pattern recog-

nition [1]. Compared with other biometrics, e.g. fingerprint and iris, recognition based 

on the face is more in accord with the nature of human; moreover, it can be achieved 

without physical contact which endues it with an extra important advantage. 

In the past several decades, 2D image based face recognition has rapidly developed 

and a great number of milestone techniques have been proposed and studied, such as 

PCA [2], LDA [3], ICA [4], FDA [5], EBGM [6], LBP [7], SIFT [8], etc. However, 

despite the great progress made in this domain, 2D face images do not remain reliable 

when affected by changes of lighting, pose and expression. Recently, 3D face recog-

nition has emerged as a major solution to deal with the unsolved issues in 2D domain, 

i.e. lighting and pose variations [9, 10]. Unfortunately, 3D face recognition approach-

es are currently limited by their high acquisition, registration and computation cost. 

More recently, 3D aided face recognition has attracted increasing interests, since it 

is expected to limit the use of 3D data where it really helps to improve the face recog-

nition accuracy [11], i.e. aiming to handle the problem of illumination and pose in 2D 

area. For example, based on a generic 3D face model, re-lighting or de-lighting tech-

niques [12] are adopted to reduce the influences caused by lighting variations. While, 

in this study, we address the problem of pose changes. In order to deal with such an 

issue, a few attempts have been made. Blanz and Vetter [13] build a statistical model 

using a set of training data (also named as 3D morphable model) and densely fit it to a 

given facial image for matching, but it generally requires a long convergence process. 



Toderici et al. [14] first locate some pre-defined key landmarks (eye corners and nose 

tip etc.) on face images in different poses, and then roughly align them to a frontal 3D 

model for the recognition step. Nevertheless, to achieve accurate localization in multi-

view facial images involves in another tough topic. 

 In this paper, we propose a novel method for 3D aided face recognition, aiming to 

improve the tolerance of 2D face recognition against pose variations. It first estimates 

the face pose status based on Random Regression Forest, and then rotates the 3D face 

models in the gallery set to the one of the probe pose achieved previously to generate 

specific gallery samples for the matching step. In contrast to the existing methods that 

only process probe data for matching, the proposed approach operates on the enrolled 

data, and thanks to the Random Regression Forest algorithm, pose variations of probe 

faces are estimated and largely reduced before matching. Experiments are carried out 

on a subset of the FRGC v1.0 database, and performance clearly highlights the effec-

tiveness of the proposed method. 

The rest part of the paper is organized as follows: an overview of the proposed ap-

proach is presented in Section 2. Section 3 describes the process of pose estimation in 

detail, and Section 4 introduces LBP based face recognition. Experimental results are 

shown and analyzed in Section 5, and Section 6 concludes the paper.  

2 Framework Overview and Data Preparation 

An entire framework is shown by two flowcharts (in Fig. 1 and Fig. 3), demonstrating 

the training stage and the test stage respectively. 

 

 

 

 

 

 

 

Fig. 1.  Framework of training stage. 

At the training stage, a collection of textured frontal 3D face models, each of which 

consists of one 3D mesh and its texture counterpart, is required. We select some mod-

els from the FRGC v1.0 dataset, and based on our previous work [15], the nose tip of 

each face can be localized automatically. For the lack of 2D facial images in arbitrary 

viewpoint, we have to generate samples for training as follows: 

1. Loading. First of all, we read a face model in the FRGC v1.0 dataset, including its 

3D coordinates in real space and its texture information. In addition, we record the 

position of its nose tip calculated previously. 

2. Rotation. The rotation of human head runs according to three degrees-of-freedom 

(DoF), and it can thus be described by three angles, i.e. yaw, pitch and roll, namely 

egocentric rotation angles [16] as shown in Fig. 2. We then rotate the face model to 

another viewpoint according to these three angles using rotation matrix defined as: 
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where    is pitch angle;    is yaw angle;    is roll angle. In our system, we gener-

ate diverse angles, with yaw angle from -90º to +90º and pitch angle from -45º to 

+45º, aiming to cover all possible poses. Some examples are shown in Fig. 3. 

(a)                            (b)                    (c)                (d)                  (e)                   (f) 

Fig. 2. (a) The three DoF of human head can be described by the egocentric rotation angles, i.e. 

pitch, roll, and yaw [16]; (b) The original frontal model whose name in FRGC is “02463d456”; 

(c)-(f) pairs of yaw angle and pitch angle: (-30º, -15º), (30º, 15º), (-60º, -30º), and (60º, 30º). 

3. Interpolation. As in Fig. 2, there occurs inevitably some change concerning distri-

bution of points on the facial area, leading to holes on the produced texture map. In 

order to avoid this imperfection, interpolation techniques are adopted.  

4. Cropping. For the purpose of reducing calculation burden, we simply crop the face 

area according to the nose tip position. 

 

 

 

 

 

 

 

 

 

 

Fig. 3. Framework of test stage. 
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We hence obtain the 2D images with different views to make up of the training set. 

With the help of random regression forests, we are able to generate a set of regression 

trees which should be regarded as a classifier for pose estimation. 

At the test stage, each probe facial image will be traversed through the random for-

est pre-trained to estimate the pose status. As its pose is determined, all 3D face mod-

els in the gallery set are rotated to generate a facial image under this pose. The identi-

fication operates between the original probe face image and the new produced gallery 

one by comparing their similarity in the LBP feature space. 

3 Pose Estimation 

3.1 Problem Statement 

Head pose variations can incur serious change in the appearance of human faces, and 

thus introduce a quite difficult problem in the domain of 2D face recognition. Without 

a proper solution to handle pose changes, even the most sophisticated face recognition 

systems probably fail. In the framework of the proposed 3D aided face recognition, to 

a 2D probe facial image, we estimate its pose status. Compared with 3D model based 

methods, pose estimation based on 2D facial images is a much greater challenge since 

3D data are continuously distributed and offer distinctive geometry features.  

In literature, there exist several studies on 2D image based pose estimation, which 

can be roughly categorized into four streams. Geometry based methods [17] [18] use 

the pre-detected facial feature points, such as inner and outer corners of eyes and nose 

tip, to calculate head pose directly on the basis of the prior knowledge of their relative 

configuration. Its advantages are their simplicity and rapidness, only a few geometric 

cues are required and no training process is used; however, their performance highly 

relies on the feature point detection accuracy. Model based methods [19] [20] seek a 

non-rigid face model which conforms to the facial structure so that it can be fit by the 

face image, and then head pose estimation can be achieved. These models cost rather 

low computation and are invariant to head localization error, yet they depend largely 

on the facial features and they are robust neither to illumination variation nor to far-

field head pose estimation. Manifold embedding methods [21] [22] hunt for optimal 

low-dimensional manifolds which can describe the intrinsic pose variations in order to 

embed the new images into these manifolds and thus estimate their pose. These meth-

ods successfully reduce the dimensionality and the computation cost, but it remains a 

problem separating pose variations from appearance variations, such as identity, scale 

and illumination. Learning based methods [23] [24] aim to map the input image to 

discrete or continuous head poses by using machine learning tools, for instance, SVM 

and Neural Networks. It has attracted increasing attention over the last few years for 

its powerful classification capacity and robustness to appearance variation. The disad-

vantage of these methods lies in the problem of overfitting, which means the perfor-

mance is vulnerable to noise in the training data. A proposed remedy to this problem 

is the application of random regression forests [25] which avoid the influence of noise 

data by introducing a set of decision trees. It has proved to achieve outstanding per-

formance in 3D head pose estimation [26] [27]. In this paper we further investigate its 

effectiveness on 2D pose estimation. 



3.2 Random Forest 

Derived from classification and regression trees, random regression forests have suc-

cessfully optimized the problem of overfitting by introducing a series of trees at ran-

dom while keeping the powerful capacity in handling large datasets.  

In our work, all training images with different poses are divided into patches. Each 

patch is annotated with a vector   {                 }, here    and    represent an 

offset vector pointing from the center of the patch to nose tip, and             record 

respectively the yaw and pitch angle of image which the patch belongs to.  

At the beginning of the training step, a number of patches are randomly selected as 

input data for each tree, and at each split node there will be a set of binary tests de-

fined with similar style: 

 |  |
  ∑     ( )   |  |

  ∑     ( )                               (4) 

where    and    are two rectangles randomly selected inside the patch, c is one out of 

the three channels R, G or B,     ( ) represents the texture value of pixel q in chan-

nel c, finally   is a random threshold. 

Secondly, it is essential to determine an appropriate test for each node which could 

maximize the distinctiveness of the actual node. Here, we adopt the concept of infor-

mation gain defined as the difference between the differential entropy of these patches 

at the parent node and one of patches at the children nodes as value of distinctiveness: 

      ( )    (   (  )      (  ) )                               (5) 

where H is the abbreviation of differential entropy, S, SL, SR represent the set of patch-

es at the parent node, at the left child node and at the right child node respectively,    
and   are weight for each child node defined as the ratio between number of patches 

at the child node and the one at the parent node. 

Finally, besides the split nodes, there exist also the nodes which store the result of 

training, namely leaf nodes. A node should be regarded as a leaf node if at least one of 

the two conditions is achieved: number of patches arriving at this node is smaller than 

pre-defined threshold; or the tree has attained its maximum depth. Once a leaf node is 

created, it will be annotated with mean and covariance of patches reaching it. 

In this way, we are capable to obtain a collection of trees randomly generated, for 

each tree a test at every split node is recorded and so are mean and covariance at eve-

ry leaf node, these values will serve to our test process. 

3.3 Pose Estimation 

Given an unseen 2D image of a face, patches with the same scale of those in the train-

ing set are extracted and sent to each tree well trained.  

For each patch, it could generate the same number of leaves as the number of trees 

used, all the leaves will be gathered and the ones with a covariance larger than thresh-

old will be firstly abandoned because they are much less informative. 

The rest of leaves have the honor to be called a “vote” for our last test; they will be 

clustered to discard the noise and select the most centralized area on the vector plan. 

Finally, we sum up all the leaves remaining active and calculate their mean vector 

which indicates the final estimation of test image’s pose. Fig. 4 shows some results. 



 

Fig. 4. Some results of pose estimation (x axis in green; y axis in red; z axis in blue). 

4 LBP based Multi-view Face Recognition 

As one of the most distinguished texture descriptors, the LBP operator [28] has been 

widely used in numerous applications. It has turned out to be a highly discriminative 

operator and its core advantages, i.e. its invariance to monotonic illumination changes 

and computational efficiency, make it reasonable for undertaking the responsibility of 

representing faces. This powerful operator labels each pixel of an image by threshold-

ing its 3x3-neighbourhood with the center value and considering the result as a binary 

number. Then the histogram of the labels can be used as a texture descriptor.  

Afterwards, in order to fit in textures with different sizes, the LBP operator was ex-

tended to the neighborhoods of different sizes [29]. Using circular neighborhoods and 

the bilinear interpolation technique, the pixel values allow any radius and number of 

pixels within the neighborhood. We use the notation (P, R) for neighborhoods which 

means P sampling points on a circle of radius of R.  

Furthermore, it has been shown that among    possible binary patterns there exist 

certain patterns which contain more information than the others, and we thus come up 

with another extension: uniform patterns. This concept proposed by Ojala et al. repre-

sents the patterns that contain at most two bitwise transitions from 0 to 1 or vice versa 

when the binary string is considered circular. 

After pose estimation, we rotate each 3D face model in the gallery set and generate 

its texture map Ig in the pose of the probe Ip for face matching. The LBP face image is 

separated firstly in m regions from each of which we extract a histogram, and we then 

combine them to construct final histograms encoding both the local texture and spatial 

information. At last, the Chi square distance is exploited to decide the similarity be-

tween the final vectors Hg and Hp of gallery and probe face. 

5 Experimental Results 

The dataset for technique evaluation is based on FRGC v1.0. 50 3D face models from 

different individuals are randomly selected for training. While another 100 out of the 

rest subjects, each of which possesses more than two face models, are used for testing. 

For the 100 subjects used in the test step, their first models make up of the gallery set 

and their second models are regarded as probes. For the 50 training samples as well as 

the 100 probes, we rotate them with an interval 15º between -90º and 90º in yaw angle 

(totally 13 poses) and between -45º and 45º in pitch angle (totally 7 poses), leading to 

a considerable capacity of 150×13×7 = 14k 2D facial images of various poses. 



In our experiments on pose estimation, there are three main parameters that influence 

estimation performance: i.e. number of trees, threshold of angle error and threshold of 

nose error. It should be noted that the pose estimation accuracy in this study indicates 

ratio between the number of samples that are correctly estimated and the total number 

with respect to a pre-defined threshold angle error or nose error as [26]. The result of 

pose estimation is depicted in Fig.4. 

From Figure 4 (a), we can infer that following the increase of number of trees, both 

nose error and angle error become smaller which highlights the superiority of random 

regression forests compared with the standard decision tree. Considering that increase 

the number of trees produces much more calculation amount, we have set tree number 

at 10 to achieve a compromise between accuracy and computation cost. 

According to the results shown in Figure 4(b) and 4(c), we can achieve remarkable 

estimation performance even if the thresholds of angle and nose error are limited in a 

very narrow range. As we increase the threshold, our performance is improved.  

 

Fig. 5. (a) average error of angle and nose with respect to number of trees; (b) estimation accu-

racy with respect to angle error threshold; (c) estimation accuracy with respect to the nose error 

threshold in mm. 

In face recognition, we rotate the 3D face models in the gallery set to the estimated 

pose of the probe to generate 2D face images for matching. We calculate recognition 

performance based on different thresholds of nose error and angle error, and the result 

is displayed in Table. Considering that the profiles do not contain enough information 

for identification, we discard the faces -90º and 90º in yaw angle, composing a probe 

set of 7,700 facial images. 

From Table 1, we can see that although slightly influenced by the accuracy of head 

pose estimation, we are still able to achieve very high recognition rates (around 90%). 

It is worthy of noting that the LBP descriptor used in this experiment is a quite basic 

one (its radius is set at 1 and the number of neighbors is set at 8), the effectiveness of 

the propsoed is hence emphasized. 



Table 1. Recognition rates using LBP and influence of pose estimation accuracy. 

Nose Error 

Threshold 

Angle Error 

Threshold 

Pose Estimation 

Accuracy 

Rank-one 

Recognition Rate 

10 10 0.8660 0.8441 

15 12 0.9082 0.8688 

20 14 0.9297 0.8958 

25 16 0.9383 0.8992 

30 18 0.9441 0.9000 

35 20 0.9483 0.9014 

6 Conclusions 

This paper presents a novel 3D aided face recognition method which owns the capaci-

ty to handle the 2D probes in different viewpoints. It first estimates the pose status by 

introducing the approach of Random Regression Forest, and then rotates the 3D face 

models in the gallery set to that of the probe pose to generate specific gallery samples 

for the final LBP based matching. The proposed method largely reduces the influence 

caused by pose variations. Experiments are carried out on a subset randomly extracted 

from the FRGC v1.0 database, and the achieved performance in both pose estimation 

and face recognition clearly highlights the effectiveness of the proposed method. 
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