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ABSTRACT 

 

In the recent years, 3D Face recognition has emerged as a 

major solution to deal with the unsolved issues for reliable 

2D face recognition, i.e. lighting condition and viewpoint 

variations. However, 3D method is currently limited by its 

registration and computation cost. In this paper, we propose 

to investigate a solution named asymmetric face recognition 

scheme, enrolling people in 3D environment but performing 

authentication in 2D. The goal is to limit the use of 3D data 

to where it really helps to improve recognition performances. 

In our approach, Local Binary Patterns (LBP) is used as an 

efficient facial representation for both 2D texture and 3D 

range images. A weighted Chi square distance is computed 

as matching score between 2D LBP facial representations; 

Canonical Correlation Analysis (CCA) is applied to learn the 

mapping between the LBP-based range face images (3D) 

and LBP facial texture images (2D). Both matching scores 

are further fused to obtain the final result. Compared with 

traditional 2D/2D algorithms, the proposed asymmetric face 

recognition solution scheme achieves better accuracy; while 

avoiding the high cost of data acquisition and computation 

in 3D/3D approaches. 

 

Index Terms— Face recognition, Local Binary Patterns 

(LBP), Canonical Correlation Analysis (CCA), asymmetric 

face recognition, face matching and fusion scheme 

 

1. INTRODUCTION 

 

Machine-based face recognition is an important and popular 

issue in computer vision for its wide application potential 

and scientific challenges. As compared to other biometrics, 

such as fingerprint or iris, face offers advantages that place it 

potentially as the best choice for person identification task. 

Unfortunately, in despite of the great progress made within 

the field [1], face remains a biometrics still not very reliable 

and one needs to deal with variations of lighting condition, 

pose, facial expressions, etc. 

3D face recognition has emerged in the recent years as a 

major solution to handle the unsolved issues for reliable 2D 

face recognition, i.e., lighting condition and viewpoint 

variations [2, 3]. However, 3D approach is currently limited 

by its registration and computation cost. Generally, for face 

recognition, data of gallery and probe set are desired to have 

the similar properties: 2D or 3D, color or gray, and even 

demanded to be captured by the same sensors. However, the 

fact that relationship between different categories of data can 

be known in [4, 5], makes it possible to learn the mapping 

between 2D face images and 3D face models.  

Very few works in the literature has addressed such an 

asymmetric face recognition problem so far.  Rama et al. [6] 

proposed to project the 3D texture information in cylindrical 

coordinate, and apply Partial Principle Component Analysis 

(P
2
CA) for feature extraction, but there is a high correlation 

between gallery and probe feature vectors, since the probe of 

the 2D face image in P
2
CA subspace only contains partial 

information of the face. Riccio et al. [7] proposed to utilize 

control points to compute several geometrical invariants for 

recognition, but it is not easy to locate these control points 

accurately. More recently, in [8], Yang et al. applied CCA 

directly to learn the mapping between 2D face image and 3D 

face data; only 3D range images are used for enrollment, 

both of which leave the space to improve the accuracy. 

In this paper, we propose to investigate an asymmetric 

face recognition solution, i.e., enrolling people in 3D while 

performing authentication in 2D using, for instance, 2D face 

texture image acquired by a simple webcam. The goal is to 

limit the use of 3D data to where it really helps to improve 

the face recognition performances. In our 3D/2D approach, 

3D face models, from each of which one range image and 

one texture image is extracted, are exploited for enrollment 

while only 2D face texture image is utilized for probe. Our 

approach splits the face recognition task into two steps, a 

matching step respectively processed in 2D/2D and 3D/2D 

then a fusion step combining two matching scores. Since all 

the human faces are quite similar and the major challenge in 

recognition is how to tolerate within-class variations whilst 

discriminate different classes well, Local Binary Patterns 

(LBP) is introduced for facial representation as it highlights 

the local structures of an image in 2D/2D matching, which is 

proved effective for one image face recognition (only one 

image in gallery for each person) [9]. For 3D/2D matching, 

LBP is also applied as a preprocessing technique [10] not 

only to reduce illumination changes for 2D texture images, 

but also amplify the detail of 3D range images; Canonical 

Correlation Analysis (CCA) method is exploited to learn the 

mapping between LBP faces of range and texture images. 



Compared with traditional 2D/2D face recognition methods, 

the proposed solution scheme provides better performance, 

and compared with 3D/3D approaches, it reduce the cost for 

both data acquisition and computation. 

The remainder of this paper is organized as follows: 

LBP facial representation technique is introduced in section 

2, and section 3 presents the CCA methodology. Section 4 

describes the framework of the proposed asymmetric fusion 

scheme. Experimental results are presented and discussed in 

section 5. Section 6 concludes the paper. 

 

2. LBP FACIAL REPRESENTATION 

 

Local Binary Patterns (LBP), a non-parametric method, that 

summarizes the local structures of an image efficiently, has 

received increasing interest for facial representation recently 

[11]. After first proposed for texture description, it has been 

widely introduced in many applications. The most important 

properties of LBP are its tolerance against the variations of 

monotonic illumination and its computational simplicity. 

     Specifically, the original LBP operator labels each pixel 

of one image by thresholding a 3×3 neighborhood with the 

value of central pixel and considering the result as a binary 

number, of which the corresponding decimal number is used 

for labeling. Fig. 1 illustrates such a process. The derived 

binary number is called Local Binary Pattern or LBP code.  

 
Fig. 1.  An example of the original LBP operator. 

Formally, given a pixel at (xc, yc), the resulting LBP can 

be expressed in decimal form as: 
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where n runs over 8 neighbors of the central pixel, ic and in 

are gray-level values of central pixel and surrounding pixels, 
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According to Eqn. (1) and Eqn. (2), the LBP operator is 

invariant to the monotonic gray-scale transformations which 

preserve pixel intensity order in local neighborhoods. The 

histogram of LBP labels calculated over a region is used as a 

texture descriptor.  

 
Fig. 2.  Examples of operators: circular (8, 1), (16, 2), and (8, 2). 

To deal with the texture at different scales, the original 

LBP operator was extended to neighborhoods of different 

sizes. Local neighborhood is defined as a set of sampling 

points evenly spaced on a circle centered at the pixel to be 

labeled, and the sample points that do not fall in the pixels 

are expressed using bilinear interpolation, thus allowing any 

radius and number of sampling points in the neighborhood. 

Fig. 2 shows some examples of the extended LBP operators; 

the notation (P, R) denotes a neighborhood of P sampling 

points on a circle of radius of R. 

The LBP operator LBP(P, R) produces 2
p
 different output 

values, corresponding to 2
p
 different binary patterns formed 

by the P pixels in the neighborhood. It has been shown that 

certain patterns contain more information than others [12]. It 

is possible to use only a subset of the 2p binary patterns to 

describe the texture of the images. Ojala et al. named these 

patterns as uniform patterns, denoted LBP
U2 
(P, R). A local binary 

pattern is called uniform if it contains at most two bitwise 

transitions from 0 to 1 or vise verse when the corresponding 

bit string is considered circular. 

The general idea for LBP facial representation is that a 

face image can be seen as a composition of micro-patterns 

which are described by the LBP operator. But the histogram 

of LBP computed over the whole face image encodes only 

occurrences of micro-patterns without any indication about 

their locations. To also consider shape information of faces, 

the images are proposed to be divided into a certain number 

of local regions, from which LBP histograms are extracted. 

These LBP histograms are then concatenated into a single, 

spatially enhanced histogram, containing both local texture 

and global shape information of the face images. Since the 

psychophysical findings demonstrated some facial features 

play more important roles than the others, it can be expected 

that some facial regions contribute more than the others to 

extra-personal variance. Hence, different regions in the face 

image can be further weighted according to the importance 

of inside information. The similarity between two faces can 

be calculated by comparing the final LBP features. 

 
Fig. 3.  Face image (left) processed by LBP operator (right) [10]. 

LBP can also be adopted as a preprocessing method on 

face images mainly for removing or decreasing the effects 

caused by the illumination changes. For instance, Heusch et 

al. [10] introduced LBP operator for pretreatment, and other 

methods for feature extraction act on the obtained LBP face 

(see Fig. 3 for an example). This claim is also supported by 

[13, 14], proving LBP achieves promising performance for 

illumination compensation and normalization. 

 

3. CCA LEARNING METHOD 

 

Canonical Correlation Analysis (CCA), a powerful analysis 

algorithm [15], is especially fully qualified for relating two 

sets of variables, by maximizing the correlation in the CCA 

subspace. Similar to Principal Components Analysis (PCA), 



CCA also reduces the dimensionality of original variables, 

while unlike PCA; CCA considers the relationship between 

two variable spaces in the correlation sense, which makes 

them better suited for regression tasks than PCA. 

Given N pairs of samples (xi, yi) of (X, Y), i=1, 2,…, N, 

where pX  , qY  . The means of both X and Y are zero. 

The goal of CCA is to learn a pair of directions wx and wy to 

maximize the correlation between two projections x=wx
T
X 

and y=wy
T
Y, where T denotes the transpose. In the context of 

CCA, the two projections: x and y are also referred to as 

canonical variants. Formally, the directions can be found as 

maxima of the function: 

[ ]

[ ] [ ]

T T

x y

T T T T

x x y y

E w XY w

E w XX w E w YY w
 

                           (3) 

Where E[f(x, y)] denotes empirical expectation of f(x, y). 

The covariance matrix of (X, Y) is 
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Where CXX and CYY are within-set covariance matrices; CXY 

and CYX are between-sets covariance matrices. 

Hence,  can be rewritten as 
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It can be shown that the solution W=(wx
T
, wy

T
)

T
 amounts 

to the extremum points of the Rayleigh quotient [8]: 
T
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The solution wx and wy can be obtained as solutions of the 

generalized eigen-problem: 
AW BW                                    (8) 

 

4. ASYMMETRIC FUSION SCHEME 

 

The proposed asymmetric face recognition fusion scheme is 

presented in this section. Recall that our asymmetric scheme 

uses two categories of face images, one range image IGR and 

one texture image IGT, extracted from each 3D face model in 

the gallery while 2D face texture images are used for probe. 

Therefore, our solution includes two independent matching 

steps for probe face images IP: (1) 2D/2D face recognition 

based on LBP facial representation, and also (2) 3D/2D face 

recognition based on CCA learned LBP faces. The matching 

scores of both steps are then fused for final decision. Fig. 4 

presents the framework of the asymmetric fusion scheme. 

4.1. 2D/2D Face Matching 

As follows our discussion on LBP in Section 2, LBP is 

used as an effective facial representation for 2D/2D step of 

face recognition. LBP face image IGT and IP first are divided 

into m regions, from each of which a histogram hi (i=1, 2,…, 

m) is extracted, and the final histogram feature HGT and HP 

can be achieved by concatenating the separate histograms h1, 

h2,…, hm. The weighted Chi square distance (see Eqn. (9)) is 

applied to compute the matching score d2D/2D, 
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where i and j refer to the i
th

 bin in histogram of the j
th

 local 

region and ωj is the weight for region j.  

4.2. 3D/2D Face Matching 

Also as follows our discussion in section 2, LBP is used 

to preprocess 3D range images and 2D face texture images. 

To each range image IGR and texture image IP, LBP faces 

FGR and FP are extracted respectively before the matching. 

The linear CCA algorithm is introduced for learning the 

mapping between the LBP faces of range image and texture 

image. In the training process, N pairs of 3D/2D LBP faces 

are given as (FGR, FP) = {(fGRk, fPk)}, (k=1, 2,…, N), where 

(fGRk, fPk) is a corresponding pair of 3D and 2D faces. Two 

directions wGR and wP are learned, and wGR
T
 FGR and wP

T
 FP 

are best correlated. In the matching process, LBP faces, FGR 

and FP, are first projected into CCA subspace: 
                       ,T T

GR GR GR P P PF w F F w F                             (10) 

The matching score, d3D/2D, is calculated according to 

the following normalized correlation function: 
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In the end, by Min-Max normalization, matching scores 

d2D/2D and d3D/2D are normalized to the interval of [0, 1], and 

the sum of two corresponding matching scores is considered 

as the discriminant criterion for the final decision. 

CCA Regression

Matching Score 

Fusion

Chi Square 

Distance

3D Face Model

(Gallery)

3D Range Image IGR

2D Texture Image IGT

2D Face Image

(Probe)

2D Face Image IP

LBP Face FGR

LBP Face FP

LBP Histogram HP

LBP Histogram HGT

  
Fig. 4.  The framework of asymmetric fusion scheme for face recognition. 



5. EXPERIMENTS 

 

The dataset for evaluating the proposed scheme contains 200 

subjects selected from FRGC 1.0 and 2.0 datasets so that for 

each of subjects, there are enough 2D face images with the 

illumination changes and slight variations of head pose and 

facial expression. In our case, five 2D images are for probe. 

Fig. 5 shows several samples of the database: the first two 

images are range and texture image extracted from 3D face 

model for gallery; the last two are 2D face images for probe. 

All the images are cropped to 80x80 pixels. 

 
Fig. 5.  Some samples of the database. 

For experiments, the database is divided into two parts; 

one for training CCA consists of 170 subjects, and the other 

for testing contains the remaining 30 subjects. To evaluate 

the performance of proposed asymmetric fusion scheme, for 

each subject, one 3D range image and one 2D texture image 

are used for gallery while probe contains 2D texture images 

only. In our experiments, LBP operator used in 2D/2D face 

recognition step is LBP
U2 
(8, 2), and the images are divided into 

8x8 square blocks of the same size 10x10 pixels; the weight 

strategy comes from [11].  
Table 1. Recognition rates of different schemes. 

Scheme Recognition Rate 

(1) 2D/2D LBP
U2 

(8, 2) 0.7388 

(2) 3D/2D CCA Original Images 0.4000 

(3) 3D/2D CCA LBP Faces 0.5420 

(1)+(2) 0.7667 

(1)+(3) Proposed Asymmetric Scheme 0.8236 

The recognition rates are given in Table 1. We can see 

that the performance of proposed asymmetric fusion scheme 

by combining both matching steps is better than that of any 

single matching; for 3D/2D matching, CCA learning based 

on LBP faces outperforms that based on the original images. 

 

6. CONCLUSIONS 

 

In this paper, an asymmetric fusion scheme is proposed for 

face recognition, which utilizes the range image and texture 

image extracted from 3D face model for enrollment and 2D 

face image for test. As a result, the proposed fusion scheme 

contains two steps: 2D/2D face recognition and 3D/2D face 

recognition. LBP is applied as facial description for both 2D 

texture image and 3D range image in order to highlight the 

local structure variations on face images and also to reduce 

the influences by illumination changes. CCA is used to learn 

the mapping between two types of LBP faces. The matching 

scores of both steps are further fused to make final decision. 

The Experimental results demonstrate that the proposed 

fusion scheme achieves better performance than only using 

single matching, showing that 2D/2D and 3D/2D provide the 

complementary information for the face recognition task. 

Moreover, for 3D/2D face matching, CCA learning based on 

LBP faces outperforms that on the original face images, 

proving the fact that LBP is efficient for the preprocessing 

again. 

To sum up, compared with traditional 2D/2D algorithm, 

the proposed solution achieves better recognition accuracy 

with additional information provided by 3D/2D matching; 

and compared with 3D/3D methods, it decreases the cost for 

both data acquisition and computation, for only 2D images 

are required for probe. 

In our future work, we will test our approach on other 

datasets, in particular IV2 dataset [16, 17]. 
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