
Dynamic Case-Based Reasoning for Contextual
reuse of Experience

Amélie Cordier, Bruno Mascret, Alain Mille

Université Lyon 1, LIRIS, UMR5205, F-69622, France
{firstname.lastname@liris.cnrs.fr}

Abstract. This paper reviews Trace-Based Reasoning (TBR), a rea-
soning paradigm based on interaction traces left by users in digital envi-
ronments. Because interaction traces record the users’ problem-solving
experiences in context, TBR facilitates the reuse of such users’ experi-
ences. Moreover, interaction traces can be used as a knowledge source to
discover other knowledge useful for the reasoning process. This paper de-
scribes TBR principles and proposes a common framework for TBR ap-
plications. Especially, we focus on the articulation between Trace-Based
Reasoning and Trace-Based Systems in the context of user assistance. For
this purpose, we describe knowledge and knowledge models involved in
reasoning tasks. We discuss the advantages of using traces as knowledge
containers for reusing of experience and we show how TBR is related to
the research field of provenance. Finally, we report a brief state of the art
and a work agenda for TBR. We also show why TBR can take advantage
of the current dynamic of the work about traces while globally improving
trace-based applications.

1 Introduction

This paper takes up the challenge of developing dynamic and reactive systems
that can quickly and incrementally adapt to changes in users’ needs and habits.
It has been consistently argued that, in many cases, users’ needs and habits
cannot be fully anticipated a priori. The incomplete anticipation of user needs
complicates the development of reasoning mechanisms that could make the sys-
tem self-adaptable. Typically, in reasoning based on previous experiences, such
as Case-Based Reasoning, the system’s ability to adapt is limited by knowledge
models and by the fact that reasoning mechanisms are defined at design stage.

We introduce here the Trace-Based Reasoning (TBR) paradigm and argue
that this paradigm supports the development of more flexible and scalable sys-
tems. While interacting with a system, a user leaves behind interaction traces
that constitute digital inscriptions of the users’ experiences. We consider inter-
action traces as knowledge containers in which experiences are implicitly stored
but are not really organized in advance. Previous experiences, called episodes,
are only retrieved when a specific need appears. This mechanism ensures flexi-
bility and adaptability of the process, but also raises complex issues (e.g. how
to find a previous experience in a complex trace?). In TBR, episodes are always



linked to the trace that contains them. Consequently, at any time, it is possible
to retrieve contextual elements related to the current episode and to use them
to improve the reasoning process. Hence, TBR allows us to handle experiences
in a much less constrained way than if they were caught in structured cases.

This paper is organized as follows. In section 2, we quickly describe recent
work that seeks to develop more dynamic and scalable applications, in particular
within the CBR field. Section 3 presents TBR, starting with a short description
of the Trace-Based System concept. Then, we discuss the issues raised by the
development of trace-based applications and we show the possible benefits of
TBR in the field of user assistance. The paper concludes with a discussion of
our research agenda for Trace-Based Reasoning.

2 Towards dynamic and evolving experience-based
applications

Recently, several suggestions have been made to push the limits of Case-Based
Reasoning. For example, the Agile CBR idea described by Susan Craw in [1]
makes one step towards a more dynamic approach to CBR. The main idea of
Agile CBR is to transform traditional CBR into a “dynamic, knowledge-rich,
self-organizing, cooperative problem-solving methodology”. Agile CBR draws
from agile programming and focuses, amongst other aspects, on individuals and
interactions as well as on quick responses to change. Hence, according to Susan
Craw, “Agile CBR’s opportunism, commitment and flexibility aims to providing
the adaptability needed to design processes and workflows, and focusing first on
enabling just-in-time information”. TBR works the same way. Traces provide
us with rich knowledge sources that should be helpful to address the knowledge
management issues raised by the Agile CBR challenge. For example, combin-
ing several users’ experiences to solve one specific problem can be efficiently
addressed with a reasoning process based on fusion of individual interaction
traces.

The notions of traces and provenance are also closely related. As it is shown
in [2], there is a growing interest on the concept of knowledge provenance and
on how to use provenance information for various tasks (capturing experience,
improving similarity assessment, maintaining case bases, etc.). In this work, the
authors show that CBR always records prior problem-solving experiences in
the form of cases, but does not record the case provenance. The authors also
show that provenance information is often valuable. With traces, we always
keep provenance information because we find “cases” in the trace only when we
need them. We believe that research on provenance in CBR and in TBR can be
usefully combined,

The idea of taking context into account in the reasoning process is also ex-
plored. For example, [3] shows that combining Case-Based Reasoning methodol-
ogy and context awareness is a new and powerful way of modeling and reasoning
from contexts. This contribution shows how user behaviors can be learnt in a
case-based way, which could be much more efficient with a TBR approach. Il-



lustrating this idea, [4] uses time-stamped activity logs called paths. Paths are
collected by client-side tracking processes implemented in several tools (such as
web browsers and text editors, etc.). These paths are then exploited to gather
information used to feed recommender systems.

What we call episodes can be seen as historical cases as described by [5] in
the Historical Case-Based Reasoning (HCBR) framework. This framework allows
the expression of both relative and absolute temporal knowledge, representing
case histories in the real world. In HCBR, a case base is formally defined as a
collection of (time-independent) cases, together with its corresponding temporal
reference. A TBR approach includes all these features and adds several other
possibilities, such as context extension, abstraction level navigation, provenance
assessment, dynamic elaboration, etc.

Other researches, linked to experience sharing, such as described in [6], can
be related to the work described here. In HeyStaks (http://www.heystacks.com),
users try to share their search experiences with others. The authors propose a
classification approach to increase the relevance of a stak (a list of interesting
search results) because a stak may have been noised for several reasons (spam,
mistakes, out of date records, etc.). The most interesting point here is that even
though experience is collected, the system still needs help to determine which
real context is used. Instead of using only classifiers, we could combine them with
TBR in a revision step based on interesting elements contained in the history
of the stak construction. We think that traces can be helpful in such a situation
where context is changing and not given directly by the system.

As an example of what could be an assistant using traces and a CBR ap-
proach, we can cite [7] who uses Case-Based Reasoning techniques to predict the
user’s goal(s) from a sequence of his workspace (inter-)actions needed to achieve
this goal. A TBR approach generalizes this ability to assist the user for whatever
could be found in its interaction traces as previous experiences.

3 Trace-Based Reasoning

A Trace-Based System (TBS) is made of three main components: a Trace-Bases
Management System (TBMS), one or more observed applications and one or
more trace-based applications. The general architecture of such a system is pre-
sented on figure 1 and detailed below.

The core object of this architecture is the trace. A trace reflects the result of
the observation of a given situation. In figure 1, the observed situation is that of
the use of the application by the user. A trace consists of a set of elements called
obsels (for observed elements). A modeled trace is a trace to which is associated
a model that formally defines the structure and the types of obsels that can
be contained in the trace, as well as the relationships between these obsels .
The obsels are temporally located within the trace. We distinguish two types of
traces: primary traces, and transformed traces. Primary traces are the results
of the collect process. By definition, they are intended to be untransformed.



Fig. 1. Trace-Based System: a general architecture. User produces traces stored in the
TBMS by interracting with an observed application. The trace-based application uses
traces to solve problems and may ask the TBMS to apply transformations. The solution
is proposed to the user and this process is also recorded on the trace.

Transformed traces are the results of transformation operations performed on
the primary trace or on other existing transformed traces.

The Trace-Based Management System is the component that manages the
various trace bases. Trace bases contain primary traces as well as the whole set of
transformed traces, and the associated models. A TBMS provides input/output
primitive functions to manipulate these traces (read, write, update, transform).
Traces are stored in the TBMS during the collect process. This process exploits
one or several collect sources that can have various natures. Either the target ap-
plication is instrumented so that it automatically sends the elements that have
to be collected to the TBMS, or an intermediate process builds the primary
trace from available observation elements (such as log files of the observed ap-
plication). Hence, an application, a tool, a set of log files, a trace from another
provenance, etc. constitute as many collect sources. In brief, the collect process
builds the primary trace that can subsequently be transformed using existing
transformation operators.

The notion of trace transformation is of major importance. A transformation
is an operation on one or several modeled traces. The result of a transformation is
a new modeled trace, linked to the source traces. We can distinguish several types
of transformation operators, among them: filtering, merging and reformulating
operators. A filtering operator consists in applying a filter on a given trace in
order to produce a new trace containing only the obsels matching the rules



of the filter. Here is a very simple example. If we consider a trace containing
obsels of several colors, we can define a filtering operator that will keep only
the ”red” obsels. Applying such a filter will transform the initial trace in a
transformed trace containing only red obsels. Obviously, transformations can be
more complex and may combine several operators. Merging and reformulating
operators work the same way but in addition, they can dynamically produce new
types of obsels (for example, two obsels in the initial trace may be combined and
represented by a third one, dynamically created) in the produced trace.

Transformations can be automatic, semi-automatic or manual. A TBMS
guarantees the possibility, at any time, to navigate between transformed traces.
Indeed, the TBMS always keeps a link between the transformed trace and the
traces from which it comes from. Besides, it records the transformation operators
that have been used to perform the transformation. In other words, the TBMS
stores a lattice of transformed traces in order to guarantee the possibility to
navigate between transformed traces. Transformed traces can be seen as various
representations of the same situation, at different abstraction levels (this idea is
illustrated in the example at the end of this section). Because traces at different
abstraction levels are linked to eachother, it is possible to consider a trace at a
specific level of abstraction, and, at some point, to consult another trace repre-
senting the same situation at a more specific abstraction level. This possibility to
navigate between various modeled traces thus provides an important flexibility.

Another way to understand transformations could be to simply consider them
as knowledge: a transformation is performed because some knowledge gets the
system to activate it. So transformations may be both knowledge and processes.
This new point of view raises open issues discussed later on this paper.

The last element of the architecture is the tool that uses traces. This kind of
tool can be connected with the TBMS through input/output primitive functions
provided by the TBMS. These tools can also connect with the observed applica-
tion, but this is out of the scope of this paper. These tools have various natures:
(interactive) visualization of traces, analysis of usages, user assistance, etc. Tools
have to rely on specific knowledge to accomplish certain tasks (described below)
with traces. We call this type of knowledge “reasoning knowledge”.

Trace-Based Reasoning. While reasoning, the first tasks consist in retrieving pre-
vious episodes in the trace to reuse them. For episode retrieving, we introduce
the concept of task signature that contains a set of distinctive elements charac-
terizing an episode. With each task signature, we associate a set of similarity
measures that allow us to retrieve the most similar episode in the trace, and a
set of adaptation rules (see below). Another difficulty adds up to the traditional
issue of finding similar episodes: the search has to be performed among the var-
ious transformation levels of the trace. Therefore, the search has to take into
account the various possible representations of a single problem.

Once retrieved, the episode can be reused in various situations: visualization,
interactive visualization, replay, or adaptation. In case of visualization task, we
have to exploit the available presentation knowledge in order to display the
episode to the user in a nice and understandable way. Interactive visualization



relies on the same principle, but additionally allows the user to navigate between
the different abstraction levels of the trace. Interactive visualization allows us to
handle various viewpoints on the same problem in an efficient way: for the user,
it is possible to consider a problem at a high abstraction level and then to go
to a lower level (to more specific transformation traces) if more specific details
are needed. Replaying episodes consists in retrieving an episode and replaying
it the same way. The possibility to replay an episode implies strong constraints
on the collect phase. One of these constraints is to make sure that the whole
set of observations has been collected in the form of obsels. Last, adapting an
episode consists in reusing it and, possibly, transforming it to provide help to
the user (assistance, recommendations, automatic task execution, etc.). Within
the TBR context, it is necessary to rely on a specific (and possibly generic)
structure for adaptation. This structure has to offer a way for the system to
identify the elements that can be subject to an adaptation in the episode. We
face the same problem than in CBR and, as we have showed it in a previous
work [8], it is possible to reuse some of the solutions provided by CBR researches
in this context. In TBR, however, an episode adaptation can be envisioned at
several levels: content adaptation, interaction modality adaptation, presentation
adaptation, navigation between different abstraction levels (i.e. adaptation by
navigation between transformed traces). This diversity among the different types
of adaptation introduces an additional complexity from the point of view of the
knowledge representation necessary for the reasoning.

Figure 1 illustrates one specific issue, e.g. the issue of designing a trace-based
assistant. The challenge here is to reuse experiences to provide assistance to the
users. The system can reuse the same users’ interaction traces or can browse
interaction traces to reuse chunks of other users’ experiences.

Fig. 2. Several transformations of a single trace. Transformation operators are com-
bined to produce a more abstract trace. The more the trace is abstracted, the more it
contains knowledge.

An example with Abstract. To give an example of how traces can be col-
lected, transformed and used at several abstraction levels, we briefly describe
the Abstract project [9]. Abstract is a cognitive science project intended
to provide means for a better understanding of human activities using a com-



puter recording of these activities. From a computer science point of view, this
project aims at discovering knowledge from traces of activity. The Abstract
application starts by observing the activity by various means (i.e. various kinds
of sensors) and collects a primary trace. The set of data collected is also at-
tached to a moment of the activity identified by a “time-code”. The trace can
then be manipulated and enriched with more abstract symbols through several
transformations. Figure 2 and figure 3 illustrate the way traces are manipulated
in Abstract. Figure 2 shows three abstraction levels of the primary trace from
a generic point of view. Figure 3 illustrates the same principle, but applied to a
specific application domain: driver behavior analysis.

Fig. 3. Abstract: an example of the user interface. The primary trace has been trans-
formed to produce traces ”understandable” by users (e.g. analysts).

Summary. In a trace-based application, the Trace-Bases Management System
(TBMS) has an operational role: it manages the traces and their transformations.
It also provides primitive functions to manipulate traces and allows navigation
between the different levels of representation. The trace-based application, mean-
while, relies on presentation and reasoning knowledge. Hence, the application can
achieve various goals: visualizing an episode, reusing it, adapting it, etc. A major
issue is that of knowledge evolution and of knowledge models. The implementa-
tion of mechanisms supporting knowledge evolution is an open problem. If the
update of certain knowledge is immediate (by definition of the concept of trace),
the update of knowledge models, particularly in the case of modeled traces, is
more tedious and may require a process involving an expert. We consider the
issue of updating a knowledge model as a major challenge for TBR.

4 Discussion and concluding remarks

Trace-Based Reasoning is a problem solving paradigm in which both the user
and the system solve problems and learn new knowledge at the same time. It is
through interactions that the user gives additional knowledge to the system and
that the system provides the user with solutions to specific problems. In this



process, traces constitute a flexible support used at the same time by humans
and machines. Traces keep a record of interactions, and thus of the problem
solving process. In some extent, this is why we argue that they allow us to
record problem solving experiences “in context” and that they constitute a rich
knowledge container.

One way of introducing the concept of Trace-Bases Management System is
through the analogy with a file system. The file system organizes, stores, and
accesses the files, but the users can’t directly exploit the files without any specific
applications to read, modify or transform them. It is the same problem with
traces: without any specific software to manipulate them, the traces stored in a
TBMS usually have little interest for end users. We believe that TBR, because
it offers a dynamic, responsive, and scalable approach for the collect and reuse
of experience, is very promising. Moreover, the work about traces is currently
very active and TBR could advantageously benefit from it.

Among researches on TBR, we can distinguish two categories. The first
category includes work concerned with theoretical aspects of traces and their
management (modeled trace theory, mining traces to find relevant patterns, in-
teractive visualization, etc.). The second category includes researches that are
intended to produce trace-based applications (Trace-Based System for behavior
analysis, user assistance, learning purpose, etc).

Within the second category, issues related to transformation are challenging.
Indeed, the role of transformations is of utmost importance. A transformation
may be seen in several ways: historical, such as a TBR’s process using operators
to transform a trace in a higher abstraction level one; knowledge-oriented, which
considers transformations as knowledge containers; combined, which mix ideas
issued from these two approaches. This last question raises new issues: can all
kind of knowledge be represented through transformations, and are transforma-
tions a good way to represent knowledge?

Traces and provenance address complementary issues. The common under-
standing of provenance in CBR is that a system may improve its process if it has
knowledge on how cases have been elaborated. As shown previously, traces em-
bed information on provenance and consequently, this provenance information
can be used by the TBR approach. Provenance information may be exploited
for various purposes. For example, in an experience sharing system, provenance
is used for confidence purposes: provenance may help the system to determine
what ”kind” of experience should be reused in a given context. Let us consider
the copy/paste example (illustrated figure 4. Imagine a blind user trying to use
a sighted person’s trace. Most of the sighted people use the mouse to perform
a copy/paste with the contextual menu. However, blind people usually prefer
to perform this action with the keyboard only. To support experience sharing
between blind and sighted people, the first step is to consider the traces at the
right abstraction level. In this example, if we consider the low-level obsels (such
as ”Ctrl+C” or ”Right Click + Copy”), we cannot provide any help. However,
if we consider obsels that belong to a higher abstraction level (such as ”Copy”),
we can then support experience sharing between different users. Once the right



level of abstraction is found, the second step consists of adapting the way of
performing the action (”Copy”) by taking into account the user preferences (e.g.
”only with the keyboard”). This example suggests an interesting observation:
while most users use the mouse to perform a Copy/Paste, blind users may pre-
fer less common solutions. Hence, provenance information may help a user to find
the best available episodes for him, or at least to give him relevant adaptation
knowledge (how to present “paste”: with mouse or with keyboard?). We think
this issue should open new paths especially in adaptive systems and assistive
technologies.

Fig. 4. Copy/paste example. The trace of the mouse-based copy/paste (above) is com-
pared to the trace of the keyboard-based copy/paste (below). At the highest abstraction
level, both traces are identical. However they represent two different ways of performing
the same task. Note that in both cases, the bottom traces are not primary traces, they
are already transformed from other traces (for example ”Right Click + Copy Selection”
has been transformed in ”Mouse-Based Copy”).

The issues raised by the implementation of TBR are various and many ques-
tions arise: how to gather experience through observing interactions? How to
define transformation mechanisms for modeled traces and how to make them



evolve? How to adapt retrieved episodes and how to present the results of this
adaptation to end users? How to make the system knowledge evolve, and from
what sources? Are traces sufficient or should we rely on other sources of knowl-
edge, and if so, how to integrate them in the system? All these questions are
research issues that we intend to explore. We will focus our researches on assis-
tance systems which are a challenging experimentation field.

Acknowledgments

Authors wish to thank the workshop organization team for providing this oppor-
tunity to discuss the notion of provenance from very different viewpoints, and
the reviewers for their constructive and helpful comments.

References

1. Craw, S. Agile case-based reasoning: A grand challenge towards opportunistic rea-
soning from experiences. In Proceedings of the IJCAI-09 Workshop on Grand Chal-
lenges in Reasoning from Experiences, pp. 33-39, Pasadena, CA, 2009.

2. Leake, D.B and Kendall-Morwick, J. Four Heads Are Better than One: Combining
Suggestions for Case Adaptation. In Proceedings of ICCBR-09, pp. 165-179.

3. Zimmermann, A. Context-awareness in user modelling: Requirements analysis for a
case-based reasoning application. In Case-Based Reasoning Research and Develop-
ment, pp. 1064–1064, 2003.

4. Chalmers, M. Abstract paths and contextually specific recommendations. In Pro-
ceedings of DELOS/NSF Workshop on Personalisation and Recommender Systems
in Digital Libraries, Dublin, June 2001.

5. Ma, J. and Knight, B. A framework for historical case-based reasoning. In Case-
Based Reasoning Research and Development, pp. 1067–1067, 2003.

6. Champin, P.A., Briggs, P., Coyle, M. and Smyth, B. Coping with Noisy Search
Experiences. In 29th SGAI International Conference on Artificial Intelligence (AI-
2009). Springer, pages 5-18, Cambridge, December 2009.

7. Schwarz, S. and Roth-Berghofer, T. Towards goal elicitation by user observation. In
Workshop on Knowledge and Experience Management at GI FGWM, LLWA 2003.

8. Cordier, A., Mascret, B. and Mille, A. Extending Case-Based Reasoning with
Traces. In Grand Challenges for reasoning from experiences, Workshop at IJCAI’09,
Pasadena, CA. 2009.

9. Georgeon, O., Henning, M. J., Bellet, T., and Mille, A. (2007). Creating Cognitive
Models from Activity Analysis: A Knowledge Engineering Approach to Car Driver
Modeling. International Conference on Cognitive Modeling, Ann Arbor, MI: Taylor
& Francis, pp. 43–48.


