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Abstract—The Minkowski sum computation and implementation h 2D and 3D domains is of a particular interest
because it has a large nhumber of applications in m& domains such as: mathematical morphology, imagerocessing and
analysis, robotics, spatial planning, computer aid# design and manufacturing, image processing ... Hower, no exact,
fast, and general algorithms are found in the liteature. We present in this paper a new and efficierslgorithm based on a
simple idea, for the calculation of the Minkowski am of convex and closed polyhedra. Our implementati is general in
the sense that it does not assume any constraint ¢ime positions or the sizes of the polyhedra; it mduces exact results
and is faster than algorithms based on the convexuli computation. Our method can be easily generaled to an arbitrary
dimensional space. We are also working on its adagtion to convex polyhedra which are not necessarilglosed and for
non-convex polyhedra without passing through the d®mmposition and union steps.

I ndex Terms—Minkowski Sum Algorithm, Mesh filtering, Morpholog ical operations
I. INTRODUCTION
THE Minkowski sum or addition of two setd and B was defined by the German
mathematician Hermann Minkowski (1864-1909) as etoreaddition of elements ok with
elements oB:

ADOB={a+b/aldAbOB} (1)
The Minkowski sum of two se#s andB is referred to as the dilation of $eby B, whereB is

named the structuring element. This operation domss the base of the mathematical
morphology which is widely used in image analysis.

Since the 60s, the mathematical morphology has domany applications in the image
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processing and analysis fields, such as imagerififje segmentation, skeletonizing
Nevertheless, this theory remains poorly or evemen@xploited for three-dimensional
polyhedra. The existing solutions are either plytimplemented or not implemented at all.

Mathematical morphology interests us particulanty the context of mesh filtering and
analysis, to reduce or eliminate the noise duetiaition procedures, to perform opening and
closing operations, to fill holes, to identify gaular characteristics (hit-or-miss operations), to
skeletonize or segment meshes, etc. Minkowski sopleimentation in three-dimensional space
also makes improvements to other applications sash computer-aided design and
manufacturing[2], collision free path computation for robot nwti planning[3], penetration
depth computation and dynamic simulatjdh..

The dilation in image processing field is the basjgeration for every morphological
treatment; the other morphological operations {ergopening, closing) are duals or particular
combinations of dilation§6]. The dilation is equivalent to the Minkowskimuof two image
regions. In this work, since we aim at efficienttgplement the exact Minkowski sum (or
dilation) for three-dimensional polyhedra, we hdirstly begun by doing this for convex
polyhedra. Our goal in the future is to be ablep@form morphological analysis (as it is
performed on images) on arbitrary three-dimensiomeghes.

We propose in this paper a new and efficient allgorithat computes the Minkowski sum of
convex polyhedra. We call it tHeMS algorithm (Facet’s based Incremental MinkowSkim)
because it operates on facets — rather than ofipaitams that operate on vertices (convex hull
based algorithms). The FIMS algorithm is based aingple idea and can be generalized to
arbitrary dimensional spaces. Moreover, it outgxact results. Our aim is to achieve a fast and

efficient Minkowski sum computation without passittgough the decomposition and union



steps that are required by most algorithms.

The rest of this paper is organized as followsséttion 2 we review previous work on
Minkowski sum computation for polyhedra, sectioprg@sents our solution to the problem, i.e.
the FIMS algorithm, we present experimental resatid discussions in section 4 and finally, we

give some future directions for our work in sectton

[l. PREVIOUS WORK
Since its birth in the 60FL][5], mathematical morphology progressed much, a avethe

theoretical level as on the practical one. Nevéetd®s this progress touches mainly the field of
discrete images and discrete volumes (grids of lgdx€ery few algorithms treat effectively the
case of three-dimensional meshes.

It follows that mathematical morphology tools areopgy exploited in the field of three-
dimensional meshes. The existing solutions are:

« Either non implemented (only theoretical appresgh

* Either too slow when applied to big size polyteedr

« Either restricted to convex polyhedra or req@raome additional constraints.

We classify algorithms used for the Minkowski suamputation into three categories: those
based on convex hulls, those based on dual sppresentations of polyhedra, and those based

on Nef polyhedra.

A. Convex hull based algorithms
The convex hull based algorithms are the most dgsi and the most implemented in the

literature. For two polyhedrd andB, they comprise the following steps:

» Vector addition of all points ok and all points oB in order to build a point clou@.



» Convex hull computation for the point clo@ and construction of the Minkowski sum
polyhedronS,

However, this treatment applies onlyAfandB are convex polyhedra; otherwise, the steps
are:

» Convex decomposition for each non-convex polybedr

» Computation of the pair-wise Minkowski sum betwed possible pairs of convex pieces.

» Computation of the union of the pair-wise Minkdivsums.

The decomposition of a non-convex polyhedron irdovex pieces is known to be NP-hard.
More than twenty years ago, Chaz¢llé] proposed an optimal decomposition algorithmalrh
generate©(r’) convex pieces i@(nr’) time, wherer denotes the number of reflex edges and
denotes the number of polyhedron’s facets. Nevimskseno practical or robust implementation
has been found in the literature for Chazelle’smat algorithm.

The construction of the convex hull requires a g@sst of computation since it aims at
distinguishing interior points from those which Mibrm the convex hull. Several algorithms
were developed for the convex hull computation ofed of points; a summary of these
algorithms can be found if8]. Among them, let us cite the gift-wrapping algiom [7], the
incremental algorithni®][10], the divide and conquer algoritHdd]....

The union step is the most time consuming step vebbemputing the Minkowski sum of non-
convex polyhedra. It can hav@(n’) time complexity for convex polyhedra, whemeis the
number of polyhedra facefd2]. Moreover, there is no robust implementation the union
computation of convex polyhedra that handles alkederacie§l4].

The complexity of the Minkowski sum computationQg) for convex polyhedra. However,

it can haveO(n®) worst-case complexity for non-convex or{@8][14], wheren denotes the



number of facets of the two polyhedra.

As what has been said, the convex hull based #hgasi are the most discussed and the most
implemented in literature. However, they generatgeat cost of computation and thus are very
slow. Their benefit is that they are used for baihvex and non-convex polyhedra.

Varadhan and Manoshfl5] used convex hull based algorithms to approxemehe
Minkowski sum of polyhedra. They have decomposedotblyhedra into convex piecgs][17]
and computed the pair-wise Minkowski sums. Instehdomputing the exact union of these
pair-wise Minkowski sums (which constitute the hmteck of the convex hull based
algorithms), they approximated it in an adaptivelipdivided voxel grid. They guaranteed a
two-sided Hausdorff distance bound on the approtionaTheir approach was time efficient
but it does not compute the exact Minkowski sunpai/hedra. Therefore, it is not suitable for

feature extraction and analysis of meshes.

B. Dual space based algorithms
Ghosh[18] proposed to compute the Minkowski sum in aldigace. Each polyhedron is

represented on a unit sphere called the slope atragf the polyhedron (see Fig. 1). For a
particular polyhedron, each facet is representedhiey spherical point corresponding to its
normal vector extremity embedded on the unit spladter it has been normalized to a unit
vector (Fig. 1.b). Then, each edge is represenyettid spherical arc of the great circle joining
the two spherical points representing the two fadetident to this edge (Fig. 1.c). Finally, a
vertex is represented by a spherical area boungedpherical arcs and spherical points
corresponding to incident edges and incident famethis vertex (Fig. 1.d), respectively. The
Minkowski sum of two polyhedra is then computed rbgrging the two slope diagrams and

finding the intersections between the various camepts of the two slope diagrams.



Theoretically, these algorithms are valid for abitaary dimension but their implementation is
limited for two-dimensional operand&9]. Stereographic projection used to merge tvopsl
diagrams is complicated and affects the accuratlyeélgorithm.

The slope diagrams based algorithms are not wstludsed and rarely implemented in the
literature. However, they are more efficient anstda than those based on convex hulls because
they compute the Minkowski sum in a two-dimensiathainain. Although slope diagrams were
defined for convex and non-convex polyhedra, theyimplemented only for convex polyhedra.
Moreover, they generate miscalculations and afedit to implement.

Another variant of slope diagrams based algorithassbeen proposed by Fogel and Halperin
[22]. They used a dual space representation of eormolyhedra that they named Cubical
Gaussian Maps; their implementation is efficient autputs exact results. However, it is

restricted to convex polyhedra.

Fig. 1. A frustum and its slope diagram repred@ria(a) A frustum. (b) The normals to its facéty. The slope diagram embedded on the unit
sphere. (d) The shaded spherical polygon is theafuhe vertexv; (courtesy of Wu, Shah, and Davidgas]).

C. Nef polyhedra based algorithms
Nef polyhedra were introduced first in the matheo@twork of Nef[23]. They consist of



polyhedra represented by Boolean operations on-spalfes (union, intersection, and
complement). These half-spaces are the result ditipaing the space into cells of various
dimensions. Each cell is paired with a Boolean ll#iet determines the membership of the cell
to the polyhedron. Nef polyhedra have been sliggperalized to Selective Nef complexes
[24][25] by considering a larger set of labels for diféerent cells.

Hachenbergef26] has used Selective Nef complexes to compute Mimkowski sum of
polyhedra. He has implemented a new method forrdposing polyhedra into convex parts,
based on Nef polyhedra implementation. Then, heusasl convex hull based algorithms to
compute the pair-wise Minkowski sums and finallg has used the Nef implementation to
compute the union of the pair-wise Minkowski sunkis approach is robust, achieves
exactness, and handles all degeneracies by buildmon the powerful Nef polyhedra
implementation provided in CGAL21]. However, his algorithm is not efficient besauthe
union step requires a lot of computation time.

The main power of Nef polyhedra theory is thatsitquite general, i.e., it can be used to
represent non-manifold solids, unbounded solids] abjects having parts of different

dimensionality.

lll. FIMS ALGORITHM
This section describes our FIMS algorithm that nsaktepossible to easily implement the

Minkowski sum computation for two arbitrarily shapeonvex polyhedra. Before we go through
further details, let us present the notation arfthiens required for the understanding of the

next sections.



A. Notation
In the rest of this paper, we consider two conwdosed and 2-manifold polyhedfaandB. A

is composed ofy facets,en edges, and vertices. SimilarlyB is composed ofg facets,es
edges, andp vertices. As the Minkowski sum is equivalent tonarphological dilationA is
called polyhedron to be dilated amdlis called the structuring element. The result o t

Minkowski sum ofA andB is denoted polyhedrda

B. Overview and definitions
In FIMS algorithm, we are stating that the sum pelyron S consists of three categories of

facets, which are defined with respect to the padybn from which a particular facet &f
comes.
Proposition

The Minkowski sum of two convex and closed polylaefirand B is composed exactly of
three types of facets:

* fa facets that are copies of facetsfpf

» fg facets that are copies of facet®8of

» At mostea + e facets that result from the Minkowski sum of twonrparallel edges oA

andB.

We will give definitions and names for these thtgpes of facets. To illustrate these
principles we also walk through a simple exampléoag as we define new concepts. Thus, let
us consider two polyhedra andB, whereA is a cube an® is a tetrahedron. Fig. 2 shows the
two polyhedra and their Minkowski sum (polyhed®n

Definition 1



Thetranslated facet®f the sum polyhedro8 are facets oA translated into another position.
These facets are denoted “translated facets” bedhaey are translated copies of all facet# of

(see Fig. 2).

Definition 2

The corner facetsof the sum polyhedro8 are copies of all facets of structuring elemBnt
but translated into another position (or by a ¢ertasition vector). These facets are denoted
“corner facets” because they result from placing $tructuring elemer at each vertex (or
corner) of the polyhedroA and taking only the facets @ that will contribute in the
construction of the sum polyhedr&8{see Fig. 2).

From definitions 1 and 2, and from the commutativgroperty of Minkowski sum
(AOB=BOA), it follows that if we consideB as the polyhedron to be dilated aAdas

structuring element, the translated faceta\afg are corner facets a0 A and vice-versa.

Definition 3
The edge facet®f the sum polyhedro8 are facets resulting from the Minkowski sum of two
non-parallel edges, one from the polyhedfoand the other from the polyhedrBnThis is the

reason why they are called “edge facets” (seedjiglhese are parallelogram-shaped facets.

From Fig. 2, it follows that the number of faceequired for the construction of the sum
polyhedron S is equal to the sum of the numbeacéts of thé\ andB plus the number of edge
facets. The number of edge facets depends on tifegeration (orientation, coordinates of the

center or origin point) of the two operands of i@kowski sum.
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[ ] Translated face

I Corner facet
I Edge facets

Fig. 2. Polyhedrow to be dilated, the structuring elem&tand the sum polyhedr@composed of three categories of facets.

Our proposition is in conformity with the conclusiprovided by Bekker et RoerdifiR7]. In
their work, the authors used a slope diagram balggmlithm to compute the Minkowski sum of
two polytopes. They showed that the sum polyhedmmmsists of three types of facets: facets
coming from the first operand, facets coming frohe tsecond operand, and additional
parallelogram facets (that we called edge facethenFIMS algorithm). The FIMS algorithm
constructs the sum polyhedron directly with simgd®metric operations and thus eliminates the
overhead of passing from three-dimensional donwihe dual space (slope diagram embedded
on a sphere) and vice-versa. Therefore, it is naffieient than algorithms working on dual
spaces. Moreover, the FIMS algorithm is intendetléagyeneralized for non-convex polyhedra,
which is not the case of dual space algorithms.

The FIMS approach aims at constructing the Minkaveskn of two polyhedrad andB by
finding the three types of facets that make the palyhedronS

The first concept that we will define is the conicep®“contributing vertex”, this will lead us
to the determination of all translated facets far sum polyhedro8.

We will use a visibility criterion to determine tlserner facets after placirgon each vertex

of A.
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Finally, the edge facets are found by using twtedons:

» The visibility criterion applied to the facetsBfallows to find the facets that are visible and
those that are invisible with respect to a sigheation defined by an edge &f The frontier
between invisible and visible facets 8f consists of edges oB that are candidate for
constructing an edge facet in collaboration with #dge ofA that determined the visibility
direction. This frontier is called horizon edges.

» From these candidate horizon edges, we retaintboke that satisfy the second criterion of
the orientation of the edges normal vectors. ae.edge belonging to the horizon edges set will
contribute in an edge facet if its normal vectoemtation lies between the two orientations for
the two normal vectors to facetsAfkharing the edge that determines the visibilitgation for

the first criterion.

C. Sum polyhedron construction
We will now show how we can find the different tgpaf facets for the sum polyhedr8nFor

illustrating purposes, we consider the two operands

» The polyhedror is a sphere mesh with 1600 facets, 3160 edged%6®ivertices (see Fig.
3.a).

* The structuring elemef is a SnubDodecahedron with 92 facets, 150 edgeé@wertices

(see Fig. 3.b).

(b)

Fig. 3. Operands of the Minkowski sum.
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1) Translated facets determination
The translated facets have the same shape as tdcptdyhedronA but are translated into

another position. The question which arises igtistafrom A facets, what is the amount of
translation we should apply to come to translasegts ofS?

Since we are working with boundary-representatibpalyhedra, we are representing solids
only by their external boundaries. Thus, the Minkkivsum of two boundary represented
polyhedra A and B is the boundary representatioallgboints generated by the addition of all
pairs of points from A and B.

This leads us to answer our question: the amoutrans§lation that should be applied to each
facet of A to have the corresponding translated face$ of defined by the vertex & (when
placed on the considered facetA)fthat generates the maximal translation of thesictamed
facet of A according to its normal vector direction (whichirge outwards the polyhedron). In
other words, this amount of translation is defitiydthe vertex oB which guarantees that the
vertices of the translated facet will lie on thaibdary of the sum polyhedréh

Fig. 4 illustrates this principle, we consider adtafor which we will find the corresponding
translated facet and we translate it by vectomistafrom the origin of the structuring element
B (the round point insidB) and ending at each vertexBf The translated facet has the maximal
translation (with respect to the facet’'s normploutwards the polygoA. The other translated

facets will not be considered because they li@@mthe sum polyhedrdd
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Corresponding
translated face

Considered facet

Structuring elemel

Fig. 4. The concept of translated facets.

In the rest of this paper, the vertex®that defines the translation corresponding to éacét
of A in order to have the corresponding translatedtfack be denoted “the contributing
vertex”. This concept is the heart of the FIMS aildpon; it allows us to find the positions for all
translated facets in the sum polyhedfn

Definition 4

The contributing vertexy g corresponding to a facgh of A is the vertex -among all vertices
of B, that generates the maximal translation of thesiclamed facet; o according to its normal

directionn; . Formally, the vertexy g satisfies:

(Veg =Ny uy=max(y, 5 —c,n ) Ol £k @)

Where <.,.> denotes the scalar product of two veaadc is the origin or the center of the
structuring elemer.

The translated facets for our two operands are showig. 5.
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Translated facets

Fig. 5. (a) Translated facets &f

2) Corner facets determination
Corner facets are those 8toming from structuring elemeBt they result from positioning

on each vertex oA and considering onlf facets that lie on the boundary of the Minkowski
sum polyhedrors.

Before placingB on each vertexy a (k=1,...,\) of A in order to determine the corresponding
corner facets o8, we will first examine the geometry of translatadets that are copies of the
incident facets tai . This geometry which is governed by the numbecaoftributing vertices
for the facets oA that are incident to the vertex,, reduces considerably the computation time
by avoiding an exhaustive search for corner faoets all vertices ofA. Thus, we distinguish
three geometric configurations:

» The facets oA incident to vertexy,a havethe same contributing vertex all corresponding
translated facets will be incident to the sameexedf the sum polyhedrdd Therefore, there is
no corner facet to be added for that particularexes a

» The facets ofA incident to vertexw have two different contributing vertices: the
corresponding translated facets will be incidentwo vertices of the sum polyhedr@& These

two vertices are connected by a chain of edgeS dherefore, there is no corner facet to be
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added for that particular vertexa

» The facets ofA incident to vertexvca have at least three different contributing
vertices one or more corner facets must be added to the malyhedronS to fill the hole
between the corresponding translated facets.

As it has been said previously, the determinatibrcarner facets is based on a visibility
criterion (see Fig. 6) applied to the facet8afccording to several sight directions definedlby a
incident edges to vertex a (a criterion similar to the one used for the conkall computation

in the incremental algorithi®][10]).

Invisible facetr/2<8<3rm/2

Sight direction
<\k

Visible facet —-;7/2<8<m/2

Fig. 6. Visibility criterion for two facets accard to a sight direction.

The creation of corner facets for the sum polyhe@&tllows the next steps:

1. For each vertexia (k=1,...,\), if the incident facets have at least three diffier
contributing vertices, do the next step, otherjisep to the next vertex (there will be
no corner facets to be added for that vertex).

2. Consider all sight directions that correspond te@dges incident and pointing towards
the vertexvia. For each sight directiog a calculate the visibility for all structuring
element facets corresponding to sight directipr this implies that a facefig is

invisible if :
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(a;,ng)20 (3)
Wheren;g is the normal vector corresponding to the fdgetOtherwise the facdig is

visible and is not a corner facet.

3. Add the corner facets &corresponding to that particular vertex : the corner facets
of S corresponding to that particular vertexavof A are facets oB (after being
translated such that its origncoincides withvy ) that are invisible according to all
sight directions related to vertexa (all edges incident ta o and pointing towards it).

4. Return to step 1.

aip

@) (b)

Corner facets
coresponding toa

(©)

Fig. 7. Determination of corner facets®¢orresponding to a particular vertex of A (hedra shaped) and a sphere as structuring elénent

To illustrate the principles of corner facets andresponding sight directions for a particular
vertexvi a, let us consider the polyheddaandB shown in Fig. 7. Polyhedrohis hedra shaped,
vertex v a and sight directionsy , ax s asa andaga are shown in Fig. 7.a. The structuring

elementB (a sphere mesh) together with sight directionshiswn in Fig. 7.b. Finally, corner
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facets (invisible facets according to all sightdiions) ofSare shown in Fig. 7.c.
For the example we considered first, the cornestbaadded t& together with the previously

created translated facets are shown in Fig. 8.

Corner facets

Fig. 8. Corner facets &

3) Edge facets determination
Similarly to what has been said for the corner teaeation step, in order to create edge

facets ofS we will first examine the geometry of the twortséated facets that are copies of the
incident facets to each ed@gea (j=1,...,e). This geometry is governed by the number of
contributing vertices for the two facets Afthat are incident to the ed@gs, and allows us to
reduce considerably the computation time by avgidin exhaustive search for edge facets over
all edges ofA. Thus, we distinguish two geometric configurations

» The two facets ofA incident to edgea havethe same contributing vertex the two
corresponding translated facets will be incidentie same edge @& Therefore, there is no
edge facet to be added for that particular exige

» The two facets ofA incident to edges . have twodifferent contributing vertices: the
corresponding translated facets will not be inciderthe same edge &f Therefore, there is one

or more edge facets to be added for that partie@dgea; A
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The creation of edge facets for the sum polyhe&fmtlows the next steps:
1. For each edgeja (j=1,...,&), if the incident facets have two different contiting
vertices, do the next step, otherwise jump to #ad edge (there will be no edge facets

to be added for that edge).

2. Calculate the visibility of all facets & according to the sight direction defined by the
edgea; A (for details see the previous section). The edgethat constitute the frontier
between invisible and visible facets Bfare called horizon edges. These edges are

candidates for the creation of edge facets.

Calculate the normaid g to each edga,g as follows:

Nig =a;4%8p 4
The normal vecton;g will have its direction inversed if it points tovas the interior oB. In

other wordsn;g is the normal vector to a virtual edge facet (yeit added) created from the

Minkowski sum of two edges » anda;g

3. Validate or add a virtual edge facet which restiiesMinkowski sum of edges » and

a; g to the sum polyhedro@if and only if:

(a,a,n;)=0and(a, ,,n; 5)20 )
Wherea; A anday 4 are two edges ok one from each facet incident to the edge and

pointing to a vertex od g (see Fig. 9).
4. Return to step 1.
Fig. 9 illustrates the validation process for edtfeg will contribute in edge facets creation.

Fig. 9.a shows a 2D projection in the plane perfmetar to the two support planes for the two
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facets incident to edgga: there are six horizon edgag (j=1,...,6) with their normal vectors
nig (j=1,...,6) computed in (4) and two edgasa anday A pointing to the same vertex aja.
The edges that satisfy the criterion (5) are theBese normal vectors orientations lie between
the two orientations of the two normal vectorsta# two facets incident to edgg, (edgesas g

anday g in Fig. 9.b). Fig. 10 shows the edge facets adddke sum polyhedro&

Fig. 9. Validation of horizon edges that will creadge facets &
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Edge facet

Fig. 10. Edge facets addedSo

IV. EXPERIMENTAL RESULTS AND DISCUSSION
In this section, we will discuss the FIMS algorithiWe will talk about implementation,

running time, complexity, generalization to higltémensions and extensibility to non-convex

polyhedra. Some examples of polyhedra that arergeteby FIMS algorithm are given too.

A.
FIMS algorithm has been implemented on a 1 GB RARM), GHZ Intel Pentium 4 personal

Implementation and performance

computer. We have used C++ with CGAL (ComputatidBabmetry Algorithm Library]21]
for its implementation and for the computation loé ttonvex hull. Table 1 gives the running

times compared to the convex hull approach forrsgwperand#€\ andB.

TABLE1. MINKOWSKI SUM COMPUTATION RUNNING TIME FOR SEVERAL ONVEX POLYHEDRA

Operands (# of facettes) Running time (sec.)

A B Proposed approach | Convex hull
Hedra(8) Sphere(320) | 0.125 7.657
Hedra(8) Sphere(1280)| 0.563 36.844
Cube(6) Sphere(320) | 0.109 8.548
Cube(6) Sphere(1280)| 0.594 38.345
Sphere(80) Sphere(320) | 0.578 36.158
Sphere(320) Sphere(1280) 7.063 687.099

Table 1 shows that FIMS algorithm is faster thaa tonvex hull based algorithms in the
CGAL environment. This is justified by the fact themly the vertices which will contribute to

the Minkowski sum final result will be treated; thuthe cost of updating the convex hull
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(determination of visible facets for a vertex, resaloof invisible facets, construction of
temporary facets at each introduction of a newexert) is eliminated and the simplicity of the
treatment is increased. Moreover, the FIMS algorifireserves the facets degrees, which is not

the case with the convex hull based approached-(geé1).

Fig. 11. (a) PolyhedroA. (b) Structuring elemer (a tetrahedron). (c) Sum polyhedron S generatetidgonvex hull approach. (d) Sum
polyhedronS generated by FIMS algorithm.

Polyhedra resulting from the Minkowski sum of seleconvex polyhedra with several
structuring elements are given in Fig. 12. Frons¢hexamples, it is clear that Minkowski sum
can be used as a tool for morphing from one shaadther. For more examples, please visit:

http://liris.cnrs.fr/hichem.barki/Research/Papeiid& Convex
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Fig. 12. Objects resulting from the Minkowski seomputation.

A. Complexity
We have seen previously that FIMS algorithm requiteree steps. The first step iterates through all

facets of A to find the contributing vertices; thecond step iterates through all vertices of Aind the
corner facets and the last step iterates througkdgks of A to find the edge facets. We have cdstpthe
complexity of each step and we have used the Huler for manifold polyhedra, this has lead us to
conclude that FIMS algorithm has a time compleXifafs). This result shows that FIMS algorithm is
commutative, i.e.Q(fafg)=0O(fsfa), this result is also in accordance with the conativity property of the

Minkowski sum.

B. Generalization to higher dimensions
From the description of FIMS algorithm, it is cleéhat the construction of the sum polyhed8wequires

the determination of three types of facets. Famgslated facets, we used only the scalar produatdahe

contributing vertex and vector additions to tratesla facets. For corner facets, we used only vector
additions to translatB and place it on each vertex Af and the scalar product to find corner facets. For
edge facets, we used scalar product to computeishmlity status ofB facets, cross and scalar products to

find horizon edges that will contribute to the couastion of edge facets, and Minkowski sum of ediges
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construct edge facets. Since the vector addioalar product, cross product, and Minkowski additf
two edges (which is equivalent to vector additidralb points from the two edges) are concepts #rat
defined in arbitrary dimensional spaces; we can thay FIMS algorithm can be generalized for any
arbitrary dimensional space. This is an importaat since FIMS algorithm can be easily used foeoth

dimensions such as for the case of polygons indineensional space or for higher dimensions.

C. Extensibility to non-convex polyhedra
Our FIMS algorithm is based on a simple idea; apartant aspect we must consider is its possible

extension to the computation of the Minkowski sufmon-closed and non-convex polyhedra. For non-
closed polyhedra, our algorithm can treat this kificoperands by a special treatment of border edges
polyhedra; we are actually working on this case: kan-convex polyhedra, our aim is to compute the
Minkowski sum without decomposing them into conpéces and without passing through the union step.
Figurel3 shows that FIMS algorithm is promising &mtaptation to non-convex polyhedra, the set of
three types of facets generated by FIMS algoritbmnbn-convex polyhedra is a superset of the fagkets
the Minkowski sum polyhedron, this superset inchud# the Minkowski sum facets plus additional tace
that are located inside the resulting polyhedrdme Treatment and elimination of these additionakta

constitute the direction towards which we are itigesing.

V. CONCLUSION AND FUTURE WORK
We have presented a new, fast and general algofghthe incremental construction of the Minkowski

sum of convex polyhedra. The results show thatRWS approach is faster than convex hull based
algorithms. This is justified by the fact that orthe vertices which will contribute to the Minkowsum
boundary will be treated. FIMS algorithm can bedufseg convex objects or to accelerate the calauhatif
the Minkowski sum for non-convex objects.

We are currently working on the generalizationFd¥1S algorithm for non-convex polyhedra without

passing through the decomposition and union sfgs.will be done by treating intersections betwésn
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three types of facets of the sum polyhedron weadirelefined. This will then open a new way to gaut
morphological operations aiming to filter big sineshes, in addition to help improving other appioces

such as robotics, solid modelling, penetration ldestimation, ...
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