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Abstract: Object recognition or human pose estimation methods often resort to a decomposition into a collection of parts.
This local representation has significant advantages, especially in case of occlusions and when the “object” is
non-rigid. Detection and recognition requires modelling the appearance of the different object parts as well
as their spatial layout. The latter can be complex and requires the minimization of complex energy functions,
which is prohibitive in most real world applications and therefore often omitted. However, ignoring the spatial
layout puts all the burden on the classifier, whose only available information is local appearance. We propose
a new method to integrate the spatial layout into the parts classification without costly pairwise terms. We
present an application to body parts classification for human pose estimation. As a second contribution, we
introduce edge features from RGB images as a complement to the well known depth features used for body
parts classification from Kinect data.

1 Introduction

Object recognition is one of the fundamental prob-
lems in computer vision, as well as related problems
like face detection and recognition, person detection,
and associated pose estimation. Local representations
as collections of descriptors extracted from local im-
age patches are very popular. This representation al-
lows robustness against occlusions and permits non-
rigid matching of articulated objects, like humans and
animals. The representation is inherently structural
and is therefore difficult to use in a statistical learning
framework.

For object recognition tasks, the known methods
in the literature vary in their degree of usage of spa-
tial relationships, between methods not using them at
all, as for instance the bags of visual words model
(Sivic and Zisserman, 2003), and rigid matching
methods using all available information, e.g. based
on RANSAC (Fischler and Bolles, 1981). The for-
mer suffer from low discriminative power, whereas
the latter only work for rigid transformations and
cannot be used for articulated objects. Methods for
non-rigid matching exist. Graph-matching and hyper-
graph matching, for instance, restricts the verification
of spatial constraints to neighbors in the graph. How-

ever, non trivial formulations require minimizing a
complex energy functions and are NP-complete (Tor-
resani et al., 2008; Duchenne et al., 2009).

Pictorial structures, deformable parts based mod-
els, have been introduced as early as in 1973 (Fischler
and Elschlager, 1973). The more recent seminal work
creates a Bayesian parts based model of the object and
its parts, where a prior is put on the possible rela-
tive parts locations (Felzenszwalb and Huttenlocher,
2005). The underlying discrete optimization problem
is similar to the one in graph matching: an energy
function coding the spatial relationships in pairwise
terms needs to be minimized. However, here his prior
is a tree structured Markov random field, whose ab-
sence of cycles makes minimization of the underly-
ing energy function relatively fast — of course much
slower than a model without pairwise terms. Apart
from the tree structure, the energy minimization prob-
lem is similar as the one in (Fischler and Elschlager,
1973). The geometric configuration between parts is
learned automatically. In (Felzenszwalb et al., 2010)
the Bayesian model is replaced with a more powerful
discriminative model, where scale and relative posi-
tion of each part are treated as latent variables and
searched by Latent SVM. This model obtained the
best performance in the 2006 PASCAL person detec-



tion challenge.
A similar problem occurs in tasks where joint ob-

ject recognition and segmentation is required. Lay-
out CRFs and extensions model the object as a col-
lection of local parts (patches or even individual pix-
els), which are related through an energy function
(Winn and Shotton, 2006). However, unlike picto-
rial structures, the energy function here contains cy-
cles which makes minimization more complex, for
instance through graph cuts techniques. Furthermore,
the large number of labels makes the expansion move
algorithms inefficient (Kolmogorov and Zabih, 2004).
In the original paper (Winn and Shotton, 2006), and
as in our proposed work, the unary terms are based on
randomized decision forests. Another related applica-
tion which could benefit from this contribution is full
scene labelling (Farabet et al., 2012).

Pose estimation methods are also often naturally
solved through a decomposition into body parts. A
preliminary pixel classification step segments the ob-
ject into body parts, from which the joint positions
can be estimated in a second step. The well known
method used for the MS Kinect system completely
ignores the spatial relationships between the objects
parts and puts all the classification burden on the pixel
wise working classifier (Shotton et al., 2011). The de-
cision function to be learned by the classifier is com-
plex and therefore requires a learning machine with
complex architecture, which is difficult to learn. The
good performance of the system has been obtained
with an extremely large training set of 2 ·109 training
vectors extracted from 1 million images and training
on a computation cluster with 1000 nodes.

In this paper we propose to a method which seg-
ments an object into parts through pixelwise classifi-
cation and which integrates the spatial layout of the
part labels. Like the methods ignoring the spatial lay-
out, it is extremely fast as no additional step needs
to be added to pixelwise classification and no energy
minimization is necessary. The (slight) additional
computational load only concerns learning at an of-
fline stage. The goal is not to compete with methods
based on energy minimization, which is impossible
through pixelwise classification only. The objective
is to improve the performance of pixelwise classifica-
tion by using all available information during learn-
ing.

Classical learning machines working on data em-
bedded in a vectors space, like neural networks, SVM,
randomized decision trees, Adaboost etc., are in prin-
cipal capable of learning arbitrary complex decision
functions, if the underyling prediction model (archi-
tecture) is complex enough. In reality the available
amount of training data and computational complex-

ity limit the complexity which can be learned. In most
cases only few data are available with respect to the
complexity of the problem. It is therefore often useful
to impose some structure on the model. We already
mentioned structured models based on energy miniza-
tion and their computational disadvantages. Manifold
learning is another technique which assumes that the
data, although embedded in a high dimensional space,
is distributed according to lower dimensional mani-
fold in that space. Semi-supervised learning uses a
large amount of additional training data, which is un-
labeled, to help the learning machine to better infer
the structure of the decision function. In this work we
propose to use prior knowledge in the form of the spa-
tial layout of the labels to add structure to the decision
function learned by the learning machine.

The contributions of this paper are threefold:

• The integration of the spatial layout of part labels
into learning machines, in particular randomized
decision forests;

• We introduce features extracted from edges cal-
culated on the RGB image and show that they
can provide valuable complementary information
to the traditional depth features. We show that
good performance in recognition of objects could
be achieved, even when simple features are em-
ployed;

• As a third contribution we propose automatic
ground truth creation for object detection with 2D
markers.

The paper is organized as follows: section 2 presents
the learning procedure which integrates the spatial
layout of a part based model into the prediction model
of a randomized decision forest. Section 3 introduces
edge comparison features which can complement the
classical depth features for pose estimation. Section
4 explains the experiments we performed on two dif-
ferent tasks (pose estimation and door detection), and
section 5 finally concludes.

2 Learning object part classifiers
from spatial layouts

We consider problems where the pixels i of an image
are classified as belonging to one of L target labels by
a learning machine whose alphabet is L = {1 . . .L}.
To this end, descriptors Fi are extracted on each pixel
i and a local path around it, and the learning machine
takes a decision li ∈ L for each pixel. If the target
labels are parts in a spatial object, then a powerful
prior can be defined over the set of possible labellings.



Beyond the classical Potts model known from im-
age restoration (Geman and Geman, 1984), which fa-
vors equal labels for neighboring pixels over unequal
labels, additional (soft) constraints can be imposed.
Labels of neighboring pixels can be supposed to be
equal, or at least compatible, i.e. belonging to parts
which are neighbors in the spatial layout of the object.
If the constraints are supposed to be hard, the result-
ing problem is a constraint satisfaction problem. In
computer vision this kind of constraints is often mod-
elled soft through the energy potentials of a global
energy function:

E(l1, . . . , lN) = ∑
i

U(li,Fi)+µ ∑
i∼ j

D(li, l j) (1)

where the unary terms U(·) integrate decisions and
confidence of a pixelwise employed learning machine
and the pairwise terms D(·, ·) are over couples of
neighbors i∼ j and favor certain pair label configura-
tions over others. In the case of certain simple models
like the Potts model, the energy function is submodu-
lar and the exact solution can be calculated in polyno-
mial time using graph cuts (Kolmogorov and Zabih,
2004). Taking the spatial layout of the object parts
into account results in non-submodular energy func-
tions which are difficult to solve. Let’s note that even
the complexity of the submodular problem (quadratic
on the number of pixels in the worst case) is far be-
yond the complexity of pixelwise classification with
unary terms only.

The goal of our work is to improve the learning
machine in the case where it is the only source of in-
formation, i.e. no pairwise terms are used for clas-
sification. Traditional learning algorithm in this con-
text are supervised and use as only input the train-
ing feature vectors fi as well as the training labels li,
where i is over the pixels of the training set. We pro-
pose to provide the learning machine with additional
information, namely the spatial layout of the labels
of the alphabet L . Some pairs of labels are closer
than other pairs in that they correspond to neighbor-
ing parts. The risk associated for misclassifying a la-
bel with a neighboring label should therefore be lower
than the risk misclassifying a label with a not neigh-
boring label.

For learning machines which directly minimize
the loss associated with classification, this additional
information can be integrated directly. Multi-class
SVM with one-against-one strategy could be adapted
to this extension by adding weights to the voting
mechanism. We did not pursue this direction in this
work. Multiple layer perceptrons learn by minimizing
a loss function for each output unit. Layout informa-
tion could be integrated by identifying by weighting
the loss of each output unit according to the type of

classification error made. We did not pursue this di-
rection in this work.

Randomized decision forests

In this paper we focus on randomized decision forests
(RDF) as learning machines, because they have
shown to outperform other learning machines in this
kind of problem and because they have become very
popular in computer vision lately (Shotton et al.,
2011). Decision trees, as simple tree structured clas-
sifiers with decision and terminal nodes, suffer from
over-fitting. Randomized forests, on the other hand,
overcome this drawback by integrating distributions
over several trees. To classify a new vector, it is
passed down each tree until a terminal node is reached
which contains a distribution over labels.

A difficulty in this context is the classical learning
algorithm for RDFs (Lepetit et al., 2004), which trains
each tree separately, layer by layer. Each layer is also
trained separately, which allows the training of deep
trees with a complex prediction model. The drawback
of this approach is the absence of any gradient on the
error during training. Instead, training maximizes the
gain in information based on Shannon entropy. In the
following we give a short description of the classical
training procedure.

We describe the version of the learning algorithm
from (Shotton et al., 2011) which jointly learns fea-
tures and the parameters of the tree, i.e. the thresholds
for each decision node. We denote by θ the set of all
learned parameters (features and threshold) for each
decision node.

For each tree, a subset of training instances is
randomly sampled with replacement. The layers are
trained in a top-down approach.

1. Randomly sample a set of candidates θ.

2. Partition the set of input vectors into two sets, one
for the left child and one for the right child accord-
ing to the threshold τ ∈ θ. Denote by Q the label
distribution of the parent and by Ql(θ) and Qr(θ)
the label distributions of the left and the right child
node, respectively.

3. Choose θ with the largest gain in information:

θ∗ = argmax
θ

G(θ)

= argmax
θ

H(Q)− ∑
s∈{l,r}

|Qs(θ)|
|Q|

H(Qs(θ))

(2)
where H(Q) is the Shannon entropy from class
distribution of set Q.

4. Recurse the left and right child until the prede-
fined level or largest gain is arrived.
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Figure 1: An example of three parts: (a) part layout; (b) a parent distribution and its two child distributions for a given θ; (c)
a second more favorable case. The gain in information for the spatial learning cases are given with λ = 0.3 and equal number
of pixels between the left and the right subtree.

Spatial learning for randomized decision forests

In what follows we will integrate the additional infor-
mation on the spatial layout of the object parts into the
training algorithm, which will be done without using
any information on the training error. Let us first re-
call that the target alphabet of the learning machine
is L = {1 . . .L}. Let us then imagine that we create
groups of pairs of two labels, giving rise to a new
alphabet L ′ = {11,12, . . .1L,21,22, . . .2L, . . . ,LL}.
Each of the new labels is a combination of two origi-
nal labels. Assuming independent and identically dis-
tributed (i.i.d.) original labels, the probability of a
new label i j consisting of the pair of original labels i
and j is the product of the original probabilities, i.e.
p(i j) = p(i)p( j). The Shannon entropy of a distribu-
tion Q′ over the new alphabet is therefore

H(Q′) = ∑
k
−p(k) log p(k) (3)

where k is over the new alphabet. This can be ex-
pressed in terms of the original distribution over the
original alphabet:

H(Q′) = ∑
i, j
−p(i)p( j) log[p(i)p( j)] (4)

We can now separate the new pairwise labels into
two different subsets, the set of neighboring labels
L ′1, and the set of not neighboring labels L ′2, with
L ′ = L ′1∪L ′2. We suppose that each original label is
neighbor of itself. In the same way, a distribution Q′

over the new alphabet can be split into two different
distributions Q′1 and Q′2 from these two subsets.

Then a learning criterion can be defined which de-
fines the gain in information obtained by parameters
θ as a sum over two parts of the histogram Q′, each
part being calculated over one subset of the labels:

G′(θ) = λ G′1(θ) + (1−λ) G′2(θ) (5)

where

G′i(θ) = H(Q′i)− ∑
s∈{l,r}

|Q′is (θ)|
|Q′i|

H(Q′is (θ)) (6)

Here, λ is a weight, and λ < 0.5 in order to give sep-
aration of non neighboring labels a higher priority.

A numerical example

Let’s consider a simple parts based model with three
parts numbered from 1 to 3. We suppose that part
1 is a neighbor of 2, that 2 is a neighbor of 3, but
that 1 is not a neighbor of 3. Let’s also consider two
cases where a set of tree parameters θ= {u,v,τ} splits
a label distribution Q into two distributions, the left
distribution Ql(θ) and Qr(θ).

The distributions for the two different cases are
given in figures 1a and 1b, respectively. Note that
the parent distribution Q for the second case can be
obtained by permutating the respective distribution Q
from the first case. Similarly, the child distributions
for the second case are permutated versions of the
child distributions of the first case. Not surprisingly,



the classical measure on Shannon entropy is equal for
both cases: the gain in information is G(θ)=− 0.32
for both of them.

If we take into account the spatial layout of the
different parts, we can see that the gain in information
is actually higher in the second case:

• In the first case, the highest gain in information is
obtained for parts 2 and 3, which are equally prob-
able in the parent distribution Q, whereas a high
difference in probability is obtained for the child
distributions Ql(θ) and Qr(θ). However, parts 2
and 3 are neighbors.

• In the second case, following a similar reason-
ing, the highest gain in information is obtained for
parts 1 and 3 which are not neighbors.

The new information gain measure reflects this dif-
ference. Setting λ=0.3, we get G′(θ)=− 0.17 for
the first case, whereas G′(θ)=− 0.03 for the second
case.

3 Depth and RGB edge features

In (Shotton et al., 2011), depth features have been
proposed for pose estimation from Kinect depth im-
ages. These features work well in different applica-
tions, from point matching in RGB images (Lepetit
et al., 2004) to human pose estimation in depth im-
ages (Shotton et al., 2011). One of their main advan-
tages is their simplicity and their computational effi-
ciency. Briefly, at a given pixel x, the depth difference
between two offsets centered at x is computed:

fθ(I,x) = dI(x+
u

dI(x)
)−dI(x+

v
dI(x)

) (7)

where dI(x) is the depth at pixel x in image I, param-
eters θ = (u,v) are two offsets and are normalized
by the current depth for depth-invariance. A single
feature vector contains several differences, each com-
parison value being calculated from a different pair of
offsets u and v. These offsets are learned during train-
ing together with the prediction model, as described
in section 2.

RGB edge features

Consumer depth cameras like Kinect deliver an RGB
image together with the depth image. Combining
both images may lead to richer information and better
classification performance, especially in cases where
texture is meaningful for the distinction of otherwise
identical 3D objects. RGB comparison features have
been introduced for keypoint matching (Lepetit et al.,

2004). Here we extend this concept further by intro-
ducing edge comparison features extracted from the
grayscale image.

Psychophysical studies show that we can recog-
nize a object only with its contour, so contour is an
important visual cue for object recognition. In (Shot-
ton et al., 2008), contour is defined as the outline (sil-
houette) together with the internal edges of the object,
which enable to represent the spatial structure of the
object.

Now, contours of an object are usually sparsely
distributed, which means that comparison features
can not directly by applied to edge images. In the
settings we are interested in, namely joint learning
of features and of the prediction model with a RDF,
we need features whose position can be sampled and
tested by the training algorithm. Our solution to this
problem is inspired by chamfer distance matching,
which is a classical method to measure the similar-
ity between contours (Barrow et al., 1977). We com-
pute a distance transform on the edge image, where
the value of each pixel is the distance to its nearest
edge. Given a grayscale image I and its binary edge
image E, the distance transform DTE is computed as:

DTE(x) = min
x′:E(x′)=1

||x−x′|| (8)

The distance transform can be calculated in linear
time using a two-pass algorithm.

We propose two different types of features based
on edges, the first using edge magnitude, and the sec-
ond edge orientation. The former is defined as:

f EM
θ (x) = DTE(x+u)+DTE(x+v) (9)

where u and v are the same in (7). Figure 2 shows the
distance transform image for an input image showing
a door (we will describe our experiments on doors in
the experimental section). This feature indicates the
existence of edges near two offsets.

Edge orientation features can be computed in a
similar way. In the procedure of distance image, we
can get another orientation image OE , in which the
value of each pixel is the orientation of its nearest
edge:

OE(x) = Orientation
(

arg min
x′:E(x′)=1

||x−x′||
)

(10)

The feature is computed as the difference in orienta-
tion for two offsets:

f EO
θ (x) = OE(x+u)−OE(x+v) (11)

where the minus operator takes into account the cir-
cular nature of angles. We discretize the orientation
to alleviate the effect of noise.

The objective of both features is to capture the
edge distribution at specific locations in the image,
which will be learned by the RDF.



(a) (b) (c)
Figure 2: The importance of edges: (a) original grayscale image of an open door; (b) edge image; (c) distance transform.

4 Experiments

We performed experiments for two different applica-
tions, described in the following two sub sections:

• the spatial learning algorithm was validated on
a pose estimation application. We would like to
point out that the learning method can be applied
to any parts based model which integrates pix-
elwise classification with random forests, for in-
stance also methods for joint object recognition
and segmentation;

• the edge features have been additionally validated
on an task requiring the detection of doors from
images.

Body part estimation

The proposed learning algorithm has been evaluated
on the CDC4CV Poselets dataset introduced in (Holt
et al., 2011). Our goal was not to beat the state of the
art in pose estimation, but to show that spatial learn-
ing is able to improve pixelwise classification of parts
based models. The dataset contains upper body poses
taken with Kinect and consists of 345 training and 347
test depth images. Along with the images, the authors
also supplied corresponding annotation files which
contain the locations of 10 articulated parts: head(H),
neck(N), left shoulder(LS), right should(RS), left
upper arm(LUA), left forearm(LFA), right upper
arm(RUA), right forearm(RFA) left hip(LH), right
hip(RH). A single position is provided with each part,
we created groundtruth segmentations through near-
est neighbor labeling. In our experiments we defined
the part below the wrist as other (the black area in the
Figure 3).

Unless otherwise specified, the following param-
eters have been used for RDF learning: 3 trees each
with a depth of 9; 2000 randomly selected pixels per
image, roughly distributed across the body; 4000 can-
didate pairs of offsets; 22 candidate thresholds; off-
sets and thresholds have been learned separately for

each node in the forest. For spatial learning, 28 pairs
of neighbors have been identified between the 10 parts
based on a pose where the subject stretches his arms.
The parameter λ was set to 0.4.

We evaluate our method at two result levels: pix-
elwise classification and part recognition. Pixelwise
decisions are directly provided by the random forest.
Part localisations are obtained from the pixelwise re-
sults through pixel pooling. For each pixel, the RDF
provides a posterior probability for each part, which
can be used to create posterior images for each part.
After non-maximum suppression and low pass filter-
ing, the location with largest response is used as an
estimate of the part.

Table 1 shows the confusion matrices and the clas-
sification accuracies of the three settings. A baseline
has created with classical RDF learning and depth
features, shown in table 1a. Spatial learning with
depth features is shown in 1b, and spatial learning
with depth and edge magnitude features is shown in
1c. We can see that that spatial learning can obtain
a performance gain, although the layout is used in
the prediction model only and no pairwise terms have
been used. Figure 3 shows some classification exam-
ples, which demonstrates that spatial learning makes
the randomized forest more discriminative. The seg-
mentation output is cleaner, especially at the borders.

At part level, we report our results according to
the part estimation metric by (Ferrari et al., 2008):
a groundtruth part is matched to a detected part if
and only if the endpoints of the detected part lie
within a circle of radius r=50% of the length of the
groundtruth part and centered on it. Table 2 shows our
results on part level using the three settings: classical
randomized learning, spatial learning using depth fea-
tures and spatial learning with depth and edge mag-
nitude features. It demonstrates that spatial learning
improves recognition performance for most of parts.

The experiments at both pixelwise and part level
demonstrate that spatial learning makes randomized
forest more discriminative by integrating the spatial



(a) (b) (c) (d) (e)

Figure 3: Examples of the pixelwise classification: each row is an example, each column is a kind of classification results, (a)
test depth image; (b) part segmentation; (c) classical classification; (d) spatial learning with depth features; (e) spatial learning
with depth features and edge magnitude features.

head neck should LUA LFA RUA RFA left wrist right wrist average

Classical E 46.69 0.29 34.58 2.02 0 21.90 77.81 1.15 19.88 22.70
Spatial E λ = 0.4 52.45 0 39.48 1.44 0 14.41 82.13 0.86 22.48 23.70
Classical D 77.81 0 41.79 1.73 0 10.09 63.11 0.29 21.04 23.98
Spatial D λ = 0.4 88.47 1.15 40.92 0.28 0.28 10.66 67.72 5.18 28.24 26.99
Spatial D+E λ = 0.4 89.05 0 58.21 0.86 0 25.65 72.91 0 13.54 28.91

Table 2: Correct part rate(%) for different feature settings: D=deph features; E=edge magnitude features.

layout into its prediction model. This proposition is
very simple and fast to implement, as the standard
pipeline can be still used. Only the learning method
has been changed, the testing code is unchanged.
There is no additional computational burden whatso-
ever during testing; a slide increase in computational
complexity can be observed for learning. No complex
discrete optimization problems need to be solved.

Door detection and automatic groundtruth
creation.

We additionally evaluated our edge features on a
problem involving the detection of (open and closed)
doors from images. This concept is interesting for
robot navigation as well as activity recognition in an
indoor environment, as the presence and position of a
door is an important clue to classify certain activities.
No parts based model was used in these experiments,
whose sole goal was additional validation for the edge
comparison features.

We selected images from two different sets, which
we denote by D1 and D2:

D1 This subset has been taken from the LIRIS hu-
man activities dataset1 used for the ICPR HARL

1http://liris.cnrs.fr/voir/

2012 human activities recognition and localisa-
tion competition (Wolf et al., 2012). We choose
three activities associated with doors: (i) a per-
son enters or leaves an office; (ii) a person tries
to enter an office unsuccessfully, and (iii) a per-
son unlocks an office and then enters it. The set
contains 336 images of various open doors in var-
ious office locations. We manually annotated the
positions of the doors.

D2 We recorded another door dataset using a Kinect
module, which contains open and closed doors.
The dataset consists of approximately 9000 im-
ages. Instead of manually annotating the door po-
sitions we used an automatic groundtruth creation
method described below. The subset has been
split into two parts with open and closed doors,
respectively.

Traditionally, groundtruth creation is performed man-
ually by humans, which is a tedious and also time-
consuming task. Of course, several tools has been de-
veloped to accelerate the annotations, such as the La-
belMe image annotation tool 2 and the VATIC video
annotation tool 3. These tools help annotation but are

activities-dataset
2http://labelme.csail.mit.edu
3http://mit.edu/vondrick/vatic



(a) (b) (c)
Figure 4: Automatic groundtruth annotation of doors: (a) the input RGB image showing the markers and superimposed
bounding box; (b) the depth image; (c) the grayscale image with removed markers after inpainting.

still not fully automatic. Crowdsourcing may help to
spread the work over a large number of people. Re-
cently, K. Lai et al. proposed RGB-D scene annota-
tion by means of 3D reconstruction (Lai et al., 2011).
The object is manually located in the reconstructed
3D model, and then the 2D location is estimated in
each frame from the estimated camera position using
ego-motion estimation.

Here we describe a different method for automatic
image annotation. Groundtruth for the D2 dataset has
been created automatically from two 2D markers pre-
viously fixed at known locations beside the doors —
see figure 4a for an example. The position of the
markers is detected with ARToolKit4. The basic idea
is simple: markers will change the RGB image but
not the depth image, so depth features will not be al-
tered by the presence of the markers. If features are
calculated on the RGB image, then training the desti-
nation door detection algorithm on the markers needs
to be avoided at all cost. We therefore remove the de-
tected markers from the image and fill the uncovered
area with a known inpainting algorithm (A. Criminisi,
2003).

The RGB camera of the Kinect module has been
calibrated, intrinsic parameters of the RGB camera
are therefore known. ARToolKit provides the 3D po-
sition and orientation of each detected marker, which
allows to obtain the bounding box of the door from
a single marker position (provided the position of the
marker with respect to the door is known). For higher
robustness to large camera angles, we fixed two dif-
ferent markers to the door, using an average of the two
bounding box positions if both of them are detected.
To obtain positions even for frames where no marker
has been found (which is rare), a simple tracking algo-
rithm using template matching has been added. Fig-
ure 4 shows example images of this automatic anno-
tation method.

Calibration data is known for both subsets, D1 and

4http://www.hitl.washington.edu/artoolkit
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Figure 5: Results on the door detection problem on dataset
D1: precision-recall curves for different feature settings.

D2, so which allows to calculate transformations be-
tween the depth image and the corresponding edge
images. The proposed features in this paper have been
calculated on pixel pairs taking into account these
transformation.

When training a binary classifier, negative exam-
ples are also necessary and important to estimate the
decision boundary. We employ bootstrapping to se-
lect negative examples for the classifier out of a large
pool of available negative examples, in our case taken
from all the non door images from the LIRIS human
activities dataset. We found that one iteration of boot-
strapping was enough.

For subset D1, two thirds of the positive examples
were taken for training set and one third for testing. A
randomized forest with 20 trees had been trained on
a balanced dataset. All examples were scaled into a
normalized block of 100×100 pixels. Figure 5 shows
precision-recall curves for different settings with dif-
ferent feature types: depth features only, edge mag-
nitude features only, edge orientation features only,
depth and edge magnitude features, depth and edge
orientation features, all three features together. We



H N LS RS LUA LFA RUA RFA LH RH

H 85 1 1 1 1 2 1 3 3 2
N 11 67 4 3 1 1 1 1 6 5
LS 2 2 56 6 4 2 0 1 18 9
RS 1 3 12 48 1 1 6 2 5 21
LUA 3 1 18 2 34 20 4 3 12 3
LFA 5 0 2 1 4 65 2 19 1 1
RUA 2 0 3 7 3 2 40 20 3 20
RFA 6 0 2 2 2 12 6 62 3 5
LH 2 1 15 1 4 4 0 0 67 6
RH 1 1 10 12 0 0 4 1 5 66

(a)
H N LS RS LUA LFA RUA RFA LH RH

H 84 1 1 1 1 1 0 4 4 3
N 12 70 4 2 1 1 0 2 6 2
LS 2 3 58 6 5 2 0 1 14 9
RS 2 4 14 49 0 0 5 3 4 19
LUA 3 1 17 2 35 19 5 3 13 2
LFA 4 0 2 1 4 63 2 22 1 1
RUA 3 0 4 9 2 1 37 21 3 20
RFA 5 1 2 3 1 10 5 66 2 5
LH 2 1 16 2 4 3 0 0 67 5
RH 1 1 9 15 0 0 2 1 4 67

(b)
H N LS RS LUA LFA RUA RFA LH RH

H 94 1 0 0 0 2 0 2 0 1
N 24 60 5 3 1 1 0 2 2 2
LS 1 3 65 4 5 2 0 0 14 6
RS 1 3 12 57 1 0 5 3 3 15
LUA 2 1 18 1 44 22 1 1 9 1
LFA 6 0 3 1 4 73 1 9 2 1
RUA 3 0 2 15 1 1 41 21 2 14
RFA 5 0 2 3 1 5 5 67 3 9
LH 0 0 13 1 3 5 0 0 72 6
RH 1 1 5 11 0 0 2 1 4 75

(c)
Table 1: Results on body part classification in pixelwise
level: (a) classical RF learning; (b) spatial learning with
only depth features; (c) spatial learning with depth and
edge magnitude features. Respective accuracies: 60.30%,
61.05%, 67.66%.

can see that depth features are more discriminative
than edge features extracted on the grayscale image.
This is a predictable performance for a set containing
open doors. However, even on open doors the addi-
tion of edge features can significantly improve detec-
tion. The combination outperforms any single feature
type.

For dataset D2, we subsampled the images in the
dataset D2 by taking every fifth frame. Two thirds of
the dataset have been used for training and one third
for testing. The results are shown in figure 6. As ex-
pected, we can see that for open doors the results are
similar to the ones obtained for subset D1 (a combi-
nation working best, and depth features being the best
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Figure 6: Results on the door detection problem on dataset
D1; precision-recall curves for different feature settings: (a)
open doors; (b) closed doors; (c) open and closed doors.

single feature). Also as expected, for closed doors the
depth features do not work well, as doors are copla-
nar with the door frame and wall. Edge magnitude
features give reasonable good performance. For the
mixture of open and closed doors, multiple features
perform better than the single features, similar to the
setting of open doors.



5 Conclusion

In this paper, we proposed a novel learning al-
gorithm for randomized decision forests which in-
tegrates information on the spatial layout of target
labels. The classification algorithm is of exactly
the same computational complexity, a slightly higher
computational burden is put on the learning algo-
rithm. We applied our algorithm on the body part
classification, although any other application requir-
ing the segmentation of an object into parts may ben-
efit from the contribution. Results show that RDF in-
deed benefit from the integration of the information
on the spatial layout of parts.

Another contribution extends the well known
depth comparison features to include edge presence
information obtained from grayscale images. The
recognition of doors in RGB-D images was signifi-
cantly improved by the combination of depth features
and edge features.
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