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Abstract

This paper introduces a new method for streamed ac-
tion recognition using Motion Capture (MoCap) data.
First, the histograms of action poses, extracted from
MoCap data, are computed according to Hausdorf
distance. Then, using a dynamic programming al-
gorithm and an incremental histogram computation,
our proposed solution recognizes actions in real time
from streams of poses. The comparison of histograms
for recognition was achieved using Bhattacharyya dis-
tance. Furthermore, the learning phase has remained
very efficient with respect to both time and complex-
ity. We have shown the effectiveness of our solution
by testing it on large datasets, obtained from anima-
tion databases. In particular, we were able to achieve
excellent recognition rates that have outperformed the
existing methods.

1 Introduction

Human action recognition is a challenging topic that,
if solved, would enhance numerous applications in ar-
eas ranging from Human Computer Interface (HCI) to
entertainment. In particular, new acquisition devices,
like Microsoft Kinect and its realtime low cost Mo-
tion Capture system [13], can be used to enhance the
user’s experience with games, serious games, presenta-
tion softwares, etc. This problem has attracted a great
deal of research works the last decades. Fujiyoshi et
al. [3], is among the pioneering works to identify human
actions through human body skeletonization. They have
particularly targeted walking, running and even gait
analysis. Their solution has the advantage of being easy
to use but it is mainly useful for simple interpretations.
Bobick and Davis [2] have proposed a method using
spatio-temporal templates for human activity recogni-
tion. Their method runs in real-time and uses a database

of actions they have previously extracted. Although
their recognition process is real-time, adding new ac-
tions to their database is time consuming and not very
flexible. Xiong and Liu [14] have used Hidden Markov
Model on extracted silhouettes, but their target was lim-
ited to simple human behaviors. Ryoo [11] has pro-
posed a method dealing with integral histograms and
bag of words for early action recognition. The author
has adapted 2D features to spatio-temporal action, and
was able to recognize actions at 50% from their comple-
tion with a 50% confidence. As experiments were made
on short activities, it would be interesting to perform
tests on more challenging datasets, like the well known
CMU database [7]. In the work by Lv and Nevatia [6],
actions were modeled as sets of virtual key-poses to be
used in the matching process. This method is however
limited by the high computation cost and by the num-
ber of available virtual key poses. Parameswaran and
Chellappa [10] use MoCap with markers in an invariant
motion space. As mentioned by the authors, there is no
3D invariance in motion space, and therefore all actions
have to be described independently. In [4] for exam-
ple, the authors propose a real-time motion interpreta-
tion using simplified MoCap data. However, as they are
using a subset of the whole MoCap data, their solution
requires a large database of similar actions for correct
interpretation. Moreover, a computationally complex
and time-consuming preprocessing stage is needed to
cluster similar actions. Yao et al. [15] have showed
that methods based on motion capture data give bet-
ter results than appearance based solutions when deal-
ing with complex human activities. In [16], they use a
stochastic process to find a latent space that discrimi-
nates complex human activities. Even if the obtained
results seem promising, the computation time, from 0.5
sec to more than 3 sec, makes it far from real-time.

In this paper, we present a new solution, dealing
with stream of poses extracted from MoCap data, al-
lowing the recognition of actions in real time. Thanks
to dynamic programming optimisation and integral his-
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tograms representation, our proposed method yields ex-
cellent recognition results, outperforming existing ac-
tion recognition methods.

2 Histogram-based comparison

In this section, we present our histogram-based
method to classify action from Motion Capture.
Broadly speaking, let P be the set of all poses coming
from video stream. Let A = (p0, . . . , pN ) be an action
consisting of a time-ordered sequence of poses, assum-
ing A starts at time t0 and ends at time tN . To keep the
notations simple and without loss of generality, let’s as-
sume that t0 = 0. Geometrically, a pose is represented
by a simple human skeleton that consists of a set of 3D
joints, with hierarchical relations. Note that because of
noise perturbations and speed variation of movements,
two different actions may contain some identical poses
and instances of the same action may be more or less
different. To overcome this problem, all poses compos-
ing an action are grouped, based on similarity criteria
of their appearances, into a set of clusters. Then, each
of these clusters is defined by a representative element
(for instance the median element), denoted by p̃j . To
quantify the similarity between two poses, p1 and p2,
we use the well know Hausdorff distance [5], denoted
DP hereafter, that provides an elegant way to compare
two poses. In order to achieve the clustering mentioned
above, we define the following ε-equivalence between
two poses.

Definition 1. Let DP be a distance between two poses,
the ε-equivalence between p1 and p2 is given by:

p1 ∼ p2 ⇔ DP (p1, p2) ≤ ε (1)

where, p1 and p2 are in P .

Using the above definition, we introduce the cumu-
lative frequency occurrences of a representative pose p̃j
of an action A = (p0, . . . , pN ) of length tN .

Ht
A(p̃j) = |{pi}|, with i = 0 . . . t and pi ∼ p̃j (2)

where, t ≤ tN .
Note that when t < tN , we are considering a re-

striction of action A to the time lapse [0, t]. Such a re-
striction is useful to us as we are interested in recogniz-
ing actions even before they are completed. To do so,
we need to evaluate the likelihood over time of the on-
going MoCap data to be one of our previously learned
actions. Inspired by [11], we have defined our own inte-
gral histogram of actions that we have used to compute
this likelihood for our recognition decision.

Definition 2. A pose-based integral histogram, IH of
action A, is a histogram given by:

IHt (A,P) =
⋃

p̃j∈P

Ht
A (p̃j) (3)

To quantify the similarity between two histograms,
we use the Bhattacharyya distance [1] to our pose-based
integral histograms. This histogram distance, denoted
DH , between two actions A and B is given by:

DH(IHtA(A,P), IHtB (B,P)) =
√

1−
∑
p̃j

M (4)

With

M =

√
HtA

A (p̃j) ·HtB
B (p̃j)√∑̃

pj

HtA
A (p̃j) ·

∑̃
pj

HtB
B (p̃j)

(5)

where, tA and tB are the upper-bound times defining
the restrictions for action A and action B, respectively.

Using relation 4, we can introduce a cost function to
evaluate similarity between two actions A and B.

Cost (A,B)=DH

(
IHtN(A,P) , IHtM(B,P)

)
(6)

where tN and tM represent the end times (or lengths)
for A and B, respectively.

3 Online recognition

Because integral histograms lack the temporal infor-
mation about poses, we propose to decompose them
into multiple smaller size integral histograms, called
sub-histograms.

Definition 3. A sub-histogram of a time lapse [t1, t2],
denoted by IH[t1,t2], for action A, is given by:

IH[t1,t2](A,P) =
⋃

p̃j∈P

H
[t1,t2]
A (p̃j) (7)

H [t1,t2] is the restriction of the cumulative frequency
occurrences function to the time lapse [t1, t2] with 0 ≤
t1 < t2 ≤ tN . Therefore, an action could be consid-
ered as a time series of sub-integral histograms, rep-
resented by a vector (h0, . . . , hN ). Note that before
providing a recognition score for an ongoing action,
we need to align it, time-wise, with the learned ac-
tions. The objective is to obtain the alignment between
two time-dependent actions, A = (ha0, · · · , hap) and
B = (hb0, · · · , hbq), respectively. Evaluating the cost
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function measure for each pair of the sequences A and
B, leads to a p × q cost matrix. We are looking for
the alignment that minimizes the cost between actions
A and B. To achieve this, we have been inspired by
a well-known Dynamic Time Warping technique, pro-
posed in [12], where the optimal alignment is provided
by the following recursive relations.

Cost? (ha0, hb0) = Cost (ha0, hb0)

Cost? (hai, hbj) = Cost (hai, hbj)

+min
{

Cost (hai−1, hbj) , (8)

Cost (hai, hbj−1) ,

Cost (hai−1, hbj−1)
}

Because of the natural variation due to different body
proportions and movements style, instances of the same
actions can be different. Using a single instance per
action as a training set will not usually yield a good
recognition rate. To cope with this problem, we trans-
late multiple instances of the same action into multiple
histograms. Rather than finding an unified representa-
tion of an action among a large dataset, that is a chal-
lenging task, we propose to gather similar instances of
an action into a single histogram. First, using the cost
defined in 6, we calculate the standard deviation with re-
spect to the median histogram. This allows us to define
a distance threshold, for example equal to this standard
deviation. Then, the Bhattacharyya distances between
all histograms are calculated. If the distance between
two histograms is below our threshold, only one of them
is kept. In other words, given that “very similar” his-
tograms are not better than a single one, we only keep
those histograms that represent “different” instances of
the same action. The set of these “different” histograms,
AH , represents multiple hypotheses for the same action
in the recognition stage. Hence, our recognition score
is computed according to the equation given below:

Costmulti(A,B) = min
Ah∈AH

{Cost?(Ah, B)}(9)

where,AH is the set of multiple hypotheses of action A
and B is the ongoing observed action to be recognized.

4 Results

We have tested our system on the HDM dataset of
actions from [9]. This dataset consists of 130 classes,
obtained from 2337 actions (cuts of longer capture sets),
made by 5 different actors. We have considered the two
scenarios, single-hypothesis and muli-hypotheses. In

Dataset Accuracy
HDM(single-hypothesis) 67.89%
HDM(multi-hypothesis) 96.67%
CMU(single-hypothesis) 86.63%
CMU(multi-hypothesis) 90.92%

Table 1: Recognition rates for all datasets.

the former case, we randomly selected one action in-
stance from each class (random execution, random ac-
tor) and used it as training set. Whereas in the latter
case, we randomly selected a few action instances from
each class and have kept only three to be the training
set.

We have also constructed another dataset consisting
of 9 classes out of 53 actions, from the very large CMU
dataset [7]. The CMU dataset is more complex as it in-
volves many similar actions. Compared to the results
published in [8], where like in this paper, a subset of
CMU dataset has been used, our solution has performed
much better. Their recognition rate was around 75%
whereas, ours are 86.63% and 90.92% for the single-
hypothesis and multi-hypotheses, respectively. Our re-
sults are also very good compared to the 81.5% recog-
nition rate obtained in [15], which uses 2D features and
MoCap information from the TUM dataset.

For both scenarios, all the remaining instances were
used for recognition. The single hypothesis results are
shown on figures 1a and 1b. In particular, the confu-
sion matrices, computed with ε = 1.0, show that the
proposed method highly discriminates between differ-
ent actions. It also highlights similar actions, such as
“Boxing”, “Drink” and “eat”, as all of them involve
hand activity. The multi-hypothesis solution, shown on
figures 1c and 1d, is clearly more discriminant, as it
allows more intra-class variation. Note that with the
multi-hypothesis, the 130 initial classes are reduced to
33 different classes (for example, starting walking with
a left foot or with the right one will end up in the same
class). More quantitative scores are shown in Table 1,
where the proposed method clearly yields excellent re-
sults. Although the single-hypothesis recognition rate
is outperformed by most previous works, like [8] that
yields an average recognition rate of 80% on the same
dataset, our fully automatic multi-hypotheses solution
performs a lot better at a rate of 96.67%. Note also that
in [8], keyframes used in the queries were manually-
selected.
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(a) HDM (130 classes) (b) CMU (c) HDM multi (33 classes) (d) CMU multi

Figure 1: Confusion matrix for dataset (note that image colors are logarithmic to enforce contrast).

5 Conclusion

This paper proposed a new technique for human ac-
tion recognition using MoCap data. The method has
many advantages over previous ones. Thanks to a dy-
namic programming algorithm and an incremental his-
togram computation, our proposed solution recognizes
actions in real time from streams of poses, without the
need for a pre-segmentation of the input videos. The
training phase is also very efficient with close to real-
time speed. By expressing the MoCap poses as his-
tograms, we have turned the action recognition into easy
distance computations between histograms. Although
pose histograms have been used in the two-dimensional
case, this paper is the first, to the best of our knowl-
edge, to use them successfully with 3D MoCap data.
The obtained results have supported our claim as we
have obtained excellent recognition rates, clearly out-
performing many recent and well known methods.
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