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Abstract. Foreign keys form one of the most fundamental constraints for relational
databases. Since they are not always de�ned in existing databases, the discovery of
foreign keys turns out to be an important and challenging task. The underlying
problem is known to be the inclusion dependency (IND) inference problem.

In this paper, data-mining algorithms are devised for IND inference in a given
database. We propose a two-step approach. In the �rst step, unary INDs are dis-
covered thanks to a new preprocessing stage which leads to a new algorithm and
to an e�cient implementation. In the second step, n-ary IND inference is achieved.
This step �ts in the framework of levelwise algorithms used in many data-mining
algorithms. Since real-world databases can su�er from some data inconsistencies,
approximate INDs, i.e. INDs which almost hold, are considered. We show how they
can be safely integrated into our unary and n-ary discovery algorithms.

An implementation of these algorithms has been achieved and tested against
both synthetic and real-life databases. Up to our knowledge, no other algorithm
does exist to solve this data-mining problem.

Keywords: Inclusion dependency discovery, relational databases

1. Introduction

Functional Dependencies (FDs) and Inclusion Dependencies (INDs) are
the most famous, and most important integrity constraints in relational
databases, e.g.(Casanova et al., 1984; Levene and Loizou, 1999; Mannila
and Raïha, 1994). They generalize respectively keys and foreign keys
which are very popular in practice. For example, INDs are necessary to
express in the relational model any relationships of conceptual models

† The original publication is available at www.springerlink.com

c© 2007 Kluwer Academic Publishers. Printed in the Netherlands.

MindJIIS.tex; 18/09/2007; 22:28; p.1



2

such as ER model, and are widely used in many database applications
such as database design and maintenance (Casanova et al., 1988; Levene
and Vincent, 2000; Mannila and Räihä, 1986), data integration (Miller
et al., 2001), or semantic query optimization (Gryz, 1998; Cheng et al.,
1999). Nevertheless, considering that INDs are available in real-life
databases seems to be likely optimistic: Knowledge about schema often
not exist, or is lost, or does not correspond any more to the database
structure. Moreover, a lot of production databases become disordered
over time so that up to date information about data semantics is likely
to be lost (Dasu et al., 2002).

Some recent works were proposed to discover functional dependen-
cies (FDs) holding in a relation (Huhtala et al., 1999; Novelli and
Cicchetti, 2001; Wyss et al., 2001; Lopes et al., 2002a), but IND dis-
covery in databases has not raised great interest yet. We identify two
reasons for that: 1) the di�culty of the problem due to the potential
number of candidate INDs which is more than factorial in the number of
attributes (cf (Casanova et al., 1984; Kantola et al., 1992) for complexity
results) and 2) the fact that INDs "lack of popularity". Indeed, FDs
are studied as a basic constraint of the relational model since they are
used to de�ne normal forms (e.g. BCNF or 3NF) and to de�ne keys,
very popular in practice. The same argument holds for INDs: they are
also a basic constraint (Mannila and Raïha, 1994; Abiteboul et al.,
1995; Levene and Loizou, 1999) and can be used to de�ne other normal
forms, such as ERNF or IDNF in order to avoid update anomalies
and to ensure data coherence and integrity (see (Mannila and Raïha,
1994; Levene and Loizou, 1999; Levene and Vincent, 2000) for details
on such normal forms).

Contribution In this paper, we propose algorithms to discover all sat-
is�ed INDs in an given database.

We propose to consider separately unary IND inference (INDs be-
tween single attributes) and n-ary IND inference (INDs between se-
quences of attributes). Several reasons justify this choice: unary INDs
are most likely to be found in real-life databases, and at a more technical
level, no sophisticated pruning can be applied when unary INDs are dis-
covered. A characterization of satis�ed unary INDs is given from a new
representation of the database values, which leads to an algorithm and
an e�cient implementation. From discovered unary INDs, a levelwise
algorithm, �tting in the framework de�ned in (Mannila and Toivonen,
1997), has been devised to discover n-ary INDs in a given database. We
propose an Apriori-like algorithm to generate candidate INDs of size
i + 1 from satis�ed INDs of size i(i > 0). To deal with inconsistencies
that frequently occur in databases, we consider approximate INDs, INDs
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that are almost satis�ed in a database. We show how our proposal can
safely be extended to approximate unary and n-ary IND discovery.

Despite the inherent complexity of this inference task, experiments
on a medium-size real-life database from the web show the feasibility
of this approach. We also propose a study of behavior and performance
of our algorithms using medium size synthetic databases (up to 500000
tuples) available from http://www.isima.fr/�demarchi/dbacomp/.

This paper is an extension and a consolidation of the work published
in (De Marchi et al., 2002). Approximate IND discovery has been added,
together with more deepfull experiments and cost analysis for unary
IND discovery. Moreover, a discussion devoted to data accesses for IND
evaluation has been inserted.

Paper organization The layout of the rest of this paper is as follows:
Related works is given in Section 2. Section 3 recalls some basic con-
cepts of relational databases. Section 4 deals with IND inference: a new
approach for unary IND inference is given in Section 4.1, and a levelwise
algorithm is proposed to discover all remaining INDs in Section 4.2. The
Section 5 extends our approach to approximate INDs. Data accesses are
considered in Section 6. Experimental results on real-life and synthetic
databases are presented in Section 7, and we conclude in Section 8.

2. Related works

In (Kantola et al., 1992), authors showed that it is already NP-complete
to decide whether an inclusion dependency of the form R[X] ⊆ S[Y ] is
satis�ed, where X contains all the attributes of R. But authors speci�ed
that this rather negative result was obtained from a highly arti�cial
example.

Proposals have been made to use approximations, or to �nd only
a subset of INDs. For example in (Dasu et al., 2002), a summary of
the database is computed from which a �rate of similitude� between
attributes can be quickly calculated. Unary INDs can thus be found
e�ciently, of course with an error: some discovered unary INDs are
not really satis�ed, but also some satis�ed unary INDs can be missed.
(Lopes et al., 2002b) considers only duplicated attributes discovered
from SQL join statements performed during a period of time over the
database server. (Albrecht et al., 1995) uses natural language and name
of attributes to determine candidates through a dialog tool. We pro-
posed in (De Marchi and Petit, 2005) an approach for approximating
the set of approximate satis�ed INDs. The main idea is to relax the
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user de�ned treeshold, if it can lead to a more condensed set of INDs
in output (as it is done in (Afrati et al., 2004) for frequent itemsets).

In (Bell and Brockhausen, 1995), exhaustive search of unary INDs
is considered. Properties of INDs are exploited to reduce the number of
candidate unary INDs to be tested against the database. Nevertheless,
this pruning is not really e�ective, and a large number of tests remains
to be performed against the database. The special case of unary INDs
is also considered in (Bauckmann et al., 2007). As we do in this paper,
authors propose to preprocess data in a form suitable for a one pass IND
discovery. They experimentally show that their proposal outperforms
our method; however, we argue that the two methods are very close and
that the results they obtain are manly due to implementation issues,
on which they give no details1.

A particular attention to large IND discovery is given in (Koeller
and Rundensteiner, 2003; De Marchi and Petit, 2003)2. Rather than a
pure levelwise approach, these works implement �jumps� in the search
space of INDs for discovering large satis�ed INDs without testing an
exponential number of candidates. However, they do not consider the
case of unary INDs as un special case, and we argue that our approach
is more appropriated in real situations, i.e. the size of satis�ed INDs
does not exceed �ve or six.

Many data mining tasks such as frequent itemsets discovery or IND
discovery can �t into some common theoretical frameworks such as
(Mannila and Toivonen, 1997; Calders and Wijsen, 2001). However,
their contributions are theoretical only, algorithmic and implementation
issues being far from authors objectives. Moreover, unary IND discovery
does not �t into such frameworks and is not considered as an important
sub-problem as we do in this paper.

3. Basic de�nitions

We brie�y introduce some basic relational database concepts used in
this paper (see e.g. (Mannila and Raïha, 1994; Levene and Loizou, 1999)
for details).

Let R be a �nite set of attributes. For each attribute A ∈ R, the
set of all its possible values is called the domain of A and denoted by
Dom(A). A tuple u over R is a total mapping from R to

⋃
A∈R Dom(A),

where u(A) ∈ Dom(A),∀A ∈ R. A set r of tuples over R is called a
relation over R, and one says that R is the relation schema of r. The

1 We received no demand of our sources by authors
2 Note that our paper was submitted before the parution of these works
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cardinality of a set X is denoted by |X|. If X ⊆ R is an attribute
set3 and u is a tuple, we denote by u[X] the restriction of u to X.
The projection of a relation r onto X, denoted as πX(r), is de�ned by
πX(r) = {u[X] | u ∈ r}.

A database schema R is a �nite set of relation schemas Ri. A rela-
tional database instance d (or database) over R corresponds to a set of
relations ri over each Ri of R.

An attribute sequence (e.g. X =< A, B, C > or simply ABC) is an
ordered set of distinct attributes. Given a sequence X, X[i] refers to
the ith element of the sequence. When it is clear from context, we do
not distinguish a sequence from its underlying set.

Two attributes A and B are said to be compatible if Dom(A) =
Dom(B). Two distinct attribute sequences X and Y are compatible if
|X| = |Y | = m and if for j = [1,m], Dom(X[j]) = Dom(Y [j]).

Inclusion dependencies and the notion of satisfaction of an inclusion
dependency in a database are de�ned below.
An inclusion dependency (IND) over a database schema R is a state-
ment of the form Ri[X] ⊆ Rj [Y ], where Ri, Rj ∈ R, X ⊆ Ri, Y ⊆ Rj ,
X and Y are compatible sequences. An inclusion dependency is said to
be trivial if it is of the form R[X] ⊆ R[X]. An IND R[X] ⊆ R[Y ] is of
size i if |X| = i. We call unary inclusion dependency an IND of size 1.

Let d be a database over a database schema R, where ri, rj ∈ d

are relations over Ri, Rj ∈ R respectively. An inclusion dependency
Ri[X] ⊆ Rj [Y ] is satis�ed in a database d over R, denoted by d |=
Ri[X] ⊆ Rj [Y ], i� ∀u ∈ ri,∃v ∈ rj such that u[X] = v[Y ] (or equiva-
lently πX(ri) ⊆ πY (rj)).

Let I1 and I2 be two sets of inclusion dependencies, I1 is a cover of
I2 if I1 |= I2 (this notation means that each dependency in I2 holds in
any database satisfying all the dependencies in I1) and I2 |= I1.

A sound and complete axiomatization for INDs is made up of three
inference rules (Casanova et al., 1984):

1. (re�exivity) R[A1, ..., An] ⊆ R[A1, ..., An]

2. (projection and permutation)
ifR[A1, ..., An] ⊆ S[B1, ..., Bn] then
R[Aσ1, ..., Aσm] ⊆ S[Bσ1, ..., Bσm] for each sequence σ1, ..., σm of
distinct integers from {1, ..., n}

3. (transitivity) if R[A1, ..., An] ⊆ S[B1, ..., Bn] and
S[B1, ..., Bn] ⊆ T [C1, ..., Cn] then R[A1, ..., An] ⊆ T [C1, ..., Cn]

3 Letters from the beginning of the alphabet introduce single attributes whereas
letters from the end introduce attribute sets.
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4. Inclusion dependency inference

The IND inference problem can be formulated as follows: "Given a
database d over a database schema R, �nd a cover of all non trivial
inclusion dependencies R[X] ⊆ S[Y ], R,S ∈ R, such that d |= R[X] ⊆
S[Y ]".

In this paper, we propose to re-formulate this problem into two sub-
problems: the former is the unary IND inference problem, and the latter
is the n-ary IND inference problem being understood that unary INDs
have been discovered.

4.1. Unary inclusion dependency inference

We propose a new and e�cient algorithm to discover unary INDs sat-
is�ed in a given database. The idea is to build a binary relation which
associates each values of the database with attributes having this value.
Unary INDs can then be e�ciently computed from this binary relation.
We give the details below.

4.1.1. Data preprocessing
Given a database d over a database schema R, and a data type t of d ,
we de�ne an extraction context4 denoted by the triple Dt(d) = (V, U, B)
as follows:

− U = {R.A | A is of type t , A ∈ R,R ∈ R}. U is the set of
attributes5 whose type is t;

− V = {v ∈ πA(r) | R.A ∈ U, r ∈ d, r de�ned over R}. V is the set
of values taken by attributes in their relations;

− B ⊆ V× U is a binary relation de�ned by:
(v,R.A) ∈ B ⇐⇒ v ∈ πA(r), where r ∈ d and r de�ned over R.

Example 1 Let us consider the database d given in Table I as a
running example. Domains of attributes of these relations are of three
types: int, real, string. For the type int, U = {A,C, E, G, K} and V =
{1, 2, 3, 4, 6, 7, 9}. For instance, the value 1 appears in πA(r), πE(s) and
πK(t), and thus (1, A), (1, E) and (1,K) ∈ B.
Table II summarizes the extraction context associated with int, real and
string.

4 This name comes from Formal Concept Analysis (Ganter and Wille, 1999)
5 When clear from context, we will omit to pre�x attributes by their relation

schema.
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Table I. A running example
r

A B C D

1 X 3 11.0

1 X 3 12.0

2 Y 4 11.0

1 X 3 13.0

s

E F G H

1 X 3 11.0

2 Y 4 12.0

4 Z 6 14.0

7 W 9 14.0

t

I J K L

11.0 11.0 1 X

12.0 12.0 2 Y

11.0 14.0 4 Z

11.0 9.0 7 W

13.0 13.0 9 R

Table II. Extraction contexts associated with the database d.

int

V U

1 A E K

2 A E K

3 C G

4 C E G K

6 G

7 E K

9 G K

real

V U

9.0 J

11.0 D H I J

12.0 D H I J

13.0 D I J

14.0 H J

string

V U

R L

X B F L

Y B F L

Z F L

W F L
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4.1.2. A new algorithm for unary IND inference
With this new data organization, an interesting characterization of
unary INDs can be given. Informally, if the IND A ⊆ B is satis�ed,
then by construction for every value v such that (v,A) belongs to the
extraction context, we have (v,B) belongs to the extraction context.

Proposition 1 Given a database d, a data type t and an extraction
context Dt(d ) = (V, U, B),

d |= A ⊆ B ⇐⇒ B ∈
⋂

v∈V|(v,A)∈B
{C ∈ U | (v, C) ∈ B}

where A,B ∈ U. Proof Let A ∈ R, B ∈ S such that d |= A ⊆ B.

⇐⇒ ∀v ∈ πA(r),∃u ∈ s such that u[B] = v
⇐⇒ ∀v ∈ V such that (v,A) ∈ B, we have (v,B) ∈ B 2

In fact, an extraction context can be seen as a transaction database,
in which attributes are items and values are transactions. Unary INDs
correspond to exact association rules (i.e. association rules whose con-
�dence is 100 %) whose left and right-hand sides are made up of only
one attribute in this transaction database.

Thus, the whole task of unary IND inference can be done in only one
pass of each extraction context. Algorithm 1 follows from Proposition 1
which gives its correctness. It �nds all unary INDs in a database d,
between attributes de�ned on a type t, taking in input the extraction
context as described before. For every attribute A, we denote by rhs(A)
(for right-hand side) the set of attributes B such that A ⊆ B.

Algorithm 1 Unary IND inference
Input: the extraction context (V, U, B), associated with d and t.
Output: I1 the set of unary INDs satis�ed by d between attributes of type t.
1: for all A ∈ U do rhs(A) = U;
2: for all v ∈ V do

3: for all A s.t. (v, A) ∈ B do

4: rhs(A) = rhs(A) ∩ {B | (v, B) ∈ B};
5: for all A ∈ U do

6: for all B ∈ rhs(A) \ {A} do
7: I1 = I1 ∪ {A ⊆ B};
8: return I1.

This algorithm is linear with respect to the size of the binary relation
of the extraction context. Indeed, the intersection of two sorted sets is
equal to two times the size of the smallest set. Here, the size of rhs(A)
is smaller than the size of U by several order of magnitude. Thus the
complexity of intersection can be assimilate as a constant.
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Example 2 Let us consider the type int (cf Table II) in example 1. The
initialization step (line 1) gives: rhs(A) = rhs(C) = . . . = rhs(K) =
{A,C, E, G, K}.
Then, we consider the set of attributes in the �rst line of the extraction
context: l1 = {A,E, K}. For each attribute in l1, its rhs set is updated
(line 4) as follows:

− rhs(A) = {A,E, K}

− rhs(E) = {A,E, K}

− rhs(K) = {A,E, K}

− rhs(C) = {A,C, E, G, K} (unchanged)

− rhs(G) = {A,C, E, G, K} (unchanged)

These operations are repeated for each value of the extraction context
(line 2). Finally, after one pass, the result is:

− rhs(A) = {A,E, K}

− rhs(E) = {E,K}

− rhs(K) = {K}

− rhs(C) = {C,G}

− rhs(G) = {G}

From these sets, unary INDs between attributes of type int are (lines 5,6
and 7): {A ⊆ E,A ⊆ K, C ⊆ G, E ⊆ K}.
The same operation has to be repeated for each data type, and then,
thanks to property 1, we deduce the following set of unary inclusion
dependencies satis�ed by d: {A ⊆ E,A ⊆ K, B ⊆ F,B ⊆ L,C ⊆
G, D ⊆ I,D ⊆ J,E ⊆ K, F ⊆ L,H ⊆ J, I ⊆ D, I ⊆ J}.

4.2. A levelwise algorithm for n-ary IND inference

Once unary INDs are known, the problem we are interested in can be
re-formulated as follows: "Given a database d over a database schema
R and the set of unary INDs veri�ed by d, �nd a cover of all non trivial
inclusion dependencies R[X] ⊆ S[Y ], R,S ∈ R, such that d |= R[X] ⊆
S[Y ]".

We �rst recall how IND properties justify a levelwise approach to
achieve their inference (Mannila and Toivonen, 1997). Then, we give an

MindJIIS.tex; 18/09/2007; 22:28; p.9



10

algorithm, with a natural method to generate candidate INDs of size
i + 1 from satis�ed INDs of size i.

4.2.1. De�nition of the search space
Candidate INDs are composed of a left-hand side and a right-hand side.
Given a set of attributes, we do not have to consider all the permutations
to build a left-hand side or a right-hand side, thanks to the second
inference rule presented in section 3.

Example 3 Let R[AB] ⊆ S[EF ] and R[AB] ⊆ T [KL] be two satis�ed
INDs. Then, thanks to the second inference rule of INDs (permutation),
R[BA] ⊆ S[FE] and R[BA] ⊆ T [LK] are also satis�ed.

Then, we are faced with the following problem: in which order at-
tribute sequences have to be built to avoid considering several permuta-
tions of the same IND ? Therefore, we have to set an order for attributes
of the left-hand sides or for attributes of the right-hand sides. The most
natural one has been chosen, i.e. we choose the lexicographic order for
attributes of the left-hand sides.

4.2.2. Reduction of the search space
Between two candidate INDs, a specialization relation � can be de�ned
as follows:

Let I1 : Ri[X] ⊆ Rj [Y ] and I2 : R′
i[X

′] ⊆ R′
j [Y

′] be two candidate
INDs. We de�ne I2 � I1 i�:

- Ri = R′
i and Rj = R′

j and
- X ′ =< A1, ..., Ak >, Y ′ =< B1, ..., Bk >, and there exists a set

of indices i1 < ... < ih ∈ {1, ..., k} with h ≤ k such that X =<
Ai1 , ..., Aih >, Y =< Bi1 , ..., Bih >6.

Note that X, Y,X ′ and Y ′ are sequences, and thus the specialization
relation respects the order of attributes.

Example 4 We have (Ri[AC] ⊆ Rj [EG]) � (Ri[ABC] ⊆ Rj [EFG]),
but (Ri[AC] ⊆ Rj [GE]) 6� (Ri[ABC] ⊆ Rj [EFG]).

We note I1 ≺ I2 if I1 � I2 and I2 6� I1.

From the second inference rule of INDs, we can deduce the following
property, which justi�es a levelwise approach for IND inference.

Property 1 Let I1, I2 be 2 candidate INDs such that I1 � I2.
If d 6|= I1 then d 6|= I2.

This property extends the a-priori property to our problem; we say
that the relation � is anti-monotone ((Han and Kamber, 2000)) w.r.t.
the satis�ability of INDs. Then, knowing unsatis�ed INDs at a given

6 This de�nition is slightly di�erent from that given in (Mannila and Toivonen,
1997). Here, we impose an order for index i1, ..., ih without any loss of information.
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level, allows us to prune candidates for the next level. More precisely,
only satis�ed INDs will be used to generate candidate INDs for the
next level. Thus, the search space will be considerably reduced, for
levels higher than one.

4.2.3. The algorithm
From now, notations given in Table III will be used throughout the
paper.

Table III. Notations

Ci Set of candidate inclusion dependencies of size i.

Ii Set of satis�ed inclusion dependencies of size i.

I.lhs Left-hand side sequence of the IND I

I.rhs Right-hand side sequence of the IND I

X.rel Relation schema of attributes of the sequence X

Algorithm 2 �nds a cover of INDs holding in a given database d,
taking in input the set of unary INDs satis�ed by d (cf section 4.1).
The �rst step consists in computing candidate INDs of size 2, from
satis�ed INDs of size 1. Then, these candidates are tested against the
database. From the satis�ed ones, candidate INDs of size 3 are generated
and then tested against the database. This process is repeated until no
more candidates can be computed.

Algorithm 2 MIND
Input: d a database, and I1 the set of unary INDs satis�ed by d.
Output: Inclusion dependencies satis�ed by d

1: C2 := GenNext(I1);
2: i := 2;
3: while Ci 6= ∅ do
4: forall I ∈ Ci do

5: if d |= I then

6: Ii := Ii ∪ {I};
7: Ci+1 := GenNext(Ii);
8: i := i + 1;
9: end while

10: return ∪j<iIj

The theoretical complexity of such an algorithm is equal to the cost
of one test against the database (here the test of an IND), times the
number of satis�ed INDs plus the number of not satis�ed INDs whose all
specializations are satis�ed, i.e. the so-called negative border of satis�ed
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INDs. For other complexity results of levelwise algorithms, the reader
is referred to (Mannila and Toivonen, 1997).

4.2.4. Candidate INDs generation
The function GenNext extends the principle of candidate generation,
whose archetype is the AprioriGen function (Agrawal and Srikant, 1994)
used for frequent itemsets discovery. Algorithm 3 details the function
GenNext. It is made up of two main parts: a generation step and a
pruning step, both based on the anti-monotony property of the relation
� w.r.t. INDs satis�ability (cf. property 1).

Algorithm 3 GenNext : Generation of candidate INDs of size i + 1
Input: Ii, inclusion dependencies of size i.
Output: Ci+1, sequence of candidate inclusion dependencies of size

i+1
1: insert into Ci+1

2: select p.lhs.rel”[”p.lhs[1], p.lhs[2], ..., p.lhs[i], q.lhs[i]”]” ” ⊆ ”
p.rhs.rel”[”p.rhs[1], p.rhs[2], ..., p.rhs[i], q.rhs[i]”]”

3: from Ii p, Ii q
4: where p.lhs.rel = q.lhs.rel and p.rhs.rel = q.rhs.rel
5: and p.lhs[1] = q.lhs[1] and p.rhs[1] = q.rhs[1]
6: and . . .
7: and p.lhs[i− 1] = q.lhs[i− 1] and p.rhs[i− 1] = q.rhs[i− 1]
8: and p.lhs[i] < q.lhs[i]
9: and p.rhs[i] <> q.rhs[i]
10: for all I ∈ Ci+1 do

11: for all J ≺ I and J of size i do
12: if J /∈ Ii then

13: Ci+1 = Ci+1 \ {I}
14: end if

15: end for

16: end for

The generation step (lines 1 to 8) constructs candidate INDs from
satis�ed INDs of the previous level. Let I1 = Ri[XA] ⊆ Rj [Y C] and
I2 = Ri[XB] ⊆ Rj [Y D] be two satis�ed INDs of level i, with |X| =
|Y | = i− 1, A < B and C 6= D. Then the candidate: I3 = Ri[XAB] ⊆
Rj [Y CD] is formed.

Example 5

From the running example, Table IV shows satis�ed INDs at level 1 (I1)
in the �rst column, classi�ed by relations. Candidate INDs of size 2 are
represented in the second column of the table.
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Table IV. Generation of C2 from I1.

I1 C2

R to S

R[A] ⊆ S[E] R[AB] ⊆ S[EF ]

R[B] ⊆ S[F ] R[AC] ⊆ S[EG]

R[C] ⊆ S[G] R[BC] ⊆ S[FG]

R to T

R[A] ⊆ T [K] R[AB] ⊆ T [KL]

R[B] ⊆ T [L] R[AD] ⊆ T [KI]

R[D] ⊆ T [I] R[AD] ⊆ T [KJ ]

R[D] ⊆ T [J ] R[BD] ⊆ T [LI]

R[BD] ⊆ T [LJ ]

S to T

S[E] ⊆ T [K] S[EF ] ⊆ T [KL]

S[F ] ⊆ T [L] S[EH] ⊆ T [KJ ]

S[H] ⊆ T [J ] S[FH] ⊆ T [LJ ]

T to R T [I] ⊆ R[D]

T to T T [I] ⊆ T [J ]

The pruning step (lines 9 to 14) removes all candidates which do not
comply with the anti-monotony property.

Example 6 To illustrate this pruning step, suppose that we have only
two INDs satis�ed at the level 2: R[AB] ⊆ S[EF ] and R[AC] ⊆ S[EG].
Then, the generation step constructs R[ABC] ⊆ S[EFG] as a candidate
IND at the level 3.
The pruning step veri�es that each IND of size 2 which specializes
R[ABC] ⊆ S[EFG] are satis�ed at level 2. Since R[BC] ⊆ S[FG]
is not satis�ed, the candidate is removed from C2.

Remark on GenNext The GenNext algorithm generates INDs with-
out repeated attributes neither in the left-hand sides nor in the right-
hand sides. However, repeated attributes are sometimes allowed in IND
expressions, see for instance (Mitchell, 1983), and could be useful in
some applications. We now point out how they could be safely inte-
grated into GenNext:

− in line 8, replace the operator < by ≤ to allow repeated attributes
in the left-hand sides;

− remove line 9 to generate repeated attributes in the right-hand
sides;
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5. Approximate IND discovery

The algorithms presented so far deals with the discovery of inclusion
dependencies satis�ed in a database. When some data inconsistencies
exist in the database, INDs that should be valid in the database schema
might not be satis�ed in that particular instance. As a consequence, we
need to de�ne some error measures for the satisfaction of an IND, in such
a way that small inconsistencies can be taken into account, as already
done for Functional Dependencies (FDs) (Kivinen and Mannila, 1995).
In fact, this notion is known as approximate IND and an interesting
error measure is given by function g′

3 (the name g′
3 comes from the

measure g3 for FDs (Kivinen and Mannila, 1995)) and is de�ned as
follows (Lopes et al., 2002b):

g′
3(R[X] ⊆ S[Y ],d) =

1− max{|πX(r′)| s.t. r′ ⊆ r and (d − {r}) ∪ {r′} |= R[X] ⊆ S[Y ]}
|πX(r)|

Informally, g′
3 is the proportion of values in X one has to remove

(independently of their occurrences) to obtain a database d′ such that
d′ |= R[X] ⊆ S[Y ].

De�nition 1 Given an user-supplied threshold ε ∈ [0; 1], an approxi-
mate IND I is satis�ed in a database d with respect to ε, denoted by
d |=ε I, i� g′

3(I,d) ≤ ε.

Example 7 In Table I, g′
3(S[H] ⊆ T [I],d ) = 1/3. If we consider a

threshold ε = 0.33, then d |=0.33 S[H] ⊆ T [I].

An algebraic property follows from the de�nition of g′
3, since it is

just enough to compute the proportion of values of the left-hand side
which do not belong to the right-hand side.

g′
3(R[X] ⊆ S[Y ],d) =

|πX(r)− πY (s)|
|πX(r)|

SQL queries can thus quite easily be devised to compute that error
measure.

5.1. Unary approximate IND discovery

Approximate unary INDs can be discovered through the same organiza-
tion of data as for exact unary IND discovery. Once the extraction
context has been computed (cf section 4.1), Proposition 2 gives a char-
acterization of approximate unary INDs.
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Proposition 2 Given an user-supplied threshold ε, a database d, a data
type t and the corresponding extraction context Dt(d ) = (V, U, B),

d |=ε A ⊆ B

⇐⇒

1−
∑

v∈V|(v,A)∈B

|{v ∈ V | (v,A) ∈ B and (v,B) ∈ B}|
|{v ∈ V | (v,A) ∈ B}|

≤ ε

where A,B ∈ U.
Thanks to this characterization, satis�ed approximate INDs can be

discovered in only one pass of the extraction context. Note that, if we
see the extraction context as a transaction database, in which attributes
are items and values are transactions, satis�ed approximate unary INDs
with respect to a threshold ε correspond to approximate association
rules whose left and right-hand sides are made up of only one attribute,
with a con�dence higher than (1− ε).

Algorithm 4 computes approximate unary INDs in a database, for a
given type t and a threshold ε. The idea is quite similar of that used
for exact unary INDs. For each attribute A, we construct a set
rhs(A) = {< B,nAB >} where B denotes attributes of the same type
as A, and nAB is the number of lines in the extraction context where
B and A appear together.

Algorithm 4 Approximate unary IND inference
Input: the extraction context (V, U, B), associated with d and t, a threshold ε.
Output: AI1 the set of approximate unary INDs satis�ed by d between attributes

of type t.
1: for all A ∈ U do rhs(A) = {< B, 0 >| B ∈ U};
2: for all v ∈ V do

3: for all A s.t. (v, A) ∈ B do

4: for all < B, nAB >∈ rhs(A) s.t. (v, B) ∈ B do

5: nAB = nAB + 1;
6: for all A ∈ U do

7: for all < B, nAB >∈ rhs(A) \ {< A, nAA >} do
8: if 1− (nAB/nAA) ≤ ε then
9: AI1 = AI1 ∪ {A ⊆ B};
10: return AI1.

The complexity of this algorithm is similar to the complexity of
Algorithm 1, i.e. linear in the size of the binary relation of the extraction
context. Indeed, the size of rhs(A) being very small with respect to the
size of U, the complexity of lines 4 and 5 can be assimilate to a constant.
The only overhead to compute approximate unary INDs with respect
to exact unary INDs just concerns the size of extraction contexts, to
stock the number of co-occurrences of attributes.
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The next example illustrates approximate unary IND inference on
the running example.

Example 8 Let us consider the type real (cf Table II) given in exam-
ple 1. An initialization step constructs the following sets:
rhs(D) = rhs(H) = rhs(I) = rhs(J) =
{< D, 0 >,< H, 0 >,< I, 0 >,< J, 0 >}.
Then, consider the �rst line of the extraction context: l1 = {J}. The
rhs sets are updated as follows:
rhs(D) = {< D, 0 >,< H, 0 >,< I, 0 >,< J, 0 >},
rhs(H) = {< D, 0 >,< H, 0 >,< I, 0 >,< J, 0 >},
rhs(I) = {< D, 0 >,< H, 0 >,< I, 0 >,< J, 0 >},
rhs(J) = {< D, 0 >,< H, 0 >,< I, 0 >,< J, 1 >}.
From the second line l2 = {D,H, I, J} we get:
rhs(D) = {< D, 1 >,< H, 1 >,< I, 1 >,< J, 1 >},
rhs(H) = {< D, 1 >,< H, 1 >,< I, 1 >,< J, 1 >},
rhs(I) = {< D, 1 >,< H, 1 >,< I, 1 >,< J, 1 >},
rhs(J) = {< D, 1 >,< H, 1 >,< I, 1 >,< J, 2 >}.
These operations are repeated for each line of the extraction context.
Finally, after one pass, the result is:
rhs(D) = {< D, 3 >,< H, 2 >,< I, 3 >,< J, 3 >},
rhs(H) = {< D, 2 >,< H, 3 >,< I, 2 >,< J, 3 >},
rhs(I) = {< D, 3 >,< H, 2 >,< I, 3 >,< J, 3 >},
rhs(J) = {< D, 3 >,< H, 3 >,< I, 3 >,< J, 5 >}.
From these sets, the error measure g′

3 can be computed for each unary
IND. For example: g′

3(D ⊆ H,d ) = 1− 2
3 , g′

3(J ⊆ I,d ) = 1− 3
5 .

The output is made up of all INDs with an error measure lower than or
equal to the threshold.

5.2. N-ary approximate IND discovery

For approximate INDs of size 2 or more, a levelwise approach is still
well founded.

Property 2 Let I1, I2 be 2 candidate INDs such that I1 � I2.
If d 6|=ε I1 then d 6|=ε I2.

Proof This result comes from the consideration that, given I1 and I2

two candidate INDs in a database d, we have: I1 � I2 ⇒ g′
3(I1,d) ≤

g′
3(I2,d), which is obvious from the de�nition of g′

3 and of the relation
�. 2

Example 9

In the running example of Table I, we have g′
3(S[H] ⊆ T [I],d ) = 1/3,

and g′
3(S[G] ⊆ T [K],d ) = 1/2. Thanks to property 2, we know that
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g′
3(S[GH] ⊆ T [KI],d ) ≥ 1/2. Here we have g′

3(S[GH] ⊆ T [KI],d ) =
1.

Thus, Algorithm 2 can be applied with only minor changes: adding
an input threshold ε, and replacing d |= I by d |=ε I (line 5).

6. How to access the database ?

Whatever the algorithm used to infer INDs, particular care should be
devoted to test the satisfaction of an IND. SQL queries can be devised
to achieve this task, according to the simple algebraic property given
below: Let d be a database over a database schema R, where r, s ∈ d

are relations over R,S ∈ R respectively. We have:

d |= R[X] ⊆ S[Y ] ⇐⇒ |πX(r)− πY (s)| = 0

This property can be e�ciently tested for instance with a NOT
EXISTS query.
Given R[A1...An] ⊆ S[B1...Bn], the Figure 1 shows SQL query imple-
menting the satisfaction test against a database (under Oracle v9i).

SELECT /*+ USE_HASH (r) */ X

FROM r

WHERE NOT EXISTS ( SELECT *

FROM s

WHERE r.A_1 = s.B_1

AND ...

AND r.A_n = s.B_n )

AND ROWNUM < 2

Figure 1. NOT EXISTS query to test R[A1...An] ⊆ S[B1...Bn]

This query enforces the optimizer to implement the join using hash
tables (hint USE_HASH). Among all the tested physical plans, this
query gives the best results. The selection condition ROWNUM<2 enforces
the query to stop as soon as a tuple contradicts the IND. This technique
implies better performances in case of false INDs.

We have also compare the use of a NOT EXISTS query with the
use of NOT IN query and MINUS query, which are also natural to
test IND satisfaction. In our experimental conditions, execution times
using NOT EXISTS query were signi�cantly better than for other
queries, in the both cases of satis�ed and unsatis�ed INDs. We do not
give details here about these comparisons, since their implementation,
optimization and performances strongly depend on the RDBMS.

MindJIIS.tex; 18/09/2007; 22:28; p.17



18

Another solution would be to use a loosely coupled approach (e.g.
PL/SQL programs) to test an IND against a database. Despite many
optimizations performed on PL/SQL code under Oracle to avoid so
called context switching (Sarawagi et al., 2000) between the RDBMS
and the external process, performances of such an approach were poor in
our experimental conditions. We are currently working on tightly coupled
approach using User De�ned Functions of DB2 RDBMS as proposed in
(Sarawagi et al., 2000).

For testing approximate n-ary INDs, the query of Figure 1 can be
easily adapted to compute the number of distinct values which disqual-
ify the IND. However, to compute the error measure, it is necessary to
know the left-hand side cardinality of the IND, for instance thanks to
a COUNT DISTINCT query.

Since the NOT EXISTS queries gave us better results in our ex-
perimental conditions, they were used in our experiments described in
the next section.

7. Experimental results

7.1. Materials

7.1.0.1. Experimental conditions All our experiments were performed
on an Intel Pentium III with a CPU clock rate of 500 Mhz, 384 MB of
main memory and running Windows 2000 professional. Algorithms were
implemented using the C++ language and STL (Standard Template
Library). Oracle 9 was used to perform tests while RDBMS accesses
were done via ODBC.

7.1.0.2. Test databases The test databases are of two kind: a real-life
database and a set of synthetic databases

The real-life database is the movies database, available from the web
at the UCI KDD Archive (Bay, 1999). It contains information about a
list of movies; details are given in Table V.

The database has been imported in Oracle 9 using SQL*Loader.
Schema information is available on the web site; the set of valid INDs
is made up of 2 INDs of size 3, 7 INDs of size 2 and 8 INDs of size 1.
We will reuse this information to assess the quality of the knowledge
we will able to produce from the data.

To test performances of our programs, we created synthetic databa-
ses, all with the same set of satis�ed INDs. In order to be as close as
possible from real-life databases, we chose to enforce the following INDs
in our synthetic databases: 10 unary INDs, 15 INDs of size 2, 20 of size
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Table V. Characteristics of the movies database

relations Nb of attributes Nb of rows

ACTORS 12 6728

CASTS 7 45442

MOVIES 11 11405

PEOPLE 11 3304

REMAKES 7 1188

STUDIOS 9 195

3, 15 of size 4, 6 of size 5 and 1 of size 6. To do so, we have implemented
a chase-like procedure to �ll in these databases. All attributes in these
databases are of the same type and have approximately 70% of distinct
values. The databases only di�er in the number of rows and the number
of attributes, which can be set to study the scalability of our proposal.
The synthetic databases can be downloaded from
http://www.isima.fr/�demarchi/dbacomp/.

7.2. Unary IND discovery

We ran our algorithm for unary IND discovery against the movies
database, and we found 13 unary INDs. The 8 unary INDs valid in
the schema of movies were discovered, and 5 unary INDs were �ac-
cidentally� satis�ed in this instance, i.e. they are not property of the
schema. The execution time for unary IND inference against movies
was only of 12 seconds.

In order to show the e�ciency of the data re-organization, we propose
to compare our data-mining algorithm with the approach consisting
in generating candidate unary INDs and then test them against the
database (Bell and Brockhausen, 1995) referred to as test and generate
approach in the sequel. In this case, if N is the number of attributes
(all of the same data type), approximately N2 candidates7 have to
be tested against the database. If the projection cardinality of each
attribute is known a priori, only N2/2 candidates have to be tested,
since R[A] ⊆ S[B] ⇒ |πA(r)| ≤ |πB(r)|. In the sequel, we consider that
the test and generate approach consists in testing N2/2 candidates.

Initially, we set the number of attributes to 50, and test the two
methods for di�erent numbers of tuples (Figure 2). Then, we set the

7 Since a very small proportion of these candidates are satis�ed, few of them can
be avoided using transitivity property. Without loss of generality, we do not consider
such optimization.
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Figure 2. Execution time to discover unary INDs for di�erent numbers of rows and
50 attributes

Figure 3. Execution time to discover unary INDs for di�erent numbers of attributes
and 90 000 rows

number of tuples to 90 000, while varying the number of attributes
(Figure 3).

7.2.1. Discussion
Results in Figures 2 and 3 show with evidence that our algorithm
outperforms the test and generate approach.

Number of scans The bene�t of our algorithm can be explained by
studying the number of scans.

Let us consider without loss of generality a database made up of N
attributes of the same type, all relations with n tuples. As mentioned,
the test and generate approach leads to approximately N2/2 tests. If
each test is performed through a SQL query, it leads to one full scan of
each side of the candidates, i.e. 2.(N2/2) = N2 full scans.

In our approach, to build the extraction contexts, attributes are �rst
scanned by the RDBMS. Then, each attribute is given, through cursors,
to an external program which inserts the values in the extraction context
in construction. Thus, there are N full scans (on tables) provided by the
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RDBMS, and again N full scans (on cursors) to insert in the extraction
context, i.e. 2.N full scans.

If extraction context can �t in main memory, our approach does not
incur I/O cost anymore. Thus, it leads to reduce the number of scans
by N/2. In Figure 2, one can verify that there is a factor of N/2 (here
50/2=25) between the two methods for 90000 tuples.

In Figure 3, the number of tuples is �xed, and thus the time com-
plexity for a scan is constant. Note that the time complexity for the
test and generate approach is e�ectively quadratic in the number of
attributes while it is linear for our data-mining algorithm.

Size of the extraction context For N attributes of a given type, the
size of the extraction context clearly depends on the number of distinct
values token by these attributes. If nt is the number of distinct values
of type t, and ct is the number of bits needed to store a value of type
t, then the size of the extraction context corresponding to t is approx-
imatively (N + ct).nt bits. In our largest synthetic database, there are
50 attributes of the same type and 350.000 distinct integer values (32
bits) in the database, that leads to a size of 3,5 Megabytes. For a large
production database, with 500 attributes and 3.500.000 distinct values,
the extraction context would have a size of 350 Megabytes, that can be
kept in main memory.

7.3. N-ary IND discovery

We ran our program for n-ary IND discovery against movies, and we
found the following INDs: 1 IND of size 3 and 6 INDs of size 2. One
of the INDs of size 2 was not property of the movies schema. Remark
that 1 IND of size 3 and 2 INDs of size 2 were not discovered by the
program, due to some errors occurring in movies. The execution time
was only 15 seconds for the whole task of IND discovery (unary + n-ary
IND discovery).

Figure 4 gives execution times against synthetic databases for the
whole task of IND inference, including times to �nd unary INDs.

Despite the inherent complexity of the IND inference problem, exe-
cution times do not exceed 50 minutes in our experimental conditions.
The execution time is approximately linear w.r.t. the number of tuple,
which comes from the fact that execution time for a test is also linear
w.r.t the number of tuples.
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Figure 4. Execution time for an exhaustive IND discovery in synthetic databases

7.4. Approximate IND discovery

Since our program for n-ary IND discovery missed some INDs that
were valid in the schema of movies, the program has been run again to
discover approximate INDs, allowing an error rate of 0.03. This time, 2
INDs of size 3, 9 INDs of size 2 and 13 INDs of size 1 were discovered.
All the INDs valid in the schema were among the discovered knowledge;
2 INDs of size 2 and 5 INDs of size 1 were not properties of the movies
schema. The execution time for this task was only of 21 seconds.

8. Conclusion

The discovery of inclusion dependencies in relational databases is a (rel-
atively new) data mining problem useful in many database applications.
To the best of our knowledge, the work presented in this paper is the
�rst one addressing the di�erent aspects of this important problem: we
�rst considered the problem of unary IND discovery, since they turn out
to be very common in operational databases. We proposed an approach
whose interest is to reduce the number of database accesses w.r.t. naive
approaches. For the sake of completeness, we proposed to discover all
remaining INDs using the framework of levelwise algorithms. We also
showed how approximate INDs could be easily discovered with our
approach; the main goal is to deal with inconsistences that can ap-
pear among tuples in real-life databases. Experiments on small real-life
database showed the feasibility and the interest of our proposal. Encour-
aging results have been presented, considering synthetic medium-size
databases.

This work in integrated in a tool called DBA Companion (Lopes
et al., 2004) devoted to logical database tuning (De Marchi et al., 2003).
Its objective is to be able to connect any database (independently of
the underlying RDBMS) in order to give some insights to DBA/analyst
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such as the FDs satis�ed in a given relation, the inclusion dependen-
cies satis�ed by the database or small informative examples of a given
database.

References

Abiteboul, S., R. Hull, and V. Vianu: 1995, Foundations of Databases. Reading,
Mass.: Addison-Wesley.

Afrati, F. N., A. Gionis, and H. Mannila: 2004, `Approximating a collection of
frequent sets'. In: W. Kim, R. Kohavi, J. Gehrke, and W. DuMouchel (eds.):
International Conference on Knowledge Discovery and Data Mining (KDD'04),
Washington, USA. pp. 2�19, ACM.

Agrawal, R. and R. Srikant: 1994, `Fast Algorithms for Mining Association Rules in
Large Databases'. In: J. B. Bocca, M. Jarke, and C. Zaniolo (eds.): International
Conference on Very Large Data Bases (VLDB'94), Santiago de Chile, Chile. pp.
487�499, Morgan Kaufmann.

Albrecht, M., E. Buchholz, A. Düsterhöft, and B. Thalheim: 1995, `An Informal and
E�cient Approach for Obtaining Semantic Constraints Using Sample Data and
Natural Language Processing'. In: L. Libkin and B. Thalheim (eds.): Semantics
in Databases, Vol. 1358 of Lecture Notes in Computer Science. pp. 1�28, Springer.

Bauckmann, J., U. Leser, F. Naumann, and V. Tietz: 2007, `E�ciently Detect-
ing Inclusion Dependencies'. In: International Conference on Data Engineering
(ICDE'07). pp. 1448�1450, IEEE Computer Society.

Bay, S. D.: 1999, `The UCI KDD Archive [http://kdd.ics.uci.edu]'. Technical
report, Irvine, CA: University of California, Department of Information and
Computer Science.

Bell, S. and P. Brockhausen: 1995, `Discovery of Constraints and Data Dependencies
in Databases (Extended Abstract)'. In: N. Lavrac and S. Wrobel (eds.): European
Conference on Machine Learning (ECML'95), Crete, Greece, Vol. 912 of Lecture
Notes in Computer Science. pp. 267�270, Springer.

Calders, T. and J. Wijsen: 2001, `On Monotone Data Mining Languages'. In: G.
Ghelli and G. Grahne (eds.): International Workshop on Database Programming
Languages (DBPL'01), Frascati, Italy. Springer.

Casanova, M., R. Fagin, and C. Papadimitriou: 1984, `Inclusion dependencies and
their interaction with functional dependencies'. Journal of Computer and System
Sciences 24(1), 29�59.

Casanova, M. A., L. Tucherman, and A. L. Furtado: 1988, `Enforcing Inclusion De-
pendencies and Referencial Integrity'. In: F. Bancilhon and D. J. DeWitt (eds.):
International Conference on Very Large Data Bases (VLDB'88), Los Angeles,
California, USA. pp. 38�49, Morgan Kaufmann.

Cheng, Q., J. Gryz, F. Koo, T. Y. C. Leung, L. Liu, X. Qian, and B. Schiefer:
1999, `Implementation of Two Semantic Query Optimization Techniques in DB2
Universal Database'. In: M. P. Atkinson, M. E. Orlowska, P. Valduriez, S. B.
Zdonik, and M. L. Brodie (eds.): International Conference on Very Large Data
Bases (VLDB'99), Edinburgh, Scotland, UK. pp. 687�698, Morgan Kaufmann.

Dasu, T., T. Johnson, S. Muthukrishnan, and V. Shkapenyuk: 2002, `Mining
Database Structure; Or, How to Build a Data Quality Browser'. In: ACM
SIGMOD Conference 2002. Madison, Wisconsin, USA, pp. 240�251.

MindJIIS.tex; 18/09/2007; 22:28; p.23



24

De Marchi, F., S. Lopes, and J.-M. Petit: 2002, `E�cient Algorithms for Mining
Inclusion Dependencies'. In: C. S. Jensen, K. G. Je�ery, J. Pokorný, S. Saltenis,
E. Bertino, K. Böhm, and M. Jarke (eds.): International Conference on Extending
Database Technology (EDBT'02), Prague, Czech Republic, Vol. 2287 of Lecture
Notes in Computer Science. pp. 464�476, Springer.

De Marchi, F., S. Lopes, J.-M. Petit, and F. Toumani: 2003, `Analysis of existing
databases at the logical level: the DBA companion project'. ACM Sigmod Record
32(1), 47�52.

De Marchi, F. and J.-M. Petit: 2003, `Zigzag : a new algorithm for discovering large
inclusion dependencies in relational databases'. In: International Conference on
Data Mining (ICDM'03), Melbourne, Florida, USA. pp. 27�34, IEEE Computer
Society.

De Marchi, F. and J.-M. Petit: 2005, `Approximating a Set of Approximate Inclusion
Dependencies'. In: International Conference on Intelligent Information System
(IIS'05). Gdansk, Poland, pp. 633�640, Springer-Verlag.

Ganter, B. and R. Wille: 1999, Formal Concept Analysis. Springer-verlag.
Gryz, J.: 1998, `Query Folding with Inclusion Dependencies'. In: International Con-

ference on Data Engineering (ICDE'98), Orlando, Florida, USA. pp. 126�133,
IEEE Computer Society.

Han, J. and M. Kamber: 2000, Data Mining: Concepts and Techniques. Morgan
Kaufmann.

Huhtala, Y., J. Karkkainen, P. Porkka, and H. Toivonen: 1999, `TANE: An E�cient
Algorithm for Discovering Functional and Approximate Dependencies'. The
Computer Journal 42(2), 100�111.

Kantola, M., H. Mannila, K. J. Raïha, and H. Siirtola: 1992, `Discovering functional
and inclusion dependencies in relational databases'. International Journal of
Intelligent Systems 7, 591�607.

Kivinen, J. and H. Mannila: 1995, `Approximate inference of functional dependencies
from relations'. Theoretical Computer Science 149(1), 129�149.

Koeller, A. and E. A. Rundensteiner: 2003, `Discovery of high-dimentional Inclusion
Dependencies (Poster)'. In: Poster session of International Conference on Data
Engineering (ICDE'03). IEEE Computer Society.

Levene, M. and G. Loizou: 1999, A Guided Tour of Relational Databases and Beyond.
Springer.

Levene, M. and M.W. Vincent: 2000, `Justi�cation for Inclusion Dependency Normal
Form'. IEEE Transactions on Knowledge and Data Engineering 12(2), 281�291.

Lopes, S., F. De Marchi, and J.-M. Petit: 2004, `DBA Companion: A Tool for
Logical Database Tuning'. In: Demo session of International Conference
on Data Engineering (ICDE'04). http://www.isima.fr/�demarchi/dbacomp/,
IEEE Computer Society.

Lopes, S., J.-M. Petit, and L. Lakhal: 2002a, `Functional and Approximate Depen-
dencies Mining: Databases and FCA Point of View'. Special issue of JETAI
14(2/3), 93�114.

Lopes, S., J.-M. Petit, and F. Toumani: 2002b, `Discovering Interesting Inclusion
Dependencies: Application to Logical Database Tuning'. Information System
17(1), 1�19.

Mannila, H. and K.-J. Räihä: 1986, `Inclusion Dependencies in Database Design'.
In: International Conference on Data Engineering (ICDE'86), Los Angeles,
California, USA. pp. 713�718, IEEE Computer Society.

Mannila, H. and K. J. Raïha: 1994, The Design of Relational Databases. Addison-
Wesley, second edition.

MindJIIS.tex; 18/09/2007; 22:28; p.24



25

Mannila, H. and H. Toivonen: 1997, `Levelwise Search and Borders of Theories in
Knowledge Discovery'. Data Mining and Knowledge Discovery 1(1), 241�258.

Miller, R. J., M. A. Hernandez, L. M. Haas, L. Yan, C. T. H. Ho, R. Fagin, and L.
Popa: 2001, `The Clio Project: Managing Heterogeneity'. ACM SIGMOD Record
30(1), 78�83.

Mitchell, J. C.: 1983, `The Implication Problem for Functional and Inclusion
Dependencies'. Information and Control 56(3), 154�173.

Novelli, N. and R. Cicchetti: 2001, `Functional and Embedded Dependency Inference:
a Data Mining Point of View'. Information System 26(7), 477�506.

Sarawagi, S., S. Thomas, and R. Agrawal: 2000, `Integrating Association Rule Mining
with Relational Database Systems: Alternatives and Implications'. Data Mining
and Knowledge Discovery 4(2/3), 89�125.

Wyss, C., C. Giannella, and E. Robertson: 2001, `FastFDs: A Heuristic-Driven
Depth-First Algorithm for Mining Functional Dependencies from Relation In-
stances'. In: Y. Kambayashi, W. Winiwarter, and M. Arikawa (eds.): Data
Warehousing and Knowledge Discovery (DaWaK'01), Munich, Germany, Vol.
2114 of Lecture Notes in Computer Science. pp. 101�110.

MindJIIS.tex; 18/09/2007; 22:28; p.25


