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Abstract. Given a graph G with positive integer weights on the vertices,

and a token placed on some current vertex u, two players alternately remove a

positive integer weight from u and then move the token to a new current vertex
adjacent to u. When the weight of a vertex is set to 0, it is removed and its

neighborhood becomes a clique. The player making the last move wins. This
adaptation of Nim on graphs is called Vertexnim, and slightly differs from

the game Vertex NimG introduced by Stockman in 2004. Vertexnim can

be played on both directed or undirected graphs. In this paper, we study the
complexity of deciding whether a given game position of Vertexnim is winning

for the first or second player. In particular, we show that for undirected graphs,

this problem can be solved in quadratic time. Our algorithm is also available
for the game Vertex NimG, thus improving Stockman’s exptime algorithm. In

the directed case, we are able to compute the w inning strategy in polynomial

time for several instances, including circuits or digraphs with self loops.
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1. Background and definitions

We assume that the reader has some knowledge in combinatorial game theory.
Basic definitions can be found in [1]. We remind the reader that a P position de-
notes a position from which the second player has a winning strategy, while an N
position means that the first player to move can win. Graph theoretical notions
used in this paper will be standard and according to [2]. In particular, given a
graph G = (V,E) and a vertex v of V , we set N(v) = {w ∈ V : (v, w) ∈ E}.

The original idea of this work is the study of a variant of Nim, called Adja-
cent Nim, in which both players are forced to play on the heaps in a specific
cyclic order: given N heaps of tokens of respective sizes (n1, . . . , nN ), play the
game of Nim under the constraint that if your opponent has moved on heap i, you
must move on heap i + 1 (or on the smallest next non-empty heap, in a circular
way). Actually, our investigations led us to consider Adjacent Nim as a particular
instance of the game NimG (for “Nim on Graphs”) introduced by Stockman in [20].

As a brief history of the game, we remind the reader that the game of Nim was
introduced and solved by Bouton in 1904 [3]. Since then, lots of variations were
considered in the literature, the most famous one being Wythoff’s game [11, 21].
One can also mention [6, 12–14, 16] as a non-exhaustive list, or the newest Cir-
cular Nim [9], which deals with heaps of tokens arranged along a cycle. One of
the most recent variants of Nim provides a topology to the heaps, which are orga-
nized as the edges of an undirected graph. This game was proposed by Fukuyama
in 2003 [18, 19]. More precisely, an instance of this game is an undirected graph
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G = (V,E) with an integer weight function on E. A token is set on an arbitrary
vertex. Then two players alternately move the token along an adjacent edge e with
positive weight and decrease the label of e to any strictly smaller non-negative in-
teger. The first player unable to move loses the game (this happens when the token
has all its adjacent edges with a label equal to zero). In his papers, Fukuyama gives
necessary and sufficient conditions for a position on a bipartite graph to be P. He
also computes the Grundy values of this game for some specific families of bipartite
graphs, including trees, paths and cycles. In [10], a larger set of graphs is investi-
gated (including complete graphs), but only for the weight function f : E 7→ {1}.

In 2004, Stockman considered another generalization of Nim on graphs that she
called Vertex NimG. The main difference with Fukuyama’s work is that the Nim
heaps are embedded into the vertices of a graph. This definition raises a natural
question when playing the game: does the player first remove some weight from a
vertex and then move to another one, or does he first move to a vertex and then
remove weight from it?

• The variant Move then remove of Vertex NimG was recently investigated
by Burke & George in [4]. They showed that in the case where each vertex
of the input graph G has a self loop, then this game is PSPACE-hard. To
the best of our knowledge, nothing was proved in the general case yet.
• The variant Remove then move of Vertex NimG is the one that was

considerd by Stockman in [20]. In the case where the weight function is
bounded by a constant, she gave a polynomial time algorithm to decide
whether a given position is P or N . The same algorithm can be applied in
the general case, but becomes exponential according to the order of G.

In Fukuyama’s or Stockman’s definitions, the game ends when the player is blocked
because of a null weight. This means that unlike the original game of Nim, their
variants may end with remaining weight on the graph. To be closer to the original
Nim, we have defined the rules of our variant of Vertex NimG in such a way that
the game ends only when all the weight is removed from the graph. This variant
was introduced on both directed and undirected graphs with possible loops, and
under the remove then move convention. Multiple edges are not considered, since
the weight is set on the vertices. We start by giving the definition of our game on
undirected graphs, which is called Undirected vertexnim.

Definition 1. Undirected vertexnim. Let G = (V,E) be an undirected con-
nected graph, let w : V → N>0 be a function which assigns to each vertex a positive
integer. Let u ∈ V be a starting current vertex. In this game, two players alter-
nately decrease the value of the current vertex u and choose an adjacent vertex of u
as the new current vertex. When the value w(v) of a vertex v is set to 0, then v and
its incident edges are removed from G, the subgraph N(v) of G becomes a clique,
and a loop is added on each vertex of N(v). The game ends when G is empty. The
player who makes the last move wins the game.

In this definition, we make N(v) a clique (i.e., every two vertices of N(v) are
connected) after v reaches zero to prevent the graph to be disconnected. In other
words, we can say that in order to choose the next current vertex, it suffices to
follow any path of zero vertices ending on a non zero vertex. We also add loops to
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prevent a player to be blocked on a vertex. The example below shows an execution
of the game, the current vertex being the one with the triangle.

Figure 1. Playing undirected vertexnim

This game can naturally be extended to directed graphs, with some constraints
to ensure that all the weight is removed in the end. In particular, arcs are added
when the weight of a vertex goes to zero (by the same way that a clique is built
in the undirected case). We also need to play on a strongly connected digraph, to
avoid being blocked on a vertex having a null outdegree. Recall that in a strongly
connected digraph, for every pair of vertices (u, v) there exists a path from u to v.
This directed variant will be called Directed vertexnim.

Definition 2. Directed vertexnim. Let G = (V,E) be a strongly connected
digraph, and let w : V → N>0 be a function which assigns to each vertex a posi-
tive integer. Let u ∈ V be the starting current vertex. In this game, two players
alternately decrease the value of the current vertex u and choose an adjacent vertex
of u as the new current vertex. When the value of a vertex v is set to 0, then
v is removed from G and all the pairs of arcs (p, v) and (v, s) (with p and s not
necessarily distinct) are replaced by an arc (p, s). The game ends when G is empty.
The player who made the last move wins the game.

With the above notation, instances of this game will be denoted (G,w, u) in the
rest of the paper.

Note that in Definition 2, the strong connectivity of G is preserved when deleting
a vertex. Hence it is always possible to play whenever G is not empty. Figure
1 illustrates a sequence of moves of Directed vertexnim, where both players
remove all the weight of the current vertex at their turn.

The current paper deals with the complexity of both versions of vertexnim, in
the sense of Fraenkel [17]. In particular, we will prove the tractability of the game,
which implies that the outcome (P or N ) of a game position can be computed
in polynomial time. In Section 2, we will solve the game Adjacent Nim, which
is actually an instance of directed vertexnim on circuits. Section 3 will be
devoted to the resolution of directed vertexnim for any strongly connected
digraph having a loop on each vertex. Section 4 concerns undirected vertexnim,
whose tractability is proved in the general case. As a corollary, we will show that
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Figure 2. Playing directed vertexnim

our algorithm also solves Stockman’s Vertex NimG in quadratic time, improving
the results presented in [20]. In Section 5, we finally mention how our results can
be adapted to misère versions of vertexnim.

2. Adjacent Nim

As explained in the introduction, this game was the original motivation of our
work. With the above formalism, it can be expressed as an instance of directed
vertexim on an elementary circuit CN = (v1, v2, . . . , vN ) with the orientation
(vi, vi+1) : 1 ≤ i < N and (vN , v1) of the arcs. In Theorem 3, we fully solve adja-
cent Nim in the case where all the weights are strictly greater than 1. Without
loss of generality, we will assume that the starting position is v1.

Theorem 3. Let (CN , w, v1) : N ≥ 3 be an instance of adjacent Nim with
w : V → N>1.

(1) If N is odd, then (CN , w, v1) is an N position.
(2) If N is even, then (CN , w, v1) is an N position iff min{argmin

1≤i≤N
w(vi)} is

even.

Note that when N is even, the above Theorem implies that the first player who
must play on a vertex of minimum weight will lose the game.

Proof. (1) If N is odd, then the first player can apply the following strategy to
win: first play w(v1) → 1. Then for all 1 ≤ i < (N − 1)/2: if the second player
empties v2i, then the first player also empties the following vertex v2i+1. Otherwise
play w(v2i+1)→ 1. The strategy is different for the last two vertices of CN : if the
second player empties vN−1, then play w(vN )→ 1, otherwise play w(vN )→ 0. As
w(v1) = 1, the second player is now forced to empty v1. Since an even number of
vertices have been deleted at this point, we have an odd circuit to play on. It now
suffices for the first player to empty all the vertices on the second run. Indeed, the
second player is also forced to set each weight to 0 since he has to play on vertices
satisfying w = 1. Since the circuit is odd, the first player is guaranteed to make
the last move on vN or vN−1.
(2) If N is even, we claim that who must play the first vertex of minimum weight will
lose the game. The winning strategy of the other player consists of decreasing by 1
the weight of each vertex at his turn. First assume that min{argmin

1≤i≤N
w(vi)} is odd.

If the strategy of the second player always consists of playing w(vi) → w(vi) − 1,
then the first player will be the first to set the weight of a vertex, say vk, to 0 or
1. If he sets vk to 0, then the second player now faces an instance (C ′N−1, w

′, vk+1)
with w′ : V ′ → N>1, which is winning according to statement (1). If he sets vk to
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1, then the second player will empty the following vertex vk+1, leaving to the first
player a position (C ′N−1 = (v′1, v

′
2, . . . , v

′
N−1), w′, v′1 = vk+2) with w′ : V ′ → N>1

except on w′(v′N−1) = w(vk) = 1. This position corresponds to the one of (1) after
the first move, and is thus losing. In the case where min{argmin

1≤i≤N
w(vi)} is even,

then the first player, by applying the same strategy, can force the other player to
be the first to set a vertex to 0 or 1, which makes him lose the game. �

Open Problem 4. The question of deciding whether a given position is P or N
remains open in the cases where some vertices have a weight equal to 1. Indeed
the previous strategy cannot be applied anymore, and we did not manage to get
satisfying results when the 1′s are “owned” by different players (player i owns a
vertex v if he is the first to play on it; in other words, player 1 owns vertices vk
with k odd, and player 2 owns vertices vk with k even).

Remark 5. What if we adapt Stockman’s Vertex NimG to directed graphs? Recall
that it means that vertices of null weight are never removed, and a player who must
play from a 0 loses. In the case of circuits, it is easy to see that Theorem 3 remains
true, even if there are vertices of weight 1. On a general graph, we conjecture that
this game should be at least as hard as the game Geography [15] (nevertheless a
proof needs to be done).

3. Directed graphs with all loops

Dealing with directed vertexnim on any strongly connected digraph is much
harder. We managed to decide whether a position is P or N only in the case where
there is a loop on each vertex. This can be seen as a way to consider Stockman’s
NimG by allowing moves in the extended neighborhood of v (i.e., v or its neighbors)
after having removed weight on it. Note that this is also the variant considered
in [4], but for the other rule convention (Move then remove).

Theorem 6. Let (G,w, u) be an instance of directed vertexnim where G is
strongly connected with a loop on each vertex. Deciding whether (G,w,u) is P or
N can be done in time O(|V (G)||E(G)|).

The proof of this theorem requires several definitions that we present here.

Definition 7. Let G = (V,E) be a directed graph. Let S ⊆ V (G) be a non-empty
set of vertices such that the graph induced by S is strongly connected and ∀u ∈
S, ∀v ∈ (V (G)\S), (u, v) /∈ E(G). Let T = {v ∈ V (G)\S | ∃u ∈ S, (v, u) ∈ E(G)}.
Let Ge be the graph induced by V (G)\S and Go the graph induced by V (G)\(S∪T ).
We define a labeling ldG : V (G)→ {P,N} as follows:
If |S| is even, we label N all elements of |S| and we label elements of V \ S as we
would have labeled them in the graph Ge.
If |S| is odd, we label P all elements of |S|, we label N all elements of T , and we
label elements of V \ (S ∪ T ) as we would have labeled them in the graph Go.

When decomposing the graph into strongly connected components, S is one of
those with no out-arc. The choice of S is not unique, unlike the ldG labeling: if S1

and S2 are both strongly connected components without out-arcs, the one which is
not chosen as the first set S will remain a strongly connected component after the
removal of the other, and as it has no out-arc, none of its vertices will be in the T
set.
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Proof. Let G′ be the induced subgraph of G such that V (G′) = {v ∈ V (G) | w(v) =
1}.
If G = G′, then (G,w, u) is an N position if and only if |V (G)| is odd since the
problem reduces to “She loves me, she loves me not”. We will now assume that
G 6= G′, and consider two cases for w(u):
• Assume w(u) > 2. If there is a winning move which reduces u to 0, then we can
play it and win. Otherwise, reducing u to 1 and staying on u is a winning move.
Hence (G,w, u) is an N position.
• Assume w(u) = 1, i.e., u ∈ G′. According to Definition 7, computing ldG′ yields
a sequence of couples of sets (Si, Ti) (which is not unique). Note that we will not
consider Ti when Si has an even size, according to Definition 7. Thus the following
assertions hold: if u ∈ Si for some i, then any direct successor v of u is either in
the component Si (as there are no out-arcs) or has been previously labeled (is in
∪j<i(Sj ∪ Tj)), and if u ∈ Ti 6= ∅ for some i, then there exists a direct successor v
of u in the set Si, with ldG′(v) = P.
Our goal is to show that (G,w, u) is an N position if and only if ldG′(u) = N by
induction on |V (G′)|. If |V (G′)| = 1, then V (G′) = {u} and ldG′(u) = P. Since
w(u) = 1, we are forced to reduce u to 0 and go to a vertex v such that w(v) > 2,
which we previously proved to be a losing move. Now assume |V (G′)| > 2. First,
note that when one reduces the weight of a vertex v to 0, the replacement of the
arcs does not change the strongly connected components (except for the component
containing v of course, which loses one vertex). Consequently, if u ∈ Si for some
i, then for any vertex v ∈ ∪i−1l=1(Tl ∪ Sl), ldG′\{u}(v) = ldG′(v) and for any vertex
w ∈ Si\{u}, ldG′\{u}(w) 6= ldG′(w) since parity of Si has changed. If u ∈ Ti for

some i, then for any vertex v ∈ (∪i−1l=1(Tl ∪ Sl)) ∪ Si, ldG′\{u}(v) = ldG′(v).
We now consider two cases for u: first assume that ldG′(u) = P, with u ∈ Si for
some i. We reduce u to 0 and we are forced to move to a direct successor v. If
w(v) > 2, we previously proved this is a losing move. If v ∈ ∪i−1l=1(Tl ∪ Sl), then
ldG′\{u}(v) = ldG′(v) = N (if ldG′(v) = P, then v ∈ Sl with |Sl| odd, and thus
u ∈ Tl !) and the move to v is a losing move by induction hypothesis. If v ∈ Si,
then ldG′\{u}(v) 6= ldG′(v) = P and it is a losing move by induction hypothesis.
Now assume that ldG′(u) = N . If u ∈ Ti for some i, we can reduce u to 0 and move
to a vertex v ∈ Si, which is a winning move by induction hypothesis. If u ∈ Si

for some i, it means that |Si| is even, we can reduce u to 0 and move to a vertex
v ∈ Si, with ldG′\{u}(v) 6= ldG′(v) = N . This is a winning move by induction
hypothesis. Hence, (G,w, u) is an N position if and only if ldG′(u) = N . Figure
3 illustrates the computation of the ld labeling on the graph G′ induced by the
circled vertices (i.e., those having a weight equal to 1). In this example, the first
strongly connected component chosen is the triangle S1, which has no in-arc in G′.
Hence T1 = ∅. Then we choose S2 as a unique vertex on the top of the figure. Its
unique predecessor in G′ constitute T2. The last two vertices make the two sets S3

and S4 (with T3 = T4 = ∅).

Concerning the complexity of the computation, note that when w(u) > 2, the
algorithm answers in constant time. The computation of ldG′(u) when w(u) = 1
needs to be analyzed more carefully. Decomposing a directed graph H into strongly
connected components to find the sets S and T can be done in time O(|V (H)| +
|E(H)|), and both |V (H)| and |E(H)| are less than or equal to |E(G)| in our case
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since H is a subgraph of G and G is strongly connected. Morevover, the number
of times we compute S and T is clearly bounded by |V (G)|. These remarks lead to
a global algorithm running in O(|V (G)||E(G)|) time. �

Figure 3. Example of ld labeling for subgraph G′

Open Problem 8. Can one provide a characterization of the P and N positions
in the general case where self loops are optional?
Note that one of the reasons for which we have slightly changed Stockman’s rules
is that we thought it would make the game more affordable than Vertex NimG
or Geography [15] on directed graphs. The previous theorem shows that our
assumption was somehow true, since we remind the reader that Vertex NimG
was proved to be PSPACE-hard with all loops [4].

4. Undirected graphs

In the undirected case, it is easy to show that if each vertex has a self loop,
deciding whether a position is P or N only depends on the size of the subset
{v ∈ V | w(v) = 1}. This game can be solved by Theorem 6, by replacing each
edge (u, v) by two arcs (u, v) and (v, u). Yet, the following proposition improves
the complexity of the method, which becomes linear.

Proposition 9. Let (G,w, u) be an instance of undirected vertexnim such that
there is a loop on each vertex of G. Deciding whether (G,w, u) is P or N can be
done in time O(|V (G)|).

Proof. Let G′ be the induced subgraph of G such that V (G′) = {v ∈ V (G) | w(v) =
1}.
If G = G′, then (G,w, u) is an N position if and only if |V (G)| is odd since the
problem reduces to “She loves move, she loves me not.”In the rest of the proof,
assume G 6= G′.
• We first consider the case where w(u) > 2. If there is a winning move which
reduces u to 0, then we play it and win. Otherwise, reducing u to 1 and staying on
u is a winning move. Hence (G,w, u) is an N position.
• Assume w(u) = 1. Let nu be the number of vertices of the connected component
of G′ which contains u. We show that (G,w, u) is an N position if and only if nu is
even by induction on nu. If nu = 1, then we are forced to reduce u to 0 and move
to another vertex v having w(v) > 2, which we previously proved to be a losing
move. Now assume nu > 2. If nu is even, we reduce u to 0 and move to an adjacent
vertex v with w(v) = 1, which is a winning move by induction hypothesis. If nu is
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odd, then we reduce u to 0 and we are forced to move to an adjacent vertex v. If
w(v) > 2, then we previously proved it is a losing move. If w(v) = 1, this is also
a losing move by induction hypothesis. Therefore in that case, (G,w, u) is an N
position if and only if nu is even.

Concerning the complexity of the computation, note that when w(u) > 2, the
algorithm answers in constant time. When w(u) = 1, we only need to find connected
component of G′ containing u and the number of its vertices, which can be done in
O(|V (G)|) time. Thus, the algorithm runs in O(|V (G)|) time. �

In the general case where the loops are optional, the tractability of the game
is still guaranteed, even though the previous linear time algorithm is no longer
available.

Theorem 10. Let (G,w, u) be an instance of undirected vertexnim. Deciding
whether (G,w, u) is P or N can be done in O(|V (G)||E(G)|) time.

The proof of this theorem requires several definitions that we present here.

Definition 11. Let G = (V,E) be an undirected graph with a weight function w :
V → N>0 defined on its vertices. Let S = {u ∈ V (G) | ∀v ∈ v(G), w(u) 6 w(v)}.
Let T = {v ∈ V (G)\S | ∃u ∈ S, (v, u) ∈ E(G)}. Let G̃ be the graph induced by
G\(S ∪ T ).
We define a labeling luG,w of its vertices as follows :
∀u ∈ S, luG,w(u) = P, ∀v ∈ T , luG,w(v) = N and ∀t ∈ G\(S ∪ T ), luG,w(t) =
luG̃,w(t).

Proof. Let Gu be the induced subgraph of G such that V (Gu) = {v ∈ V (G) |
w(v) = 1 or v = u}, and G′ be the induced subgraph of G such that V (G′) = {v ∈
V (G) | w(v) > 2 and (v, v) /∈ E(G) and ∀t ∈ V (G), (v, t) ∈ E(G)⇒ w(t) > 2}.
If G = Gu and w(u) = 1, then (G,w, u) is an N position if and only if |V (G)| is
odd since it reduces to “She loves me, she loves me not.”
If G = Gu and w(u) > 2, we reduce u to 0 and move to any vertex if |V (G)| is odd,
and we reduce u to 1 and move to any vertex if |V (G)| is even; both are winning
moves, hence (G,w, u) is an N position.
In the rest of the proof we will assume that G 6= Gu. In the first three cases, we
assume u /∈ G′.
• Case (1) Assume w(u) > 2 and there is a loop on u. If there is a winning move
which reduces u to 0, then we can play it and win. Otherwise, reducing u to 1 and
staying on u is a winning move. Therefore (G,w, u) is an N position.
• Case (2) Assume w(u) = 1.
Let nu be the number of vertices of the connected component of Gu which contains
u. We will show that (G,w, u) is an N position if and only if nu is even by
induction on nu. If nu = 1, then we are forced to reduce u to 0 and move to
another vertex v, with w(v) > 2, which was proved to be a losing move since it
creates a loop on v. Now assume nu > 2. If nu is even, we reduce u to 0 and move
to a vertex v satisfying w(v) = 1, which is a winning move by induction hypothesis
(the connected component of Gu containing u being unchanged, except the removal
of u). If nu is odd, we reduce u to 0 and move to some vertex v, creating a loop on
it. If w(v) > 2, we already proved this is a losing move. If w(v) = 1, it is a losing
move by induction hypothesis. We can therefore conclude that (G,w, u) is an N
position if and only if n is even. Figure 4 illustrates this case.
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• Case (3) Assume w(u) > 2 and that there is a vertex v such that (u, v) ∈ E(G)
and w(v) = 1. Let n be the number of vertices of the connected component of Gu

which contains u. If n is odd, we reduce u to 1 and we move to v, which we proved
to be a winning move. If n is even, we reduce u to 0 and we move to v, which we
also proved to be winning. Hence (G,w, u) is an N position in that case. Figure 4
illustrates this case.
• Case (4) Assume u ∈ G′. We will show that (G,w, u) is N if and only if

Figure 4. Case 2:
w(u) = 1 and the
connected component
containing u has an
odd size: this is a P
position.

Figure 5. Case 3: an
N position since u of
weight w(u) > 1 has a
neighbor of weight 1.

luG′,w(u) = N by induction on
∑

v∈V (G′) w(v). If
∑

v∈V (G′) w(v) = 2, we get G′ =

{u} and we are forced to play to a vertex v such that w(v) > 2 and v /∈ V (G′), which
we proved to be a losing move. Assume

∑
v∈V (G′) w(v) > 2. If luG′,w(u) = N , we

reduce u to w(u) − 1 and move to a vertex v of G′ such that w(v) < w(u) and
luG′,w(v) = P. Such a vertex exists by definition of lu. Let (G1, w1, v) be the
resulting position after such a move. Hence luG′

1,w1
(v) = luG′,w(v) = P since the

only weight that has been reduced remains greater or equal to the one of v. And
(G1, w1, v) is a P position by induction hypothesis. If luG′,w(u) = P, the first
player is forced to reduce u and to move to some vertex v. Let (G1, w1, v) be the
resulting position. First remark that w1(v) > 2 since u ∈ G′. If he reduces u to 0,
he will lose since v now has a self loop. If he reduces u to 1, he will also lose since
(u, v) ∈ E(G1) and w1(u) = 1 (according to case (3)).

Assume we reduced u to a number w1(u) > 2. Thus luG′
1,w1

(u) still equals P
since the only weight we modified is the one of u and it has been decreased. If
v /∈ G′, i.e., v has a loop or there exists t ∈ V (G1) such that (v, t) ∈ E(G1) and
w1(t) = 1, then the second player wins according to cases (1) and (3). If v ∈ G′

and luG′,w(v) = N , then luG′
1,w1

(v) is still N since the only weight we modified
is the one of a vertex labeled P. Consequently the resulting position makes the
second player win by induction hypothesis. If v ∈ G′ and luG′,w(v) = P, then we
necessarily have w(v) = w(u) in G′. As luG′

1,w1
(u) = P and (u, v) ∈ E(G1), then

luG′
1,w1

(v) becomes N , implying that the second player wins by induction hypoth-
esis. Hence (G,w, u) is N if and only if luG′,w(u) = N . Figure 4 shows an example
of the lu labeling.

Concerning the complexity of the computation, note that all the cases except
(4) can be executed in O(|E(G)|) operations. Hence the computation of luG′,w(u)
to solve case (4) becomes crucial. It is rather straightforward to see that in the
worst case, the computation of S and T can be done in O(|E(G)|) time. And
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the number of times where S and T are computed in the recursive definition of lu
is clearly bounded by |V (G)|. All of this leads to a global algorithm running in
O(|V (G)||E(G)|) time. �

Figure 6. Case 4: lu-labeling of the subgraph G′

The technique described above can also be applied to Stockman’s version of
the game Vertex NimG. In [20], an exptime algorithm is given to decide the
outcome of a given position. We here show that the complexity can be decreased
to O(|V ||E|).

Corollary 12. Let (G,w, u) be an instance of Vertex NimG with w : V → N>0.
Deciding whether (G,w, u) is P or N can be done in O(|V (G)||E(G)|) time.

Proof. The proof works similarly to the previous one, except that the subgraph Gu

is no longer useful. Hence we have four cases:

• If w(u) = 1 and u has no self loop, then the position is P.
• If w(u) ≥ 1 and there is a loop on u, then it is N .
• If w(u) ≥ 2 and there is a vertex v such that (u, v) ∈ E and w(v) = 1, then

it is an N position.
• If u ∈ G′, then compute luG′,w(u) as in Theorem 10.

�

Remark 13. Note that the proof still works if there exist vertices of null weight at
the beginning. It suffices to consider the two following properties: if w(u) = 0 then
this is P, and if u is adjacent to some v with w(v) = 0, then it is N .

Open Problem 14. We showed that Vertex NimG and Undirected Ver-
texnim can both be solved in polynomial time. Does this remain true when consid-
ering the Move then remove convention?

5. Misère versions

The misère version of a game is a game with the same rules except that the
winning condition is reversed, i.e., the last player to move loses the game. The
following results shows that in almost all cases, misère and normal versions of
Vertexnim have the same outcomes.

Theorem 15. Let (G,w, u) be an instance of undirected vertexnim under
the misère convention. Deciding whether (G,w, u) is P or N can be done in
O(|V (G)||E(G)|) time.
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Proof. If all vertices have weight 1, then (G,w, u) is an N position if and only if
|V (G)| is even since it reduces to the misère version of “She loves me, she loves me
not”. Otherwise, we can use the same proof as the one of Theorem 10 to see that
(G,w, u) is N in the misère version if and only if it is N in the normal version. �

Theorem 16. Let (G,w, u) be an instance of directed vertexnim in the misère
version, where G is strongly connected, with a loop on each vertex. Deciding whether
(G,w,u) is P or N can be done in time O(|V (G)||E(G)|).

Proof. If all vertices have weight 1, then (G,w, u) is an N position if and only if
|V (G)| is even since it reduces to the misère version of “She loves me, she loves me
not.”Otherwise, we can use the same proof as the one of Theorem 6 to see that
(G,w, u) is N in the misère version if and only if it is N in the normal version. �

Remark 17. Though the algorithms we give for both Undirected Vertexnim
and Directed Vertexnim can easily be adapted for the misère version, it does
not seem to be the case with the algorithm we give for Vertex NimG.

Conclusion

When dealing with an undirected graph, we proved that both versions of Vertex
NimG (Stockman’s version where the game ends whenever a player is blocked on a
0, and our version which allows play until all the weight is removed from the graph)
are tractable. We even proved that deciding whether a given position is P or N can
be done in quadratic time, which is a real improvement compared to the exptime
algorithm presented in [20]. Unfortunately, the directed case turns out to be more
tricky, even for simple graphs such as circuits. Yet, it seems that our variant of Nim
on graphs is more accessible than Vertex NimG or Geography, as the results
obtained in Theorem 6 allow us to be optimistic for graphs where loops become
optional.
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