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In the present overview, our wish is to demystify some aspects of coding with spike-timing, through a
simple review of well-understood technical facts regarding spike coding. Our goal is a better understand-
ing of the extent to which computing and modeling with spiking neuron networks might be biologically
plausible and computationally efficient.

We intentionally restrict ourselves to a deterministic implementation of spiking neuron networks and
we consider that the dynamics of a network is defined by a non-stochastic mapping. By staying in this
rather simple framework, we are able to propose results, formula and concrete numerical values, on sev-
eral topics: (i) general time constraints, (ii) links between continuous signals and spike trains, (iii) spiking
neuron networks parameter adjustment. Beside an argued review of several facts and issues about neural
coding by spikes, we propose new results, such as a numerical evaluation of the most critical temporal
variables that schedule the progress of realistic spike trains.

When implementing spiking neuron networks, for biological simulation or computational purpose, it is
important to take into account the indisputable facts here unfolded. This precaution could prevent one
from implementing mechanisms that would be meaningless relative to obvious time constraints, or from
artificially introducing spikes when continuous calculations would be sufficient and more simple. It is
also pointed out that implementing a large-scale spiking neuron network is finally a simple task.

� 2009 Elsevier Ltd. All rights reserved.
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1. Introduction

‘‘Spikes are the neural code”: This claim is about 15 years old
(Shadlen and Newsome, 1994; Rieke et al., 1996). It has been pre-
ceded by theoretical studies on the underlying mathematical pro-
cesses (e.g. Gerstein and Mandelbrot, 1964) and followed by many
developments regarding biological modeling or computational
paradigms (e.g. Thorpe et al., 2001). However, the involvement of
spikes in neural coding is still an open question. Several fundamen-
tal aspects of dynamics based on spike-timing have been very re-
cently clarified, both at the neuron level (Touboul and Brette,
2008) and the network level (Cessac et al., 2008). Nevertheless, still
a non negligible set of received ideas, such as the ‘‘in principle
unlimited computational power [of spiking networks]” (e.g. Maass,
2009), or such general statements as the ‘‘mystery of the [spike
based] neural code” (e.g. Rieke et al., 1996), are currently encoun-
tered in literature. Our purpose is to demystify some aspects of
coding with spike-timing, through an overview of well-understood
technical facts regarding spike coding. Let us first define the frame-
work of the paper.
1.1. Neural coding by spikes

In a biological context, networks of natural neurons might be
regarded as spiking neuron networks as soon as time becomes a
central feature for exploring how the brain processes. Neurons
have been considered to encode their outputs by their average fir-
ing rates until the seminal paper by Gray and Singer (1989)
showed that correlations between spike-timings of primary visual
cortex of the cat were related to the nature of stimuli. From now
on, the precise timing of spike firings is regarded as an interesting
alternative for understanding how the neurons work. However, the
involvement of spikes in neural coding is still an open question.
Therefore, artificial spiking neuron networks turn out to be helpful
modeling tools in computational neuroscience. Brain imaging and
efficient recording technologies (micro-electrodes, LFP or EEG
recordings, fMRI) help to detect changes in the internal activity
of brain, e.g. related to the perception of a given stimulus. Model-
ing and simulation are useful to validate – or invalidate – hypoth-
eses proposed by neuroscientists, at different levels of observation:
Microscopic models study the behavior of a single neuron or inter-
actions between two or a few neurons; mesoscopic models address
one or several populations of neurons, in a cortical column or in a
brain area, and deal with the emergence of a collective behavior
out of the behavior of single neurons; macroscopic models aim
to understand the observable behavior of the whole brain, through
one or other cognitive process, by simulating large-scale interac-
tions between distinct areas of the nervous system (see Meunier
and Paugam-Moisy (2008) for an overview).

In a computational context, new paradigms for information pro-
cessing and machine learning are often inspired by the most recent
advances in understanding how the brain processes. For instance,
spiking neuron networks are currently implemented through non
specific network architectures, such as Echo State Networks (Jae-
ger, 2003) and Liquid Sate Machines (Maass et al., 2002) or other
models (Paugam-Moisy et al., 2008) that are called ‘‘reservoir com-
puting” (see Verstraeten et al. (2007) for a merge and definition of
reservoir computing methods). In this framework, the reservoir is a
network model of spiking neurons with random topology and
sparse connectivity. An output layer, the so-called ‘‘readout neu-
rons”, is driven by a supervised learning rule, generated from any
type of classifier or regression algorithm. The distinction made be-
tween a readout layer and an internal reservoir is indeed induced
by the fact that only the output of the neuron network activity is
constrained, whereas the internal state is not controlled by an
experimenter, so does the brain. Although the network architec-
ture does not model any specific brain area nor structure of the
nervous system, the inter-neuron connections and learning mech-
anisms are biologically inspired and based on coding by spikes
(variations on weights and delays, synaptic plasticity, temporal
Hebbian rule, etc.).

In both contexts, spike-timing is the central linchpin of the
models. Therefore, an in-depth overview of realistic time con-
straints and relations between spikes and neural coding might be
very informative for biologists and for computer scientists.
1.2. What is the paper about

Better understanding spiking neuron networks and the underly-
ing neural code is the goal of the present overview. Both biological
networks modeling and bio-inspired networks development
should take into account the indisputable facts here unfolded. Sec-
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tion 2 starts by clarifying the notions of ‘‘biological plausibility”
and ‘‘simulation efficiency” that are the basis of our main concerns
in this paper.

On the one hand, we claim that understanding general time
constraints in spiking neuron networks is a mandatory prerequisite.
Section 3 revisits this apparently obvious point and provides the
reader with numerical evaluations. Several consequences for sim-
ulating spiking neuron networks on computer are then summa-
rized. Our point of view has two major consequences. Firstly, the
maximal amount of information present in a spike train is strongly
bounded, implying that the ‘‘in principle unlimited computational
power [of spiking neuron networks]” is a wrong idea: Section 4
makes explicit a bound about the maximal amount of information
present in a ‘‘true” spike train, taking into account the general time
constraints presented in Section 3. Secondly, these general time
constraints give a way to study spiking neuron networks as dis-
crete time systems, at least at a theoretical level. Strong results
about the dynamics of spiking neuron networks may be thus de-
rived: Section 5 reviews the results of a recent work about this to-
pic and makes them accessible without a high mathematical
background. In a nutshell, we claim that formalizing a small set
of general time constraints, taken from biological evidence, leads
to better understanding the temporal behavior of spiking neuron
networks.

On the other hand, we introduce the idea that defining the
neural code contained in spike trains is related to the choice of a
metric, ‘‘in the deterministic case”, i.e. when the dynamics of the
neuron network is defined by a non-stochastic mapping. Section
6 makes explicit the relation between spike trains and current
neural codes (rate coding, rank order coding, phase coding,
etc.) and shows that the most common spike metric can be gen-
eralized to our context, in including temporal aspects. This point
of view has one major consequence, since it generalizes the
over-used notion of ‘‘rate coding”. Considering convolution met-
rics, we make explicit the links between spike trains and contin-
uous signals, in the linear case. Section 7 develops concrete
methods to build such links. As a perspective of the present
state-of-the-art, another major consequence is to give tracks
for explicitly programming spiking neuron network parameters
in order to obtain a given input/output relation. In a preliminary
way, Section 8 discusses how, in our framework, the fact of
introducing a metric makes possible to design new effective
mechanisms based on variational methods in order to define
the network behavior.

Finally, everybody who is interested by spiking neuron network
models, either to simulate biological phenomena, or to get inspired
for designing emerging computational paradigms, will gain to have
such concepts ‘‘made simple”, i.e. demystified, as this overview
aims to: Spikes do not provide with an unlimited computational
power, but they are quite useful and not so unconnected to other
methods.
1 When V is not differentiable V0 corresponds to the left derivative.
2. Biological plausibility and computational efficiency

2.1. Spiking neuron and network models

A lot of spiking neuron models have been proposed in literature.
Let us summarize the most popular ones. Hodgkin and Huxley
(1952) have modeled the electro-chemical information transmis-
sion of natural neurons with electrical circuits: V is the membrane
potential, C is the capacitance of the membrane, gi denote the con-
ductance parameter for a specific ion channel (sodium (Na), potas-
sium (K), etc.) and Ei is the corresponding equilibrium potential.
The variables m; h and n describe the opening and closing of the
voltage dependent channels:
C
dV
dt
¼ �gNam3hðV � ENaÞ � gK n4ðV � EKÞ � gLðV � ELÞ þ IðtÞ

sn
dn
dt
¼ �½n� n0ðVÞ�; sm

dm
dt
¼ �½m�m0ðVÞ�;

sh
dh
dt
¼ �½h� h0ðVÞ�

ð1Þ

Most simple continuous-time models have been produced, such as
the integrate-and-fire (IF) model (Stein, 1965) and its variants: Lea-
ky integrate-and-fire (LIF), quadratic integrate-and-fire (QIF), expo-
nential integrate-and-fire (EIF) and generalized integrate-and-fire
(gIF) that will be discussed further in the section.

V being the membrane potential;

C
dV
dt
¼ �1

R
ðVðtÞ � VrestÞ þ IðtÞ ð2Þ

where spike firing time t(f) is defined by V(t(f)) = # with1 V0(t(f)) > 0.
More recently, Izhikevich (2003) has defined a neuron model

able to reproduce many realistic neural responses, like the Hodg-
kin–Huxley model, but with more simple equations:

dV
dt
¼ 0:04VðtÞ2 þ 5VðtÞ þ 140�wðtÞ þ IðtÞ

dw
dt
¼ aðbVðtÞ �wðtÞÞ ð3Þ

with after-spike resetting: if V P # then V  c and w  wþ d.
In a different way, the Spike Response Model (SRM), as defined

by Gerstner and Kistler (2002a), expresses the membrane potential
Vi of neuron Ni as a time integral over the past, including a model
of refractoriness. The SRM is a phenomenological model of
neuron, based on the occurrence of spike firings. Let
Ti ¼ tðf Þi ; 1 6

n
f 6 ng ¼ ftjuiðtÞ ¼ # ^ u0iðtÞ > 0g denote the set of

all firing times of neuron Ni , and Ci ¼ fjjNj is presynaptic to Nig
define its set of presynaptic neurons. The state ViðtÞ of neuron Ni

at time t is given by

ViðtÞ ¼
X

tðf Þ
i
2Ti

gi t � tðf Þi

� �
þ
X
j2Cj

X
tðf Þ

j
2Tj

wij�ij t � tðf Þj

� �

þ
Z 1

0
jiðrÞIðt � rÞdr|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

if external input current

ð4Þ

where the kernel functions gi; �ij and ji respectively describe the
potential reset, the response to a presynaptic spike and the re-
sponse to an external current.

There exist many models of networks where the spiking nature
of neurons activity is made explicit (see Koch and Segev (1998)
and Dayan and Abbott (2001) for reviews), either from a biological
point of view or for computer simulation, such as, for instance, bio-
logical models of cortical maps. For computational purpose, spik-
ing neuron networks have been introduced more recently, firstly
by simulating traditional neural networks (multi-layer percep-
trons, Hopfield’s or RBF networks) at the end of the 90’s (Maass,
1997a; Maass and Natschläger, 1997), and then by defining specific
models, such as reservoir computing (see Section 1).

Finally, let us define a spike train as the output of a spiking neu-
ron network, i.e. a set of events defined by their occurrence times,
up to some precision:

F ¼ f� � � tn
i � � �g with t1

i < t2
i < � � � < tn

i < � � � ; 8i; 8n ð5Þ

where tn
i is the nth spike time of the neuron Ni, with related inter-

spike intervals dn
i ¼ tn

i � tn�1
i .
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For more detailed introductions to models of spiking neurons
and networks (see e.g. Maass and Bishop, 2003; Gerstner and Kis-
tler, 2002a; Schrauwen, 2007; Paugam-Moisy and Bohte, 2010). By
way of comparison, both neuron and network models may be eval-
uated with respect to (i) their biological plausibility and (ii) their
efficiency for computer simulation.
2.2. Biological plausibility of neuron and network models

Biological plausibility at the neuron level is understood as the
ability to reproduce what is observed at the cell level, often consid-
ering invitro experiments (Koch and Segev, 1998). The point of
view is questionable as shown in recent experiments in V1 (Fré-
gnac, 2003; Frégnac, 2004) where it appears that a single-cell
observation highly differs between invitro and invivo conditions.

Biological plausibility at the network level is understood as the
ability to reproduce what is observed regarding, e.g. the cortical
map activity (Carandini et al., 2005). This includes predicting the
response to specific stimuli, not only artificial ones, but also natu-
ral ones: this means, for V1, taking into account natural image se-
quences as inputs shifted by eye movements (Baudot, 2007), after
the retinal and LGN processing (see e.g. Simoncelli and Olshausen
(2001) for a discussion about information processing in these
structures).

As far as this contribution is concerned, we consider a weaker
notion of biological plausibility: A simulation is biologically plausi-
ble if it verifies an explicit set of constraints observed in biology (as
pointed by Frégnac (2003)). More precisely, we are going to review
and discuss a few time constraints, shared by all the neural dynam-
ics, further called ‘‘general time constraints”. We develop their
consequences at the simulation level. The time constraints are
based on biological temporal limits and appear to be very precious
quantitative elements, both for estimating the coding capacity of a
system and for improving simulations.
2 Shannon’s theorem, stating that the sampling period must be less than half the
period corresponding to the highest signal frequency.
2.3. Simulation efficiency of neuron and network models

The neuron model proposed by Hodgkin and Huxley (1952) is
still considered as the reference for biological plausibility, but is
unfortunately intractable when simulating large-scale neural net-
works. Compared to the neuron models governed by coupled dif-
ferential equations, the SRM neuron is more intuitive to
understand and more straightforward to implement.

Among the spiking neuron models, the punctual conductance-
based generalized integrate-and-fire (gIF) is an adaptive, bi-dimen-
sional, non-linear, integrate-and-fire model with conductance-
based synaptic interactions (as e.g. in Destexhe (1997), Brette
and Gerstner (2005), Rudolph and Destexhe (2007)). At the present
state of the art, considering the gIF as a neuron model presents sev-
eral advantages:

– It gives an effective description of the neuronal activity, with
the ability to reproduce several important neuronal regimes
(Izhikevich, 2004), well matching to biological data, espe-
cially in high-conductance states, typical of cortical invivo
activity (Destexhe et al., 2003).

– Nevertheless, it consists of a simplification of Hodgkin–Hux-
ley models, which is useful both for mathematical analysis
and numerical simulations (Gerstner and Kistler, 2002a;
Izhikevich, 2003).

Moreover, though these models have mainly been considered
for studying the dynamics of a single neuron, they are easy to inte-
grate into a network structure, including synaptic plasticity model-
ing (Markram et al., 1997; Pfister and Gerstner, 2006). See, e.g.
Rauch et al. (2003) for further elements in the context of experi-
mental frameworks and Camera et al. (2008a,b) for a review.

However, in all the variants of integrate-and-fire models, it is
assumed that an instantaneous reset of the membrane potential oc-
curs after each spike firing, except for the Spike Response Model.
The reset is a formal simplification and has a spurious effect: Infor-
mation theory2 is not applicable to unbounded frequencies. From
the information theory point of view, it is a temptation to relate
this spurious property to the erroneous fact that the neural network
information is not bounded. In the biological reality, time synchro-
nization is indeed not instantaneous, due to action potential time-
course, synaptic delays, refractoriness, and so on. . .

Theoretically, networks of spiking neurons can perform very
powerful computations with precise spike-timings. Spiking neu-
rons are at least as computationally powerful as the sigmoid neu-
rons traditionally used in artificial neuron networks (Maass,
1997b). This result has been shown using a SRM neuron and con-
sidering piece-wise linear approximations of the membrane poten-
tial profiles. In this context, analog inputs and outputs are encoded
by temporal latencies of spike firings. It has been shown that any
finite piece of orbit issued from a feed-forward or recurrent net-
work of analog neurons can be simulated arbitrarily closely by a
larger network of spiking neurons, the number of neurons depend-
ing on the length of this piece of orbit and on the required preci-
sion. The assertion holds even in the presence of noise. Such
theoretical results highly motivate the use of spiking neuron net-
works for modeling and simulation purpose.

3. General time constraints in spike trains

Let us now consider spike trains, as defined by sequences of
events in Section 2. In computational or biological contexts, not
all sequences F correspond to realistic spike trains since they
are constrained by the neural dynamics. Furthermore, in computa-
tional or biological contexts, the following time constraints must
be taken into account:

[C1] Inter-spike intervals dn
i are bounded by a refractory period ri

which implies dn
i > ri.

[C2] Spike times are defined up to some absolute precision dt.
[C3] There is always a minimal delay dt for a presynaptic spike to

influence a post-synaptic neuron, thus having a causal effect
on another spike.

[C4] Considering a neuron i, without input (see below), there is a
maximal, finite, inter-spike interval D such that 8n either
dn

i < D or tn
i ¼ þ1 (i.e. either a neuron fires within a time

delay <D or it remains quiescent forever).

[C1–3] are always verified. Mathematically, [C4] is only violated
if D is infinite, which never occurs in real neurons, and can occur in
non generic situations for gIF models (see below). The main con-
tent of this constraint is to avoid that there is a time horizon, which
can be very long, after which, a silent neuron suddenly fires, with
important consequences on dynamics.

For biological neurons, orders of magnitude are typically, in
milliseconds:
r
 dt
 dt
 D

1
 0.1
 10�½1;2�
 10½3;4�
where, for C4, we assume that the neuron receives no external cur-
rent. In the rest of the section, the ‘‘general time constraints” [C1–4]
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Fig. 2. Evaluating the information in a set of spike times (see text for details).

Fig. 1. Two examples of biological data: Spike profiles in the cat primary visual
cortex. The peak curvature order of magnitude is between 30 and 100 mV=ms2.

3 If a neuron instantaneously fires after receiving a spike, this can generate
avalanche effects (another neuron instantaneously fires and so on) or even temporal
paradoxes (another inhibitory neuron instantaneously fires inhibiting this one, thus
not supposed to fire any more).
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are analyzed and discussed, and the evaluations of numerical values
for the temporal variables dt; dt and D are proposed.

The [C1] constraint is well-known as a straightforward limit for
the maximal firing rate. See e.g. Koch (1999) for an extended dis-
cussion on absolute/relative refractory periods.

3.1. Spike time precision

The [C2] constraint might correspond to more than one defini-
tion. For instance, probabilistic interpretations often consider an
additive perturbation in the dynamic evolution, to encounter for
the fact that spike times are not precisely defined. On the other
hand, deterministic interpretations may consider precision inter-
vals. Here, we propose a simple deterministic specification:

Two spike times are different, e.g., not synchronized, if separated by
more than dt.

Two spike times are non distinguishable if they are separated by
less than dt.

‘‘Non distinguishable” does not mean ‘‘equal”, but this means
we can not state if equal or different. The [C2] constraint is some-
times forgotten in models. In rank coding schemes for instance
(Gautrais and Thorpe, 1998) it is claimed that all spike-time per-
mutations are significant. It is not realistic since many of these per-
mutations are non distinguishable, because of the bounded
precision, as discussed in Viéville and Crahay (2004). Similarly,
network models related to reservoir computing (see Section 1)
do not address this issue, although simulations indeed have to take
it into account. As a consequence, an unrealistic unbounded time
precision is implicitly assumed.

3.1.1. Spike time precision evaluation
Let us see how to estimate dt by means of a simple approxima-

tion method. Here, the spike time precision is evaluated, on the ba-
sis of the time at which the membrane potential reaches a
maximum. The time at which the membrane potential crosses a gi-
ven threshold during the rising phase could lead to a different eval-
uation. However, such ‘‘spiking threshold” is definitely an arbitrary
concept, when considering the literature. Note that in Hodgkin–
Huxley models the threshold is not sharply defined (Cronin,
1987); mathematically the ‘‘threshold” is defined by a manifold
in the phase space, called the ‘‘separatrix”, depending on the activ-
ity variables. Up to our best knowledge, we do not see how to eval-
uate the spike time precision following this track, whereas the
action potential maximum is a well defined cue. Since we are look-
ing for a lower-bound, we simply make the reasonable assumption
that spike time precision is not higher than the action potential
maximum precision. Furthermore, since action potential shapes
are rather stable, both measures should be strongly related.

Assuming that the spike time of a real neuron is defined by the
time ti when the membrane potential VðtiÞ reaches a maximum,
we obtain around ti, assuming differentiability of V:

VðtÞ ¼ VðtiÞ þ jðt � tiÞ2 þ o jt � tij2
� �

writing j ¼ d2V=dt2ðtiÞ the related curvature. As a rule of thumb for
the spike-time precision dt, we thus obtain:

dt ’

ffiffiffiffiffiffiffiffiffiffi
hdVi
hji

s
the averages hi are to be taken over a set of measurements. Here dV
is the voltage precision and j can be measured on the action poten-
tial, around the maximum.

In order to roughly estimate spike time precision, we have con-
sidered electro-physiological data from a few dozen of spike pro-
files in several spike trains (Carandini and Ferster, 2000; Koch,
1999), we have graphically estimated the values in a zoom of the
figures provided in articles. We have obtained dt ’ 0:1 ms, with a
peak curvature order of magnitude hji ¼ 100 mV=ms2, as illus-
trated in Fig. 1, by considering a voltage precision of average
hdVi ¼ 10 lV, i.e. at the order of magnitude of the membrane po-
tential noise Koch (1999).

Furthermore, a similar order of magnitude is obtained in litera-
ture: The numerical precision in inter-neuron synchronization is
estimated at about 1 ms (Crook et al., 1998), while Mainen and Sej-
nowski (1995) (e.g. in Fig. 2B) report sub-millisecond accuracy
in vitro, but not exceeding 0:1 ms.
3.2. Spike time propagation

The [C3] constraint expresses the need for a delay of spike trans-
mission. Such a constraint is obvious and has for consequence to
avoid spurious effects3 in neural dynamics, and to induce simplifi-
cations both at the modeling and simulation levels (Morrison et al.,
2005).
3.2.1. Spike time propagation evaluation
Synaptic delays. Delays from one spike to another involve the

presynaptic axonal delay, the synaptic delay and the post-synaptic
dendritic delay. Numerically, the values of delays observed in
experiments (Koch, 1999; Burnod, 1993) are at least 0:5 ms, up
to 40—50 ms for inter cortical maps transmissions. In Swadlow
(1985, 1992) coherent values of 0:1—44 ms are reported. Then a



5 Regarding precision, event-based simulations, in which firing times are not
regularly discretized but calculated event by event at the machine precision level,
provide (in principle) an unbiased solution. On the reverse, it has been shown that a
regular clock-based discretisation of continuous neural systems may introduce
systematic errors, with drastic consequences at the numerical level, even when
considering very short sampling times. Furthermore, the computational cost is an
order of magnitude better using event-based sampling methods, in theory, although
this may be not always verified in practice. State-of-the-art simulators are essentially
clock-based, while some of them integrate event-based as a marginal tool or in
mixtures with clock-based methods.
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reasonable assumption is to consider that synaptic connections are
delayed by dt >’ 0:1 ms.

In this simple discussion, we are looking for a lower-bound.
Hence, we do not consider the axonal arborization nor the presyn-
aptic processing which generate a variety of altered and/or delayed
sets of events, at least in biological systems. In such cases, larger
delays can occur.

Gap-junction delays. A step further, many local inter-neuronal
connections in the cortex are realized through electrical gap junc-
tions (Galarreta and Hestrin, 2001), which is even predominant be-
tween cells of a same sub-population (Amitai et al., 2002). In such a
case the transmission is mainly due to the spike potential raise,
with a time constant of about 0:1—0:2 ms (see Lewis and Rinzel
(2003) for a discussion about the electrical transmission). The de-
lays of gap-junctions are much smaller ðdt >’ 10 lsÞ but still mea-
surable (Lewis and Rinzel, 2003; Koch, 1999). Then a reasonable
assumption is to consider that electrical connections are delayed
by dt >’ 0:01 ms.

3.3. Spike time upper-bound

The [C4] constraint, that states the existence of a time upper-
bound for spike firing, is less obvious. The idea is that, as far as
there is no input (i.e., the neuron is isolated from the network be-
tween two input spikes), the potential decreases towards a resting
potential and the neuron cannot fire anymore.

As discussed in details in Cessac et al. (2008), the fact whether
the constraint [C4] is verified or not completely changes the nature
of the dynamics. This issue will be extensively reviewed in next
section. Roughly speaking, if [C4] is violated, a neuron might re-
main silent a very long range of time, and then suddenly fire,
inducing a drastic change in the further state of the system.

3.3.1. Spike time upper-bound evaluation
At the simulation level, [C4] is violated for deterministic neural

models with constant internal current, that are able to integrate
during an unbounded period of time, or to sustain sub-threshold
oscillations.

This phenomenon is easy to illustrate by considering a LIF mod-
el, where g and i are constant:

C dV
dt þ gV ¼ i;

Vðt0Þ ¼ V0;Vðt1Þ ¼ h

(
) t1 ¼ t0 þ

C
g

log
i� gV0

i� gh

� �
with i > gh > gV0:

If the internal current verifies: i > gðh� V0e�Dg=CÞ=ð1� e�Dg=CÞ,
then [C4] is verified. Since C=g ’ 1 � � �10 ms, thus e�Dg=C � 104,
and it is sufficient to get i > ð1þ 10�4Þgh, i.e. a very small amount
above gh. However, if i ! gh, then the firing period becomes un-
bounded, yielding a spurious event (which can affect the whole dy-
namic) at an unbounded time. At the level of networks it can be
shown that this case is non generic for gIF models (it holds for a
negligible set of synaptic weights and constant current values, Ces-
sac, 2008; Cessac et al., 2008).

Thus, this case is easy to check and to avoid, and a maximal
spontaneous firing period can be derived. Synaptic conductance
based models (gIF – Destexhe, 1997) and spike response models
(SRM – Gerstner and Kistler, 2002a) usually omit this constant cur-
rent and their intrinsic ‘‘leak” guaranties that [C4] is not violated.
On the contrary, with stochastic models, [C4] might be reconsid-
ered, since there is always a ‘‘chance” to fire a spike, with a
decreasing probability as time increases.

At the biological level,4 in vitro, a cortical pyramidal neuron
that spikes regularly, without synaptic input, remains silent since
4 We are especially thankful to Dr. Thierry Bal, for a scientific discussion on this
subject.
its membrane potential is close to the resting potential
(Koch, 1999). In vivo, in the cortex, current observations
(Dayan and Abbott, 2001) show that a neuron is always firing
(unless it is dead). This is due to the large amount of neuromod-
ulators, inducing depolarization on the one hand, and on the other
hand a membrane potential getting close to the firing threshold.
This behavior is thus realistic for cortical pyramidal neurons, but
likely not for all neurons in the brain (Par et al., 1990; McCormick
and Bal, 1997). However, the constraint [C4], for which
isolated neurons are under consideration, does not apply in this
situation. On the contrary, thalamic neurons can fire spontane-
ously after a long resting period (Par et al., 1990). Even in vitro,
their internal currents such as IT (low threshold transient Ca2+

current) or IH (hyper-polarization-activated cation current) can in-
duce spikes (due to oscillatory behaviors) (McCormick and Bal,
1997).

Under the assumptions C[1–3], and optionally [C4], let us now
review the related consequences regarding modeling and
simulation.
3.4. Time-constrained networks for improving simulation

Simulation efficiency is a twofold issue of precision and perfor-
mance. See Brette et al. (2007) for a review on both event-based
and clock-based simulation methods.5

Event-based simulation methods are technically restrictive:
Models can be simulated if and only if the next spike-time can
be explicitly computed in reasonable time. Therefore, not all neu-
ron models can be a priori implemented on event-based simula-
tors. An event-based simulation kernel is less easy to use than a
clock-based one. In other words, event-based simulation methods
may save precision and computation time, but not the labor time of
the scientist.

From now on, taking into account our previous discussion,
the event-based simulation of spiking neuron networks would
be strongly simplified. Thanks to [C3], spike firing cannot gener-
ate causal paradoxes: Since there exists a minimal delay, it is not
possible that an event instantaneously causes another event
which is itself the first event cause, whereas this phenomenon
could occur without [C3]. Thanks to [C3] again, parallel
implementations of event-based simulation are possible (see
e.g. Mouraud et al., 2006) since, in a time window shorter than
dt we have the guaranty that events do not influence each others
and thus can be processed in parallel. Thanks to [C2] and [C4],
spike times and precisions are bounded, allowing us to use
efficient ‘‘histogram based” methods,6 with a small Oð1Þ complex-
ity. This implies that clock-based mechanisms may be easily
added to event-based ones, since the kernel overhead for
managing irregular events (and not only a regular clock) be-
comes negligible. See Cessac et al. (2009a) for an in-depth
discussion.
6 See for instance http://enas.gforge.inria.fr. In this implementation, the simulation
core is a simple (about 10 Kb C++ source code) mechanism, using a OðD=dt þ NÞ buffer
size and about Oð1þ CÞ ’ 10—50 operations/spike (>106 spike/s on a laptop), for a
size N network with C connections in average.

http://enas.gforge.inria.fr


8 Considering a basic leaky integrate-and-fire neuron network the result is true
except for a negligible set of parameters. Considering an integrate-and-fire neuron
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3.5. Studying spiking neuron networks as discrete time systems

Taking [C1–3] into account is a mean to ‘‘discretize” the spike
train sequences and give us a way to study spiking neuron net-
works as discrete time systems. The consequences of this point
of view are developed in the next two sections.

4. The maximal amount of information

Under the assumptions [C1–2], in a given network of N spiking
neurons observed during a finite period ½0; T�, the number of possi-
ble spikes is obviously limited by the refractory period r. Further-
more, the information contained in all spike times is strictly
bounded, since two spike occurrences in a dt window are not dis-
tinguishable, and dt < r numerically.

The following rough upper-bound for the amount of information
can be stated:

N
T
r

log2
T
dt

� �
bits during T seconds

Taking into account the biological values, a straightforward numer-
ical derivation leads to about 10 Kbit=s=neuron.

4.1. Information upper-bound evaluation

Let us consider a given neuron (the index number is omitted)
and its first spike time t1. This time is going to be used as a refer-
ence. The next spike of the neuron, (i) either occurs no later than
t1 þ dt thus at a time not distinguishable from t1 by an observer,
(ii) or occurs at least dt later. In order to be meaningful, spikes must
thus occur in distinct temporal boxes of width dt, the precise loca-
tion of the box being fixed by the first time of occurrence, as sche-
matized in Fig. 2. Since, numerically, there is a refractory period
r > dt, the second and next spikes will never be mixed with their
predecessors but are going to be subject to the same limitation.

Once a spike time has been set to ti, the next spike time tiþ1

must belong to the interval ½ti; T�. As a consequence, no more than
one spike every r milliseconds can be introduced in a temporal his-
togram of dt box width, as illustrated in Fig. 2. In a ½0; T� time range,
there are T=dt choices for the first neuron spike, less than T=dt � 1
for the second neuron choice, etc. This means that for the T=r max-
imal number of spikes, they are less than ðT=dtÞT=r choices.

Assuming, as a maximal case, that each spiking pattern is inde-
pendent, we obtain7 the proposed bound of O T

r log2
T
dt

� 	� 	
.

Note that we may simply consider that a spike train generated
by a single neuron reduces to a sequence of T=r binary values: 0 if
no spike occurs, 1 if one spike occurs in each temporal bin. Then
the amount of information per neuron in the period ½0; T� is
bounded by T=r. This point of view corresponds to neglecting the
information brought by neuron relative spike times within the
network.

4.2. Discussion

Note that the upper-bound we have derived is rough and does
not take into account the constraints imposed by the dynamics
at the network level. These constraints further reduce the available
information. Actually, the dynamics of a given network does con-
straint very much the plausible spike trains, and the related infor-
mation may be lower, or even strongly lower, than this bound.

In the particular case of fast-brain mechanisms, where only ‘‘the
first spikes matter” (Thorpe and Fabre-Thorpe, 2001), this amount
7 We are especially thankful to one reviewer of this paper, for enlightening remarks
brought on this point.
of information is not related to the permutations between neuron
spikes, i.e. of order oðlogðN!ÞÞ ¼ N logðNÞ but simply proportional to
N, in coherence to what is found in Viéville and Crahay (2004).

The latter bound is coherent with several results presented in
Rieke et al. (1996) where the authors consider firing rates and
use entropy as information measure. For instance, as observed in
their study, by considering a timing precision of 1 ms, the authors
obtain an information rate bounded around 1 bits=s for a neural
receptor. This number has an order of magnitude coherent with
our bound, although the network dynamics itself introduces more
specific constraints. These constraints should yield an information
rate lower than predicted by the previous bound. The reason of this
discrepancy is that the dynamics looks like rich enough to main-
tain a high information rate.

This information bound is not bad, but good news. Since differ-
ent information are necessarily represented by distinguishable
spiking patterns, this result means that there is a well-defined
margin between two different representations of information.
The notion of neural coding with large margins is discussed in Vié-
ville and Crahay (2004), and may explain the surprisingly impres-
sive performance of fast brain categorization. This corresponds to
introducing an incompressible margin, which guaranties a robust
coding.
5. Dynamics of time-constrained networks

A step further, we have mentioned that taking [C1–3] into ac-
count is a mean to ‘‘discretize” the spike train sequences. The sam-
pling period has to be taken smaller than r; dt and dt: Smaller than
r in order to have either 1 or 0 spike during a sampling period;
Smaller than dt in order that the sampling does not impair the
spike-time precision; smaller than dt since, in a discrete time sys-
tem, the information if propagated from one sampling period to
another through recurrence relations.

A raster is formally defined as follows: To each neuron of index i,
a binary variable xiðkÞ 2 f0;1g is associated such that the neuron
fires during the kth sampling period if and only if xiðkÞ ¼ 1 and
is silent otherwise.
5.1. Theoretical results

In models such as (i) basic leaky integrate-and-fire (LIF) or inte-
grate and fire neuron models with conductance synapses and (ii)
constant external current (gIF), a full characterization of the net-
work dynamics can be derived from such a discretization. Here,
we consider models with constant parameters (weights, delays,
etc.). In the present section, we state the results that have been
proved in Cessac (2008) and Cessac et al. (2008) for both cases
(LIF and gIF) and we summarize their meaning and significance.

� [Fact 1] The raster is generically8 asymptotically periodic, but,
depending on parameters such as constant external current or
synaptic weights, periods can be larger than any accessible com-
putational time.

� [Fact 2] There is a one-to-one correspondence between orbits9

and raster (i.e. a raster provides a symbolic coding for the net-
work dynamics).
model with conductance synapses the result is true unless the trajectory accumulates
on the threshold from below.

9 Here we consider orbits, i.e. infinite trajectories, thus consider this deterministic
system, with constant input, in its asymptotic stage.
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The first fact expresses that (stable) periodic orbits constitute
somehow the ‘‘skeleton” (omega-limit set) of gIF-models dynam-
ics. Especially the probability of spike blocs, containing informa-
tion or neural code, can be computed from this periodic orbits
skeleton. When the parameters vary, the orbits change accordingly
but are still periodic (with possibly very large periods).

The second fact means that, in the LIF and gIF cases, the raster is
a ‘‘symbolic coding” in the sense that no information is lost by con-
sidering the spike times instead of the membrane potential
variations.

Both facts are good bases for deeply understanding the network
dynamics: Fig. 3 sketches out some aspects, showing the global
behavior of the system and illustrating that attractors are generi-
cally stable period orbits. More precisely, the dynamics is piece-
wise continuous, i.e. continuous except when a spike is fired. The
network dynamics is locally contracting, this being due to the term
of leak in the neuron dynamics (see Cessac (2008) and Cessac et al.
(2008) for details). Furthermore, after each neuron has fired once the
dynamics is no longer dependent on the initial conditions. Neverthe-
less, when the membrane potential is close to the threshold, a
small perturbation may induce drastic changes in the dynamics,
while it is otherwise damped. This behavior corresponds to a no-
tion of ‘‘edge of chaos” which is precisely defined within this
framework (Cessac, 2008; Cessac et al., 2008). However, this defi-
nition differs from the usual notion of chaos in differentiable sys-
tems (the terminology ‘‘stable chaos” has been proposed by Politi
and Torcini (2009)).
10 Considering a classification where firing rates take continuous values, this class
has uncountably many elements.
5.2. Discussion

Time is discretized, but without any constraint about the ‘‘sam-
pling period”. The two previous results hold at any finite precision.
However, we wonder the extent to which the period of the periodic
orbits does not depend on the sampling period, provided the sam-
pling period is small enough. More generally, periodic orbits
dependence with respect to the sampling period is still an open
issue.

In order to understand the Fact 1, it might be important to dis-
cuss how ‘‘obvious” it is. Time is discretized. If the membrane po-
tential would have been discretized also, the question would have
been reduced to studying a finite state system. In the latter case,
only fixed points and periodic orbits could occur and the result
would have been obvious. As a consequence, the Fact 1 reads: Even
if the neuron state is described by continuous values, orbits are still
generically periodic.

In a conductance based model, with the additional constraint
that conductances depend on previous spikes within a finite hori-
zon, it appears that the Fact 1 still holds, although this is even intu-
itively less obvious than the LIF case (Cessac et al., 2008).

To which extent such a ‘‘canonical situation” is still true for
more complex models is an open question. We can easily conjec-
ture that the Fact 1 is a model limitation for all integrate-and-fire
models, providing they are defined with an instantaneous reset to
a constant value. The question is still open for Spike Response
Models.

The Fact 2 can be explained as follows: Changing the initial va-
lue of the membrane potential, one may expect some variability in
the dynamics. But due to the reset, close-by distinct trajectories
can be collapsed onto a same trajectory, after finite time. As a re-
sult, the membrane potential evolution only depends on the previ-
ous spike times, instead of the previous membrane potential values
(Cessac, 2008).

Since periods exhibited by integrate-and-fire models can be
arbitrary large, depending on parameters such as synaptic weights,
it is likely that raster produced by these models can approach ras-
ter produced by more realistic models such as Hodgkin–Huxley
neurons, for a finite horizon. However, this suggestion is a conjec-
ture only. See, e.g. Fitzgibbon et al. (1996) for a discussion about
the link between the standard Hodgkin–Huxley system and its
hyperbolic approximation. This property is reminiscent of the
shadowing lemma of dynamical systems theory (Katok and Has-
selblatt, 1998), stating that chaotic orbits produced by a uniformly
hyperbolic system can be approached arbitrary close by periodic
orbits.
6. Neural coding and spike train metrics

In a biological as well as a computational context, the analysis
of experimental data or simulation data often requires a compari-
son between two or several spike trains. Either the spike trains
concern a given neuron and result from several repetitions of a
same experiment, or the spike trains have been generated by dif-
ferent neurons during a given time range, in a unique experiment.
In both cases, the idea is to look for invariants, or differences, in the
underlying neural code. In the present section and the next two, we
study the relation between neural coding and different spike train
metrics.

As an illustrative example, let us consider the temporal order
coding scheme (Gautrais and Thorpe, 1998; Thorpe and Fabre-
Thorpe, 2001) (i.e. rank coding): Only the order of the events mat-
ters, not their specific time values. Two spike trains F1 and F2

with the same event ordering correspond to the same code. This
assertion defines an equivalence relation which structures the set
of all the spike trains into a partition: Every spike trains in a same
equivalence class correspond to the same ‘‘code”. Other coding
methods lead to similar definitions of metrics. For instance, rate
coding means that all spike trains with the same frequency are
in the same equivalence class,10 irrespective of their phase.

However, when we reconsider the question of neural coding un-
der the light of the time constraints discussed in previous sections,
the fact that spike time precision is not unbounded leads to many



Fig. 4. An example of minimal alignment from the upper to the lower spike train.
Successive operations are, from top to bottom: an insertion, a rightward shift, a
leftward shift and a deletion.
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non-separable (i.e. non distinguishable) orderings. This fact has no
consequences on the rank coding concept, while the partition is
now coarser: Trains with two spikes occurring at non distinguish-
able times are in the same equivalence class.

Let us now introduce the notion of spike train metric. The basic
idea consists in defining a distance dð�Þ, such that dðF1;F2Þ ¼ 0 if
F1 and F2 correspond to the same code, and dðF1;F2Þ ¼ 1
otherwise.

A step further, how can we capture the fact that, e.g. for rank
coding, two spike times with a difference ‘‘about” dt are ‘‘almost”
indistinguishable? The natural idea is to use a ‘‘quantitative” dis-
tance instead of a discrete distance (i.e. with binary 0/1 values):
Two spike trains correspond to the same neural code exactly if
the distance is zero, otherwise the distance increases with the dif-
ference between the trains.

This is the idea we wanted to highlight here. This proposal is not
a mathematical ‘‘axiomatic”, but a simple modeling choice. The
principle is far for being new, but rather surprisingly it has not
been made explicit at this level of simplicity. In order to see the
interest of the idea, let us briefly review the main classes of spike
train metrics.

As reviewed in details in Schrauwen (2007) and Victor (2005),
spike trains metrics can be categorized in three classes:

0 – ‘‘Bin” metrics, based on grouping spikes into bins (e.g. rate
coding metrics): Not discussed.

I – Convolution metrics, including the raster-plot metric: Dis-
cussed in Section 7.

II – Spike time metrics, such as alignment distances (Victor and
Purpura, 1996): Discussed now.
6.1. The original alignment metric

The first family of metrics we want to review is defined on spike
times themselves (Victor and Purpura, 1996; Victor, 2005).

The distance between two finite spike trains F;F0 is defined in
terms of the minimum cost of transforming one spike train into an-
other. Two kinds of operations are defined:

� spike insertion or spike deletion, the cost of each operation
being set to 1,

� spike shift, the cost to shift from tn
i 2F to t0mi 2F0 being set to

jtn
i � t0mi j=s for a time-constant s.

For small s, the distance approaches the number of non-coinci-
dent spikes, since instead of shifting spikes it is cheaper to insert/
delete non-coincident spikes, the distance being always bounded
by the number of spikes in both trains.

For high s, the distance basically equals the difference in spike
number (rate distance), while for two spike trains with the same
number of spikes.

Here, two spike times are comparable if they occur within an
interval of 2s, otherwise they had better to be deleted/inserted.

Although computing such a distance seems subject to a combi-
natorial complexity, it appears that quadratic algorithms are avail-
able (i.e. with a complexity equal to the product of the numbers of
spikes). This is due to the fact that, as illustrated in Fig. 4, in a min-
imal path, each spike can be either deleted or shifted once to coin-
cide with a spike in the other spike train. Also, a spike can be
inserted only at a time that matches the occurrence of a spike in
the other spike train. Thus, the minimal distance can be calculated
iteratively by considering the distance dn;n0 ðF;F0Þ between a spike
train composed of the first n spikes of F and the first n0 spikes of F0.

When considering spike trains with more than one unit, an ap-
proach consists to sum the distances for each alignment unit-to-
unit. Another point of view is to consider that a spike can ‘‘jump”,
with some cost, from one unit in F to another unit in F0. The re-
lated algorithmic complexity is no more quadratic but to the power
of the number of units (Aronov, 2003).

This family of metrics include alignments not only on spike
times, but also on inter-spike intervals, or metrics which are sensi-
tive to patterns of spikes, etc. Such metrics have been fruitfully ap-
plied to a variety of neural systems, in order to characterize
neuronal variability and coding (Victor, 2005). For instance, in a
set of neurons, that act as coincidence detectors, with integration
time (or temporal resolution) s, spike trains will have similar
post-synaptic effects if they are similar w.r.t. this metric.

6.2. Generalization of the alignment metric

Here, let us remark that the previous metric can be generalized
as follows:

– [causality] At a given time, the cost of the alignment of previous
spikes decreases with the obsolescence of the spike, say, with an
exponential profile parametrized by a time-constant s0. When
s0 ! 1, the original alignment metric is retrieved.

– [non-linearity] The cost of a shift is not necessarily a linear func-

tion of
tn
i
�t0n

ij j
s , as in the original metric, but any suitable non-lin-

ear function /
tn
i
�t0n

ij j
s

� �
.

For instance, we may choose a small quadratic profile when
lower that the time precision (accounting for additive noise, but
implementing the fact that spike time differences are negligible),
and then, a linear profile.

This leads to an iterative definition of the previous distance dn;n0 ,
now generalized, and defined as follows: On one hand, dn;0 ¼ n and
d0;n0 ¼ n0 (due to the fact that the distance between any spike train
and the empty spike train corresponds to the cost of deleting all
spikes). On the other hand, by induction, we can write, generalizing
the standard alignment metric (the two 1st lines corresponding to
spike insertion, and the 3rd line including a spike shift, as detailed
in Aronov (2003)):

dn;n0 ¼min

e�
tn
i
�tn�1

i
s0 dn�1;n0 þ 1;

e�
t0n
i
�t0n�1

i
s0 dn;n0�1 þ 1;

e�
max tn

i
;t0n

ið Þ�minðtn�1
i

;t0n�1
i

Þ

s0 dn�1;n0�1 þ /
tn

i
�t0n

ij j
s

� �

0BBBBBB@

1CCCCCCA;

with, e.g., /ðdÞ ¼minðd; ðds=dtÞ2Þ, again implementable in quadratic
time. It corresponds to the original alignment metric if and only if
/ðÞ is the identity function and s0 ¼ þ1, still calculable with a qua-
dratic complexity.

This modified version of the metric illustrates how this class of
distances not only ‘‘statically” represents the underlying neural
code as a metric, but also is relevant in temporal paradigms. This
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Fig. 5. A few examples of spike train convolution: (A) The spike train itself. (B) A
causal local frequency measure estimation (writing v the indicatrix function). (C) A
non-causal spike density, uniformly equal to 1 in burst mode. (D) A normalized
causal exponential profile, parameterized by a decay time s. Evoked post-synaptic
potential profiles are nothing but such causal convolution (using e.g. double-
exponential kernels to capture the synaptic time-constant – weak delay – and
potential decay). Similarly, spike trains representations using Fourier or Wavelet
Transforms are intrinsically related to such convolutions.
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property results from having integrated the previously discussed
‘‘general time constraints” in the formalism.

6.3. Limitations of alignment metric and polychronization

A spiking neuron network can polychronize, i.e., exhibit repro-
ducible time-locked but not synchronous firing patterns within
1 ms precision. Polychronization could be viewed as a generaliza-
tion of the notions of synchronization and synfire chains. Due to
the interplay between the delays and a form of synaptic plasticity
(implementable by way of STDP), the spiking neurons spontane-
ously self-organize into groups and generate patterns of stereotyp-
ical polychronous activity.

In Izhikevich (2007), it has been shown that the number of co-
existing polychronous groups far exceeds the number of neurons in
the network, resulting in an unprecedented memory capacity of
the system. The author speculates on the significance of polychro-
ny to the theory of neuronal group selection and cognitive neural
computations.

In Paugam-Moisy et al. (2008), the network processing and the
resulting performance is explained by the concept of polychroniza-
tion. The model emphasizes that polychronization can be used as a
tool for exploiting the computational power of synaptic delays and
for monitoring the topology and activity of a spiking neuron net-
work (Martinez and Paugam-Moisy, 2008).

Taking such complex aspects of the neural code into account
cannot be performed by any available metrics. New metrics, taking
into account long term interactions, have to be developed and this
is a challenging issue.

7. Convolution metrics for linking spike trains and continuous
signals

Spike trains define ‘‘times”, not directly ‘‘values”. However,
many signals such as sensory input or motor output is intrinsically
defined by continuous quantitative values. A link between spike
trains and continuous signals is thus to be made, and ‘‘rate coding”
is almost often considered to build this link. In this section, we are
going to see that rate coding is a particular case of convolution
metrics. All convolution metrics share interesting properties, with
a good capacity to reconstruct the signal from the spikes, to decode
the spikes from the signal, to identify the kernel linking both of
them, etc. In order to be concise, we overview these links in the
form of a commented formulary.

7.1. Linear representation

A large class of metrics is defined through the choice of a con-
volution kernel Ki applied to a spike train function written
qiðtÞ ¼

P
tn
i
2Fi

dðt � tn
i Þ, where dð�Þ is the Dirac distribution. Note

that, in most case, Ki is related to a linear response of the neuron
(or synapse) to spike trains inputs, thus introducing a natural no-
tion of causality and action/reaction. This is a possible way of con-
sidering ‘‘the code”. A neuron responds in an appropriate and
adapted way to specific spike sequences.

For a given spike train Fi, the convolution equation is:

siðtÞ ¼
X

tn
i
2Fi

Ki t � tn
i

� 	
¼ Ki � qiðtÞ 2 ½0;1�;

The signal si is easily normalized between 0 (no spike) and, say, 1
(burst mode at the maximal frequency). A few examples of convo-
lution kernels are given in Fig. 5.

The distance between two spike trains is then defined by apply-
ing some Lp norm to the continuous signal s ¼ ð� � � ; si; � � �Þ, at the
network level. The ‘‘code” here corresponds to the linear represen-
tation metric: The codes are similar if the related continuous sig-
nals are similar. It allows us to link spike trains with a
continuous signal s.

The so-called ‘‘kernel methods” based on the Mercer theorem
(Schrauwen, 2007) are in direct links with the linear representation
since they are defined, as scalar products, writing:

kðF;F0Þ ¼
X

i

X
n;m

bK i tn
i � t0mi

� 	
¼
Z

t
siðtÞs0iðtÞdt;

where bK i is the corresponding Mercer’s Kernel, a symmetric func-
tion of F;F0. There is direct correspondences for usual kernels with
linear convolutions, e.g.:
Triangular
 Exponential
 Gaussian
KiðtÞ

ffiffi
k
2

q
H tð2k � tÞ
� 	� 	
ffiffiffiffiffiffi
2k
p

HðtÞe�kt

ffiffiffiffiffiffi
2kffiffiffi
p
p

q
e�2k2t2
bK iðdÞ
 max 1� k
2 jdj;0
 e�kjdj
 e�k2d2
where H is the Heaviside function. Distances based on inter-spike
intervals are also included, as developed in e.g. Kreuz et al. (2007).

Non static kernels of the form Kt
i t � tn

i

� 	
(i.e. depending on t) can

also be used (clock-dependent coding, raster, 1st spike coding,
etc.), while non-linear Volterra series are useful for representing
‘‘higher order” phenomena (see e.g. Rieke et al., 1996).

These linear representations not only provide tools to compare
different spike trains, but also help to better understanding the link
between continuous signals and spike times. For instance (Dayan
and Abbott, 2001; Maass, 1997a), writing sðtÞ ¼

P
ikisiðtÞ is a mean

to define some network readout to link spiking networks to ‘‘ana-
log” sensory-motor tasks. Let us illustrate this aspect by the follow-
ing results.
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7.2. The link with raster representation

A step further, it is easy to see that representing the spike time
by a raster, as defined previously, corresponds to a non-stationary
convolution kernel.

A given raster can be represented by a real number in [0 ,1[, the
binary representation of its decimal part being the spike train it-
self. Using this representation, a useful related metric is of the
form, for h 2�0;1½:

dhðx;x0Þ ¼ hT ; T ¼ argmaxt xt ¼ x0t;

thus capturing the fact that two rasters are equal up to a certain
rank. Such metrics can be applied to analyze the dynamics of spik-
ing neuron networks and they are typically used in the context of
symbolic coding in dynamical systems theory (Cessac, 2008; Cessac
et al., 2008).
7.3. Kernel identification

Given a causal signal �si generated by a spike train Fi at the unit
level, the problem of identifying the related kernel is formally
solved by the following paradigm:

minKi

Z
t>0
jsiðtÞ � �siðtÞj2dt �

Z
k
jKiðkÞqiðkÞ � �siðkÞj2dk;

using the Laplace transform Parseval theorem (here, k is the Laplace
domain variable and KiðkÞ; qiðkÞ are the Laplace transforms of the
corresponding function), thus:

KiðkÞ ¼ ½�siðkÞqiðkÞ
T �½qiðkÞqiðkÞ

T ��1

i.e. the spike train cross-correlation versus auto-correlation ratio.
Non-causal estimation would consider the Fourier transform in-
stead. This setting corresponds to several identification methods
(Dayan and Abbott, 2001; Schrauwen, 2007).

The paradigm has to be used, for instance, for identifying the
average synaptic response profile from the observation of the input
spike train and synaptic evoked potential output. Given the obser-
vation of a spike train function qi and the related response �si, the
related kernel may be estimated from the previous formula.
Fig. 6. A small experiment of spike deconvolution. Left: The signal is the convolution of
(20% magnitude w.r.t. to the signal) and of a spurious sinusoid which has been added
correspond to maxima of the signal because the spike responses are mixed. Right: The d
signal.
7.4. Spike deconvolution

A step further, if the convolution kernel Ki is known analytically,
it is obvious to formally write qi ¼ Li � si with Li ¼ F�1 1

F½Ki �

h i
; writing

F½� the Fourier transform e.g. for synaptic responses:

KiðtÞ ¼ e�
t
T ! ðLi � siÞðtÞ ¼

1
s

sðtÞ þ s0ðtÞ

KiðtÞ ¼
t
T

e�
t
T ! ðLi � siÞðtÞ ¼

1
s2 sðtÞ þ 2

s
s0ðtÞ þ s00ðtÞ

that is well-defined. Then the spike train can be easily recon-
structed from the continuous signal, as illustrated in Fig. 6.

The good news is that the inverse convolution filters Li are not
singular so that the deconvolution is well-defined and in explicit
form. However, this requires the use of derivative filters, known
as being sensible to noise. Unpublished numerical investigations
have shown that as soon as the error on the kernel profiles is high-
er than 10–20%, several spikes are lost in the deconvolution.

7.5. Signal reconstruction

In order to further understand the power of representation of
spike trains, Lazar (2005) has generalized the well-known Shanon’s
theorem, as follows: A frequency range ½�X;X� signal is entirely
defined by irregular sampling values sn

i at spike times tn
i

siðtÞ ¼
X

n

Kn
i ðt � tn

i Þ

with

Kn
i ðtÞ ¼ sn

i
sinðXtÞ

pt
;

provided that maxndn
i 6

p
X, where dn

i is the inter-spike interval.
This supplies an explicit signal ‘‘decoding”, since given any sig-

nal s it provides an explicit formula to represent this signal by a
convolution kernel K and a spike train.

8. Implementing spiking neuron networks

The main objective is now to capitalize on the previous state-
ments for giving tracks for explicitly programming spiking neuron
network parameters in order to obtain a given input/output rela-
tion. After a reminder on some theoretical results proving that
a spike train using an aðtÞ ¼ t=se�t=s profile, with addition of additive Gausian noise
as an outlier to the signal. Spikes are not ‘‘visible” in the sense that they do not

econvolution is shown: The outlier is amplified, but spikes clearly emerge from the
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spiking neuron networks are computationally powerful in many
ways, we discuss how, in our framework, the fact of introducing
a metric makes possible to design new effective mechanisms based
on variational methods for defining the network behavior.

8.1. Calculability of neural networks

Let us now consider the calculability of neuron network models.
It is known that recurrent neuron networks based on rate coding
are universal approximators (Schäfer and Zimmermann, 2006), as
multi-layer feed-forward networks are (Hornik et al., 1989). This
means that neuron networks are able also to simulate dynamical
systems, not only to approximate measurable functions on a com-
pact domain, as originally stated (see, e.g., Schäfer and Zimmer-
mann (2006) for a detailed introduction on these notions).
Spiking neuron networks have been proved to be also universal
approximators (Maass, 2001). See Paugam-Moisy and Bohte
(2010) for a review on calculability and learnability results for
spiking neuron networks.

8.2. Learning the parameters of a spiking neuron network

In a biological context, learning is mainly related to synaptic
plasticity (Gerstner and Kistler, 2002b; Cooper et al., 2004) and
STDP (see e.g., Toyoizumi et al. (2007) for a recent formalization),
as far as spiking neuron networks are concerned. This unsuper-
vised learning mechanism is known to reduce the variability of
neuron responses (Bohte and Mozer, 2007) and related to the max-
imization of information transmission (Toyoizumi et al., 2005) and
mutual information (Chechik, 2003). It has also other interesting
computational properties such as tuning neurons to react as soon
as possible to the earliest spikes, or segregate the network re-
sponse in two classes, depending on the input to be discriminated,
and more general structuring effect such as the emergence of an
orientation selectivity (Guyonneau et al., 2004).

In the present study, the point of view is quite different: We
consider supervised learning while, since ‘‘each spike may matter”
(Guyonneau et al., 2004; Delorme et al., 2001), we want not only to
statistically reproduce the output spike-timing pattern, but also to
reproduce events, either approximately or even exactly.

The motivation to explore this track is twofold. On the one hand
we want to better understand what can be learned at a theoretical
level by spiking neuron networks, by tuning weights and delays.
The key point is the non-learnability of spiking neurons (Maass
and Schmitt, 1999; Šíma and Sgall, 2005), since it is proved that
the problem is NP-complete, when considering the estimation of
both weights and delays. Here we show that we can ‘‘elude” this
caveat and propose an alternate efficient estimation, inspired by
biological models.

We also have to notice that the same restriction not only applies
to simulation but also, as far as this model is biologically plausible,
holds at the biological level. It is thus an issue to wonder if, in bio-
logical neuron networks, delays are really estimated during learn-
ing processes, or if a weaker form of weight adaptation, as
developed now, is considered.

On the other hand, the computational use of spiking neuron
networks in the framework of reservoir computing or beyond (Sch-
rauwen, 2007), as far as applications using such network are con-
cerned, requires efficient tuning methods not only in ‘‘average”,
but in the deterministic case.

8.3. Weight training from spike times

As a first illustration, let us review Schrauwen (2007) and con-
sider a SRM0 neuron, with a simplified equation (only the last spike
of neuron Ni, no external current):
ViðtÞ ¼ m t � tn�1
i

� 	
þ
X

jm

wij a t � tm
j

� �
for tn�1

i < t 6 tn
i ;

the spike time being defined by Vi tn
i

� 	
¼ h, where h is the spiking

threshold.
Previous metrics on spike times give us a way to optimize the

neural weights in order to tune spike times, deriving, e.g., rules
of the form:

Dwij �
X

n

tn
i � �tn

i

� 	 @Vi

@wij
tn

i

� 	
=
@Vi

@tn
i

tn
i

� 	
:

Such mechanisms of optimization are also applicable to time-
constants, delays or thresholds. Unfortunately, the method cannot
be easily used in practice, since the equation is numerically unsta-
ble (Schrauwen, 2007). However, spike train metrics leads to the
formalization of such adaptation rules, in order to ‘‘compute with
spikes”.

8.4. Weak estimation of delayed network parameters

As pointed out previously, the non-learnability of spiking neu-
rons is known (Maass and Schmitt, 1999; Šíma and Sgall, 2005),
i.e. the previous estimation is proved to be NP-complete. This
means that in order to ‘‘learn” the proper parameters we would
have to ‘‘try all possible combinations of delays”. This is intuitively
due to the fact that each delay has no ‘‘smooth” effect on the
dynamics but may change the whole dynamics in an unpredictable
way.

This is the way proposed to elude this NP-complete problem by
considering another estimation problem. Here we do not estimate
one delay (for each synapse) but consider connection weights at
several delays and then estimate a balancing of their relative con-
tribution. This means that we consider a weak delay estimation
problem.

The alternative approach is to estimate delayed weights, i.e. a
quantitative weight value Wijd at each delay d 2 f1;Dg, using e.g.
a model of the form:

Vi½k� ¼ ciV i½k� 1�ð1� Zi½k� 1�Þ þ
Xn

j¼1

XD

d¼1

WijdZj½k� d� þ Iik:

where Vi½k� stands for the ith neuron potential, at the discrete time
k; ci is a leak, Zi½k� ¼ 1 if the neuron fires, else 0 and Iik is an addi-
tional current. This form of equation is directly related to the piece
of theory reviewed in Section 5. It is now reused, not at a theoretical
level, but at a computational level.

Obviously, the case where there is a weight Wij with a corre-
sponding delay dij 2 f0;Dg is a particular case of considering sev-
eral delayed weights, since we can write:

Wijd ¼Wijdðd� dijÞ;

dðÞ being the Kronecker symbol in this case. In other words, with
our weaker model, we are still able to estimate a neuron network
with adjustable synaptic delays.

We thus do not restrain the neural network model by changing
the problem, but we enlarge it. Actually, the present estimation
gives a smooth approximation of the previous NP-complete
problem.

It has been made explicit in Rostro-Gonzalez et al. (2009) that
the parameter estimation of such a neural network in order to gen-
erate a given spike train, is a Linear (L) problem if the membrane
potentials are observed, and a Linear Programming (LP) problem
if only spike times are observed, with a gIF model. Such L or LP
adjustment mechanisms are distributed and have the same
structure as an Hebbian rule. A step further, this paradigm is easily
generalizable to the design of input–output spike train transforma-
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tions. This means that a practical method is available to ‘‘program”
a spiking neuron network, i.e. to find a set of parameters for exactly
reproducing the network output, given an input.

Finally, we have shown, in a preliminary way, how the fact of
introducing a metric in our framework makes possible to design
new effective mechanisms based on variational methods in order
to define the network behavior.
9. Conclusion

This article has proposed an overview of a set of indisputable
facts that could help better understanding the extent to which
computing and modeling with spiking neuron networks might be
biologically plausible and computationally efficient. The links be-
tween spike trains and neural coding have been highlighted, with
the help of several metrics and under a set of time constraints as
hypotheses. Altogether, there are pragmatical and practical facts
to better understand the extent to which computing and modeling
using spiking neuron networks can be useful, and how to imple-
ment such networks in a pertinent way.

Probabilistic measures of spike patterns, such as correlations
(Gerstner and Kistler, 2002b) or a more sophisticated formalism
(Cessac et al., 2009b) related to entropy based pseudo-distances
(e.g. mutual information) highlight a view of spike trains variabil-
ity which is enriched by the information theory conceptual frame-
work. Nevertheless, it may be difficult to estimate such measures
in practice, since they are robust only if a large amount of samples
is available. On the contrary, distances give a mean to characterize
several aspects of spike coding, with efficient methods and without
this curse of the sampling size.

The underlying hypothesis adopted here appears to be that
‘‘every spike may matter”. We know it is true in some biological
contexts such as fast-brain mechanisms (Guyonneau et al., 2004;
Delorme et al., 2001), or when observing sparse responses to nat-
ural stimuli (Baudot, 2007). Surprisingly it has been observed that
such a sparse response indeed corresponds to a situation where the
neural sub-system (the V1 area in this case) is not involved in an
artificial paradigm, whereas submitted to a realistic stimulus. The
meaning is not that all of this is limited to situations where all
spikes are the same. On the contrary, the introduction of a metric
allows to formalize the idea of ‘‘approximate” correspondences be-
tween two spike trains. This is a weaker notion that the probabilis-
tic ones, but still useful.

Regarding understanding spiking neuron networks, as pointed out
in the introduction, we are very cautious with respect to biological
plausibility and prefer to simply consider that ‘‘a simulation is bio-
logically plausible if it verifies an explicit set of constraints ob-
served in biology”. This means that the causal associations
enlightened by the simulation are consistent with the related
existing biological knowledge. This is an humble position, but the
key point is that such an approach is still interesting even if the re-
sults that are produced this way remain falsifiable. Several facts
proposed in the present overview verify this assertion: for in-
stance, the maximal amount of information in a spike is lower than
the proposed bound. Would it be not the case, the assumptions
would have to be reworked. Another key point is that, for the class
of models under consideration, the orbits are periodic. This is in-
deed questionable, but facts are stubborn, and this result shows
how the related spiking neuron models with constant reset are
limited (see Kirst et al. (2009) for a recent investigation on this
point).

A step further, in a nutshell, this review has proposed to con-
sider that ‘‘choosing a neural coding” means ‘‘defining a metric”.
This point of view has provided the reader with a synthetic insight
of several methods applied to spiking neuron networks, from links
between spike trains and continuous signals to advice for program-
ming spiking neuron networks. To the best of our knowledge, only
polychronization mechanisms are not easily representable with
the tools we made use of, and it would be an interesting issue to
study the link between these non-local temporal interactions in-
side spiking neuron networks and the underlying neural code.
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