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(a) Candelstick Theater

(b) Cabin Lit by a Simple Sky

(c) The MLT Room

Figure 1: Three 1024 x 1024 pictures rendered in 10 minutes with Coherent Metropolis Light Transport and about 1000
mutations per pixel. We accelerate the Metropolis Light Transport algorithm by adding a new class of Multiple-Try coherent
mutations. With these mutations, we are now able to use ray packets or ray packet frustums to speed up the intersections and

the BRDF evaluations.

Abstract

We present in this paper an effective way to implement coherent versions of Metropolis Light Transport (MLT)
by using a class of Multiple-Try mutation strategies. Indeed, even if MLT is an unconditionally robust rendering
technique which can handle any kind of lighting configurations, it does not exploit any computation coherency.
For example, it is difficult to cluster similar light rays into beams or cones, to perform SIMD computations on
vectorized data or to efficiently use geometry caching with non-tessellated scenes. To make Metropolis Light
Transport suitable to most of the currently existing commercial renderers, we therefore propose to divide the
algorithm into two parts: the first one explores the entire integration space in a way very similar to the initial
implementation of Metropolis Light Transport while the second one "splits" in an unbiased way each sample into
a family of arbitrarily coherent samples. We finally propose to illustrate the efficiency of our approach with an
example of implementation of coherent ray tracing using SIMD instructions.

1. Introduction

Simulating most of lighting phenomenas in general environ-
ments is a difficult problem. To achieve such a result, "global
illumination algorithms" based on Monte-Carlo quadrature,
which propose to simulate the response of a given sensor
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to the incoming light flux by directly sampling light paths,
are certainly the most successful solutions. In this article,
we present a new Monte-Carlo sampling strategy, Coherent
Metropolis Light Transport (CMLT'), which consists in sam-
pling the integration domain proportionally to the integrand.
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Conversely to the previous implementations of Metropolis
Light Transport, our method proposes to reorganize the com-
putations to make them more efficient (see Figure 3). Our
goal is both to maintain the very good theoretical and numer-
ical properties of the original algorithm and to accelerate the
computation speed by adapting the MLT sampler to the re-
cent advances achieved in ray tracing literature. To be more
precise, we will present a new class of mutations which will
allow us to combine the Metropolis Light Transport Algo-
rithm and the use of ray packets or ray packet frustums. This
better control of the ray coherency will lead to a much faster
rendering technique.

The remainder of the paper is organized as follows. Sec-
tion 2 presents related work and Section 3, an overview of
our contribution. Section 4 reminds how the global illumi-
nation problem can be formalized as an integration problem
suitable for Monte-Carlo integration and details the intrin-
sic limitations of Metropolis Light Transport. Section 5 ex-
poses in details the new sampling and mutation strategies we
set up to compute global illumination by combining MLT
and ray packets. Section 6 gives all the necessary details to
achieve the implementation of our technique. In Section 7,
we present the results we obtained and some comparisons
with other related approaches. The limitations and future
work are finally given in Section 8 and Section 9 concludes.

2. Related Work

The rendering equation first introduced by Kajiya [Kaj86]
is the basis of almost all rendering techniques. To solve
this equation, the most efficient and versatile techniques are
Monte-Carlo approaches: they are robust regardless of the
scene layout and the lighting configuration and are able to
compute unbiased solutions. The first Monte-Carlo global
illumination algorithm, the path tracing approach proposed
by Kajiya, sampled the light reaching the image plane by
casting light paths backwards from the eye point. Unfortu-
nately, as all Monte-Carlo numerical schemes, this technique
suffers from limitations due to variance problems. To tackle
this issue, it was therefore widely extended: the light tracing
algorithm [DLW93] builds paths starting from a light source
instead of the camera. Bidirectional path tracing, introduced
by Lafortune and Willems [LW93] then Veach and Guibas
[VGY4], proposes to sample two independent paths, one gen-
erated from the camera, the other one from a light source.
However, despite their robustness, most Monte-Carlo sam-
plers are often inefficient since they do not have enough
global context to quickly find all the relevant light transport
paths.

To solve these issues, Veach and Guibas developed an in-
novative numerical algorithm, Metropolis Light Transport
(MLT) [VGY97]. Contrary to independent Monte-Carlo es-
timators, a Metropolis sampler is able to exploit coherency
in path space and therefore to preserve the sampling context.
Since 1997, several researchers have been improving and ex-

ploring the Metropolis-Hastings algorithm and its applica-
tion to computer graphics. Pauly et al. [PKKO00] extended it
by adding new Monte-Carlo Markov Chain (MCMC) mu-
tations that are able to handle participating media. Kele-
men et al. [KSKACO02] simplified the implementation of
MLT and increased the acceptance rate by making it work-
ing in the space of uniform random numbers. More re-
cently, Cline et al. developed an efficient algorithm that com-
bines Metropolis mutation strategies with a conventional
path tracer [CTEOS]. They first generate a set of path sam-
ples from the camera to the light sources, and then use a
sequence of MCMC mutations to redistribute in an unbiased
way the power of each path over the image plane. Other re-
search works also focused on the theoretical and statistical
properties of the algorithm: Szirmay-Kalos et al. analyzed
the start-up bias problem of MLT [LPP99] while Ashikhmin
et al. characterized its variance [APSSO1].

Unfortunately, MLT and its derivatives remain slow since
it seems very difficult to exploit the computation coherency
or the current processor architectures and their extended in-
struction sets. (see Section 4 for more details about advan-
tages and drawbacks of Metropolis Light Transport). Nev-
ertheless, the ray tracing literature has recently known large
and decisive advances . Wald et al. developed in 1999 a vec-
torized ray tracing implementation using SSE SIMD instruc-
tions [WBWSO01]. Since his first implementation, Wald ap-
plied the coherent ray tracing algorithm to a large number
of applications like interactive global illumination or inter-
active photon mapping [Wal04]. More recently, Reshetov
et al. proposed a conservative extension of ray tracing, the
Multi-Level Ray Tracing Algorithm (MLRTA) [RSHOS]: by
clustering rays into pyramids, they managed to achieve real
time rendering with complex scenes on commodity comput-
ers. In 2006, other improvements were done and interactive
or real time frame rates were also achieved with dynamic
scenes [WBS06, WK06, GFW*06]. All these strategies nev-
ertheless require that rays are coherently grouped into beams
or pyramids or more generally that they are sufficiently co-
herent. This motivates our approach. We want to bring new
numerical tools to enhance and speed up MLT and make
it suitable to the recent advances made in ray tracing. Our
second goal is to propose a new organization of the method
such that MLT may be implemented in commercial render-
ers. Indeed, Christensen showed that ray tracing can be used
to render very complex scenes if ray coherency (which can
be tracked by ray differentials) is ensured [CLF*03, Chr06].

3. Overview of our algorithm

All the above problems therefore motivated our approach:
by making MLT coherent, we want to produce a first step to-
wards its implementation in production renderers. Algorithm
1 sums up our technique: it consists in extending the origi-
nal implementation of Metropolis Light Transport [VG97]
by adding new sequences of Multiple-Try mutations which
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can be easily handled by many efficient ray tracing meth-
ods. As shown in Figure 2, we divide the method into two
parts to ensure the computation coherency. First, we explore
the entire integration domain by generating a set of standard
light path samples with Metropolis Light Transport algo-
rithm. Then, for each MLT sample, we generate a family of
Multiple-Try candidates. This second part therefore creates
many candidates at once around the original MLT sampled
path and computes the intersections and BRDF evaluations
with ray packets or ray packet frustums. With this approach,
the variance of the estimators may be slightly increased but
its efficiency is considerably improved.

To sum up our method, we propose to amortize the in-
coherent Metropolis Light Transport sampling process by
using sequences of coherent, fast and parallel Multiple-Try
mutations for each sample obtained with MLT.

D diffuse
E eye

Figure 2: Coherent Metropolis Light Transport. Here, we
have mutated a part of path x given by a MLT algorithm. By
using a class of Multiple-Try mutations, we generate at once,
several sub-path candidates from the camera (represented by
dashed lines): these mutations allow us to cluster rays into
ray packets, to factorize cache accesses and so on.

4. Solving the Light Transport Problem with
Metropolis Light Transport

We present in this section a short overview of Monte-Carlo
integration, reintroduce the appropriate formalism to the
general light transport problem and finally detail Metropo-
lis Light Transport algorithm since it remains the core of our
new algorithm; this introduction will make the remainder of
the paper easier to understand. This formalism and the nota-
tions will be used further to present our strategy in Sections
5 and 6.

4.1. Monte-Carlo Integration

The purpose of Monte Carlo integration is to compute an
integral of the form:

I = /Q F() du(w) (1)

where Q is the integration domain, f is a real valued
function and u is a measure on Q. / is thus the mean of
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Algorithm 1 Coherent Metropolis Light Transport with
main chain length n and sub-chain length m
1: Set all pixel intensities to 0
2: Compute the power P received by the camera and
choose a first path sample x;
3: fori=1tondo
Vi Xi
for j=1tomdo
With a Multiple-Try mutation, "split" the current
sample y; into several candidates. Use ray packets
or ray packet frustums to compute ray intersections
or BRDF evaluations. Accumulate all the multiple-
try candidates proportionnaly to the power they
bring to the camera and the generalized Metropo-
lis ratio used to generate them. {see Section 5 for
more details}
: Choose the next sample y; ;.
8:  end for
9:  Generate the next candidate X; | with a Metropolis-
Hastings mutation.
10: end for
11: Scale the pixel intensities such that the power received
by the camera becomes Pe

SANRANE -~

function f on Q for the given measure u.

A Monte-Carlo integrator simply consists in sampling
one or several random variable families and evaluating the
integrand. Let ¥ = (¥;),en denote a sequence of random
variables. Under some specific conditions, Monte-Carlo
integration can compute the integral by reexpressing it as
the expected value of (Yp)n: I = E(Y). A common way
to generate a suitable random variable family (which is
for example used in common path tracing algorithms) is
to consider a sequence of independent random variables
X = (X,) with the same probability density function p
defined on (Q,u) and to use the weak law of large numbers

. — M)
such that: = E(Y)=E (p(X) .
4.2. Path Integral Formulation

As a Monte-Carlo integrator requires to formalize the
problem as an integration one, Veach proposed in his PhD
thesis [Vea97] to rewrite the light transport problem.

The Light Transport Equation
Veach first developed the "three point form" formulation
which describes the local lighting behavior of materials:

L(x/—>x”) = L, (x/—>x”) +

/ /\f (x—x") fs (x—xn”" ) G (x=x" ) dA(x) (2)
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L is the equilibrium outgoing radiance function, L, (x'—x"")
is the emitted radiance leaving x” in the direction of x”, and
G(x + x') is the geometric term between x and x’. It repre-
sents the differential beam between the two differential sur-
faces and is given by: G(x < x') =V (x — ﬂ)%
where V (x < x’) is the visibility term between x and x’
which is equal to 1 if x sees x” and zero otherwise. 8 (resp.
0)) is the angle between x — x’ and the surface normal
at x (resp. x'). fs(x—x"=x"") is the bidirectional scattering
distribution function of the material. M is finally the union
of all scene surfaces and A is the Lebesgue (i.e. uniform)
measure on M.

Since formalizing the light transport problem as an in-
tegral equation is however not suitable to Monte-Carlo
integration, we have to reexpress it.

The Measurement Equation

Any pixel computation can be first defined as the response
of a hypothetical sensor to the incident radiance field. If
We(j ) (x—x") is the responsivity of sensor j and /;, the power
it receives, we can define the measurement equation by:

I; = MX%U) (x—x')L(x—x") G(x—x') dA(x) dA(X') (3)

The Path Integral Formulation

Using the light transport equation, the measurement equa-
tion can be recursively expanded to be expressed in an
iterative way:

o0 R
Ij= k; /Mk+1 [Le(xkﬁxkfl)G(kakal) W (x1—x0) -
k—1

(TT £ 1=xi=xi-1) G(xi=xi4.1))dA (x0) .. dA(Xk)](4)

i=1

The measurement equation can be finally reformulated as:
= [ Y @duce) )

fm is defined for each path length k by extracting the
appropriate term from expansion (4), Q is the set of all finite
length paths and u the natural associated measure given by:

o0
uD) = Y w (DN Q) where Q is the set of all length
k=1

k paths and gy the associated product measure given by
du(xo...x;) = dA(xp) . ..dA(xy).

With this formalism, the global illumination problem
is now an integration problem which can be solved by
a Monte-Carlo algorithm. Furthermore, this formulation
directly handles any path of any length and therefore allows
us to change path length without any theoretical difficulty.

4.3. Metropolis Sampling for Light Transport

We give here a short overview of Metropolis-Hastings
algorithm and its application to the global illumination
problem as introduced by Veach and Guibas [VG97].

Metropolis-Hastings (MH) Algorithm

We first recall that a sequence of random variables (X ) )ren
is a Markov Chain if X(*) depends only on X/~ ") through a
transition function g(-|x”~"). The goal of the Metropolis-
Hastings algorithm is to construct a Markov Chain that has
given a equilibrium distribution oo by applying successive
mutations on its elements. This algorithm does not solve
a priori an integration problem but may provide a very
elegant variance reduction technique in the case where
many correlated integrals have to be computed.

The algorithm starts at ¢+ = O with the selection of
x© =40 randomly drawn from a distribution 7y with the
only requirement that mo(x(?)) > 0. Given X = x(*), the
algorithms computes X (1) a5 follows:

1. Sample a candidate value X from the transition function
g

2. Calculate the Metropolis-Hastings ratio R(x<’) ,x"),
where:

_ Moo (v) - g(ulv)

Ry) = sl

3. Sample a value for X (t+1) according to the following rule:

L) X*  with probability min{R, 1}
T X otherwise

It is possible to show that under general conditions, the
sequence (X (’)),GN is a Markov Chain with equilibrium
distribution oo .

With the MH sampler, we can therefore sample al-
most any distribution oo . If we ensure the ergodic property
of the chain (i.e. that all states are equally probable accord-
ing to T after a long time passed in the chain), we are
furthermore able to take all samples of the Markov Chain as
if they exactly follow the stationary distribution. To do this,
it is sufficient to ensure that g(x|y) > 0 when Too(x) > 0
and Too () > 0 since all states can be reached with only one
mutation step with a non-null probability.

Application to Light Transport

Veach and Guibas proposed to use a MH sampler as
a powerful variance reduction technique for the global
illumination problem. They first evaluate the total power P,
received by the camera and then use a Metropolis sampler to
compute correlated random variables with a density directly
proportional to integrand f (C), i.e. the power transmitted by
a path to the camera, as defined in equation 5. During the
sampling process, they finally estimate the pixel intensities
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by making a histogram of the samples taken from the
sampled distribution and by finally scaling the histogram
to approximate f(c). For a more detailed introduction to
Metropolis sampling and its application to rendering, we
refer to [Pha03].

Pros and Cons of Metropolis Light Transport
The decisive advantages of Metropolis Light Transport over
almost all other sampling and integration techniques are:

e its theoretical elegance since it proposes a unified solution
to the Light Transport Problem;

e its numerical robustness and its insensitive behavior in re-
lation to the scene configuration;

e its unbiasedness.

Unfortunately, two major drawbacks make it unsuitable for
production renderers.

e due to the very large number of random paths generated
for a given picture, flickering problems are difficult to
handle when rendering an animation;

e it has very poor algorithmic properties. Indeed, since the
samples are sequentially generated, the result of sample
n is needed to compute sample n + 1 and it therefore be-
comes very difficult to cluster rays. Furthermore, to make
the algorithm unbiased, large changes may happen from
one sample to the next one making caching strategies in-
efficient.

‘We propose in this article to tackle the second problem (we
will however present some ideas to handle the first one).
To achieve such a result, we will introduce in the computer
graphics research field a very successful sampler recently
presented in computational statistics [JSLOO].

5. Coherent Metropolis Light Transport

In this section, we present the core of our contribution, i.e.
the new mutation family we add to enhance the speed of
MLT.

5.1. MTMH Algorithm

The main reason for the poor coherency of computations
while using MLT is the fact that all {sampling/BRDF eval-
uation/accumulation} processes are sequential: the results
for path n are needed to evaluate the results for path n 4 1.
To break the sequential aspect of the algorithm, we propose
to generate many samples at once using a Multiple-Try
Metropolis Hastings Algorithm (MTMH).

The approach is to generate a larger number of candi-
dates thereby improving the exploration of T near x. One
of these proposals is then selected in a manner that ensures
that the chain has the correct limiting stationary distribution.
To achieve such a result, we still use a proposal distribution
g, with optional non-negative weights A(u,v) where the
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symmetric function A is presented further below. To ensure
the correct limiting stationary distribution, it is necessary to
require that g(x*|x")) > 0 if and only if g(x")|x*) > 0, and
that A(x"), x*) > 0 whenever g(x*|x)) > 0. Let x(*) denote
the starting value, and define w(u,v) = oo (v)g(u|v)A(u, v).
Then, for ¢ € N, the algorithm proceeds as follows:

1. Sample p independent proposals Xi ...X) (also called

MTMH candidates) from g(-|x"))

2. Randomly select a single proposal X j* from the set of pro-
posals , with probability proportional to w(x<’),X 7) for
j=1...p

3. Given X} = x}, sample p — 1 independent random vari-
ables X|™,...X," (also called MTMH competitors)

from the proposal density g(-|x7). Set X,™ = x®
4. Compute the generalized Metropolis-Hastings ratio:

_ ZZ:] W(x(l)axk*)

Re= =~
ZZ:] W(X}",Xk**)

5. Set

x () _ { X(; with probability min{Ry, 1}
=1 .0

Intuitively, instead of testing two samples x and x*, and
keeping only one of them with the respective probabilities 1-
min(1, R) and min(1, R) as done with a standard Metropolis-
Hastings sampler, MTMH proposes to test two families of
samples, (x7...x;) and (x7*...x;"), and to keep only one
element chosen from each family x} or x; = x;," with the
respective probabilities 1-min(1,Rg) and min(1, Rg).

otherwise

Figure 3 presents the two algorithms, MH and MTMH, as
they are used in our new implementation of MLT. As we can
see, to determine if the proposed candidate is accepted or re-
jected, the MTMH competitors represented by triangles are
tested against the MTMH candidates represented by disks.

5.2. Application to Metropolis Light Transport

MTMH can be applied in very different ways. The first ob-
vious implementation would be to replace all MH mutations
by MTMH mutations. Unfortunately, this technique would
provide very poor results: if you generate for example, 10
samples for each MTMH mutation, you will accumulate
only one candidate among the 10 ones, therefore resulting
in a very poor efficiency. Furthermore, if the candidates are
independently generated, the computation coherency can
not be ensured since bidirectional mutations (see [VG97]
for all necessary details about this mutation strategy) can
explore very different parts of the sample space. What we
propose here is therefore a bit different.

Unbiased Exploration of the Sample Space

We first generate a path sample family with only bidi-
rectional mutations by using standard MH proposals
(represented by squares in Figure 3). This sampling process
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Figure 3: Coherent Metropolis Light Transport. (a) presents the time representation of the algorithm while (b) shows it in

screen space where each light path is projected.

provides a sample family with a density equal to f (C)/ If ) [|
and the resulting estimator is therefore unbiased. Conversely
to the original MLT, we do use neither the caustic pertur-
bation strategy nor the lens one since our goal is to explore
the entire integration domain in an unbiased way and not to
provide efficient estimators. This first part finally provides a
set of n path samples (%;)i[1...»]

The "Lens Sub-path" Space

For a given path X;, the lens sub-path (x; 1 ...x; ) is the sub-
path of the form ES*DS*(L|D) (where we use Heckbert’s
regular expression notation [Hec90]; S, D, E, and L stands
for non-diffuse, diffuse, lens and light vertices respectively);
the light sub-path is on the contrary, the remainder of the
path (which can be void if the lens sub-path is already
connected to a light source). We can give an intuitive
representation of the lens and light sub-paths: if we would
want to discretize the incoming radiance field by a set of
Virtual Point Lights (as done in Instant Radiosity [Kel97]),
appropriate positions for these point lights would be the
second diffuse surface, i.e. the ending point of the lens
sub-path. This point can therefore be considered as a tem-
porary Virtual Point Light which illuminates the first diffuse
surface seen by the camera through specular reflections.

For each X;, we can therefore define lens sub-path spaces
Q! such as x belongs to Q¥ if and only if the light sub-path
of X is identical to the light sub-path of X;. This sub-space is
quite interesting since it is much smaller and can be entirely
explored by using only lens or caustics perturbations: once
the initial path ¥ is given, we just have to generate new sub-
paths around the lens sub-path of X to sample it.

Figure 2 gives, for example, the strategy that can be used
to explore a diffuse lens sub-path, i.e. a sub-path of the form
EDD: this approach consists here to sample rays from the
camera and to connect the computed intersection to the sec-
ond diffuse surface of the lens sub-path of x. If we are able

to cluster many camera rays before performing any intersec-
tion or BRDF evaluation, we will therefore be able to factor-
ize many common operations. As these strategies are imple-
mentation dependent, we give in Section 6 all the necessary
details to implement effective perturbations to explore the
lens sub-path space.

What we propose is therefore to use a MTMH sampler to
explore each sub-space Qfs and thus, to compute new un-
biased estimators from the initial unbiased estimator given
by the sample family (%;). Before extensively presenting the
MTMH version of the lens sub-path space, we first detail
a MH version and explain why it does not provide both
computation coherency and low-variance estimators. We
will finally show that the exploration of the lens sub-path
space with MTMH will give us the theoretical roots of a
coherent implementation of MLT .

Exploring the Lens Sub-path Space with MH

As the samples (X;); are generated proportionally to f (C),
each of them brings an equal quantity of energy to the
camera (equal to ||f()]|/n). By counting how many path
samples go through each pixel, we have, as shown by Veach
and Guibas, an unbiased estimator of the power received
by each pixel. From a given X;, we can then perform a
MH move to generate a new path y; with an acceptance
probability equal to R; and a transition function ¢(X;,5;). As
we use a MH move, the detailed balance is satisfied and
the energy transfered from X; to y; is equal to the energy
transfered from y; to X;. Therefore, the estimator obtained
by weighting the contributions of the two families (¥;); and
(7;)i by 1 — R; and R; is still unbiased.

This assumption can lead to several strategies to explore
the lens sub-path space. Cline et al. propose, for example,
to build a finite length Markov-Chain from each X; and to
recursively deposit the energy according to the Metropolis
ratio evaluated at each step [CTEOS]. This strategy is
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interesting to reduce the variance of the estimators, but
as the paths are sequentially generated, it seems very
difficult to cluster the generated rays. Another strategy,
also suggested in [CTEO5], would be to split each sample
into m candidates and to proportionally deposit the energy
of each generated sample. This method seems to ensure
the computation coherency, but it leads to high variance
estimators since the energy received by the mutated samples
will vary greatly. Iterating in this manner will result in an
exponential growth in the number of samples. As our goal
is to maintain low variance estimators and to exploit the
computation coherency, MTMH moves provide the best of
the two previous approaches.

Exploring the Lens Sub-path Space with MTMH
With MT MH mutations, we are able to generate p different
candidates Xy ... X, (represented by disks in Figure 3) for a

given initial sample ) (see Section 5.2 for the notations).
Once the single proposal )’c; has been chosen, we generate p
competitor samples (¥} ... X,%, X" =) from X}. Then,
the process is repeated by setting as current sample, either
x or x;. This approach therefore allows to generate many
samples at once and to perform an efficient Markov Chain
which can efficiently explore the lens sub-path space. The
last problem which has to be solved is to use and accumulate
the contributions of all the generated samples, i.e. all the
candidates X* and all the competitors X**. To achieve such
a result, we can make a simple remark: compared to the
MH algorithm, MTMH only replaces the single candidates
by families of candidates and, as indicated in [JSLOO], the
detailed balance is therefore still maintained. This leads
to the following strategy; for each step of the MTMH
mutations, we build 2p estimators:

e The first p ones are Xy...X,. Their contributions
are respectively weighted by Rg - w; where w; =
PO L 1O

e The last p ones are X" ...X,,". Their contributions are
respectively weighted by (1 — Rg) - wj™ where wj™ =
FOEN /L PO

This approach can be intuitively explained: as we want to

maintain the detailed balance, we first accumulate each

family proportionally to "its Metropolis ratio", then, we ac-
cumulate each element inside a given family proportionally

to its energy function, i.e. £¢) (x).

User Parameter Values

We set AMu,v) = Lg(u|v)~g(v|u)]71 to encourage certain
types of proposals: by using this specific A, w(x;,x™)
corresponds to the importance weight Too(x™)/g(x™|x;).
However, we noticed that the algorithm was not particularly
sensitive to the value of A.

For the Gaussian standard deviations, we finally found
that appropriate values were close to the parameters pro-
posed by Veach and Guibas in [VG97]. For example, for the
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radius R of the MT M H perturbations in screen space, setting
G between 5% and 10% of the image size (width or height)
provides good results. However, they strongly depends on
the number p of accumulated candidates and competitors.
For more details about the numerical behavior of the strate-
gies, please refer to Section 7.2.

5.3. Summary of the Approach

The roots of Coherent Metropolis Light Transport are there-
fore MT MH mutations. On the one hand, we explore the en-
tire sample space with MH bidirectional mutations. On the
other hand, for each MH path, we sample the corresponding
lens sub-path space in a fast manner by performing a finite
length sequence of MTMH perturbations. Compared to the
standard Metropolis Light Transport, we may therefore no-
tice two deep changes:

e the perturbations and the bidirectional mutations
are reorganized. Instead of sequentially alternating
{lenslcaustics} perturbations and bidirectional mutations,
we deterministically apply a sequence of perturbations
for each bidirectional mutation;

e all MH perturbations are replaced by MTMH perturba-
tions.

We now have to analyze a last point: how can we mutate the
lens sub-paths in a fast and coherent way?

6. Implementing Coherent Metropolis Light Transport

The previous sections did not detail the implementation of
our technique. We therefore present here how we perform
the MT M H mutations to explore the lens sub-path space and
how we can cluster rays to speed up the computations.

6.1. Designing an Effective Lens Sub-space Exploration

The first step is to build an effective mutation strategy to gen-
erate the MTMH candidates and competitors. Before detail-
ing our method, we can make two remarks which motivated
our choice:

e paths X generated by standard MLT (represented by
squares in Figure 3) are already an effective sample set
of density £(°) /|| £(¢)|: that motivates to explore the close
neighborhood of each sample;

e the mutation strategy to generate M7 MH mutations must
not introduce extra sampling artifacts or patterns which
may be slow to disappear.

These two points lead us to use Gaussian random variables

2
with density gu defined by g = ya=zexp (— (X;G ) ) In-
deed, depending on the nature of the given sub-path, we have

to use two different path generation strategies:

e let assume that the lens sub-path xg...x; has the form
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ES*DSt(DIL)) (it is a caustic lens sub-path): we gener-
ate a path starting from xy, the second diffuse surface (or
the light source). The direction of the segment x;,x;_ is
perturbed by a random (0, ¢) where ¢ is a uniform random
variable and 0 is a Gaussian random variable with y =0
and G is user-defined;

e otherwise, the lens sub-path xg...x; has the form
ES*D(D|L) (it is a non-caustic lens sub-path): we perturb
the old image location by moving it a Gaussian random
distance R and a uniform angle ¢.

For these two kinds of mutations, we noticed that the Gaus-
sian strategies were the most effective. Since we want to use
a large number of MTMH candidates per MH sample, a uni-
form density for R or 0 gives very poor results. After imple-
menting it, we noticed that bright circles which were slow to
disappear may appear around duplicated MH samples. Other
strategies were tested like linear densities, but none of them
gives satisfactory results. Conversely, since all derivatives of
Gaussian distributions are null at y, the Gaussian MTMH
perturbations offer very smooth transitions and the results
we got are very similar to the ones obtained with a standard
MLT (see Section 7).

We finally have to make an important remark concerning
Gaussian densities: in our case, we do not use exact Gaussian
densities, but clamped ones which are defined on a given
domain Q by:

qu.c

Jaquo(®)do

In the particular case where Q is the set of screen coordi-
nates, qelamped is different for each pixel. We first pre-
compute and store on the hard disk a Gaussian map which
gives for every pixel the value of 1 / [ qu.c(®)do. This al-
lows us to sample clamped Gaussian random variables with
a rejection technique and no extra computations at run-time.

Gelamped ;s =

6.2. Making the Computations Coherent

As described before, the MH part of the algorithm (rep-
resented by the Markov Chain of squares in Figure 3)
is incoherent and we do not intend to speed this part of
the algorithm. On the contrary, we want to amortize the
expensive cost of each MH by computing sub-sequences of
MTMH lens sub-path samples. Several implementations are
possible.

Coherent MLT with SIMD Ray Packets

In this section, we will suppose that the lens sub-path is
non-caustic (the approach is quite similar for a caustic
lens sub-path). Let us consider the given current path X we
have to mutate and its corresponding lens sub-path . To
perform the perturbation of X%, we first perform a n x m
jittered and uniform sampling as presented in Figure 4.
Then, by inverting the Gaussian density (a Box-Muller
transform can, for example, be used), we generate a set of

n X m ray segments that we use to trace the corresponding
MTMH candidates. These complete sub-paths are obtained
by perturbing the remainder of the segment in a way very
similar to the multi-chain perturbation technique presented
by Veach and Guibas in [VG97]. To achieve effective SIMD
computations as presented by Wald in [WBWSO01], we
finally cluster 4 neighborhood rays as shown in Figure 4
and we perform the camera path tracing (or the light path
tracing if we have to mutate a caustic lens sub-path) using
a coherent ray tracer. We note that the path tracing part
remains coherent since we cluster a set of close camera
rays and we perturb the remainder of path around the same
given camera path **. As described by Benthin in his

)

Figure 4: Our technique to ensure ray coherency. (a) is the
uniform jittered 2D sampling. (b) shows the corresponding
Gaussian sampling in screen space. We can see the 2 x 2
ray packet we made with 4 neighbor rays. (c¢) shows some
resulting camera sub-paths: we have mutated here a ESDD
lens sub-path.

PhD [Ben06], larger ray packets can also be used to speed
up more effectively the intersection operations: this can
also be implemented with the jittered approach and no extra
theoretical difficulties.

Coherent MLT with Ray Packet Frustums

Very efficient algorithms were recently introduced to exploit
in a better manner ray coherency by using ray packet
frustums [RSHOS5, WBS06, WIK*06]: as the interval arith-
metic supporting all these algorithms requires a common
origin for all rays in the packet, we can not compute all
kinds of lens sub-paths with ray packet frustums only. For
EDD lens sub-paths, there is no specific problem, since the
two ray packets have common origins (the first one is the
camera while the second one is the second diffuse surface).
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Nevertheless, for a ESDSL sub-path or other sub-path types,
we can use ray packet frustums only for the rays started
from the camera and the rays started from the light source:
the remaining rays have to be processed by casual SIMD
packets.

6.3. Summary and Remarks

MTMH perturbations thus allow us to generate many co-
herent rays at once, to perform coherent ray tracing and to
use ray packet frustums when it is possible. The next sec-
tion presents the results we obtained with our implementa-
tion and the tests we did to demonstrate the efficiency of our
approach.

Furthermore, as indicated by Craiu and Lemieux in
[CLO7], the MT MH candidates and competitors do not even
need to be independent so that the MTMH proposals can be
directly generated with low-discrepancy number sequences
and quasi Monte-Carlo techniques. This can lead to better
estimators and may be really helpful to handle flickering-
free rendering of animations (we give some possible ideas in
Section 8).

7. Results

We implemented a complete rendering system to perform
SIMD computations when using MTMH perturbations. We
actually recoded the OpenRT API [DWBSO03] and divided
our CMLT renderer into two parts: the first one sequentially
generates paths with a standard Metropolis Light Trans-
port algorithm while the second one performs the sequence
of MTMH mutations and executes the SIMD part of the
shaders: the ray generation and the BRDF evaluations are
completely vectorized and encapsulated in a user-friendly
interface.

We finally have to notice that we did not implement a ray
packet frustum technique so that much better performance
can be expected if they were used (particularly for EDD lens
sub-paths).

7.1. Comparison with Metropolis Light Transport

The first remark we can made is that, in a sense, our tech-
nique strictly contains MLT . Indeed, if you implement MLT
and use the same number of perturbations and bidirectional
mutations (it is what Veach proposed in [VG97]), imple-
menting CMLT with length 1 MTMH sub-sequences and
only 1 MTMH candidate will roughly provide the same re-
sults. However, CMLT adds three parameters which have to
be analyzed:

e the standard deviation ¢ of the Gaussian random vari-
ables;

e the number of MTMH candidates (and competitors);

o the length of the MTMH sub-sequences.
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Length of MT MH Sub-sequences

We first noticed that our method was almost insensitive to
the sub-sequence length since our samples already follow
density f(c). However, since the initial samples provided
by a path tracer do not follow f <C>, this behavior must be
quite different if you combine MTMH sub-sequences and
an Energy Redistribution Path Tracer: it would be certainly
more interesting to use long MTMH sub-sequences. Finally,
in a more complex rendering system (with for example,
geometry caches), this parameter may need to be more
carefully tuned.

6 and the Number of MTMH Candidates

Even if the algorithm remains unbiased for all values of
o, we have to carefully balance the number p of MTMH
candidates and the size of the MTMH perturbations. Figure
5 shows a simple scene tested with different values of ¢
and p = 256. As we can see, generating too many MTMH
candidates in a too small area causes very poor results.
Indeed, Metropolis Hasting does not stratify well so that
we directly inherit this poor stratification for small values
of 6. On the contrary, the jittered sampling used for the
MTMH perturbations greatly enhances the stratification of
the sample set. In a sense, CMLT also offers a trade-off
between variance and stratification over the image plane.

For a given implementation, it therefore primordial to
carefully tune the respective values of ¢ and p. For all the
computed pictures in this article, we set p =256 and 6 = 5%
of the screen size.

(a) o = 16 pixels (b) 6 = 32 pixels

(c) o = 64 pixels

Figure 5: Different value of o. For the 3 tests, we use
256 MTMH candidates and 256 MTMH competitors. The
screen size is equal to 1024 x 1024 and about 20 mutations
per pixel have been evaluated.

7.2. Overall Performance

As indicated above, we perform the MTMH perturbations
with a multi-threaded coherent ray tracer using the SSE
SIMD instruction set. Compared to a non-vectorized im-
plementation, we achieved a speed-up varying from 2.3 to
1.5: the acceleration actually depends on the lens sub-path
length, the number of MTMH candidates and the size of the
Gaussian perturbations. Once again, it is important to care-
fully tune the sampling parameters to maintain computation
speed, good stratification properties and low variance. With
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our current implementation, we achieved between 1 or 2 mil-
lion mutations per second on most of the scenes we tested.
Our implementation seems to be very competitive compared
to other existing MLT renderers. We actually think that ag-
gressively exploring the lens sub-path space offers a good
sampling strategy since perturbations are much less compu-
tationally expensive than bidirectional mutations. We finally
believe that using ray packet frustums can still bring ma-
jor improvements as speed-ups superior to 10 have been re-
cently reported [RSHOS, WBS06].

7.3. Cache Simulation

Christensen et al. recently published two papers about distri-
bution ray tracing in complex scenes [CLF*03, Chr06]. We
believe that our technique, combined with multi-resolution
geometry caching, can fit in production renderers such as
the ray tracing system used within the RenderMan interface.
Indeed, MTMH mutations are, in essence, very close to a
standard distribution ray tracing framework: instead of gen-
erating reflections, refractions or shadow rays for a uniform
set of pixels, we actually use the same strategies for a Gaus-
sian pixel distribution. To analyze the performance of our
technique, we simulated and implemented a simple cache
system.

We actually associate a fixed size cache to the triangles of
our test scenes (see Figure 6). When a ray / triangle inter-
section is requested, we check if the triangle is in the cache:
if we find it, it is a cache hit, otherwise, it is a cache miss
and the triangle is inserted in the cache. To evaluate the per-
formance, we finally use four test scenes: a purely diffuse
office, the same scene but with a glossy wall, a purely dif-
fuse conference room and the same scene with a glossy floor.
The goal is to exhibit the coherence properties of the tested
algorithms with various layouts. We compare our method
(CMLT) with Metropolis Light Transport (MLT') and Instant
Radiosity (/R) [Kel97] which is one of the most coherent
and successful methods when combined with coherent ray
tracing techniques. We noticed that CMLT provided results
which are very similar to the results obtained with /R. Ac-
tually, the two methods have close algorithmic properties.
For IR, we implemented a multi-threaded rendering tile sys-
tem: each thread renders small tiles which are associated to a
set of VPLs. At the same time, our CMLT rendering system
finally replaces the tiles by a jittered Gaussian path distribu-
tion. Once the rays have been generated, the operations are
quasi-identical.

Compared to /R, we however have to remind that a CMLT
system requires to write anywhere in the frame buffer which
can be limiting in a multi-threaded environment.

8. Limitations and Future Work

As an extension of Metropolis Light Transport, our method
inherits some of its drawbacks.

(b) - Glossy Office

(c) - Diffuse Conference Room  (d) - Glossy Conference Room

Figure 6: The four scenes to test the coherency of our al-
gorithm with a simulated cache system. The 1024 x 1024
pictures presented here, are computed in about 5 minutes
on a Core Duo and a 2 X 2 SIMD ray packet system. Of-
fice contains 35000 triangles and Conference Room 200000
triangles

Flickering Problems

The first one is the difficulty to handle animations without
flickering problems. This issue has actually two main
reasons:

e as the samples are sequentially dependent, if one of them
considerably changes from one frame to the next one, all
the following samples in the Markov Chain will be con-
sequently modified and major flickering issues will sud-
denly occur;

e as Metropolis Light Transport is a pure Monte-Carlo tech-
nique, we have to use a lot of pseudo-random numbers
which are difficult to reuse in a flickering-free way.

We however think that handling flickering issues may be
much easier with Coherent Metropolis Light Transport.
First, it seems to be possible to store all the MH paths
(represented by squares in Figure 3) on hard-disk. Indeed,
compared to a MLT algorithm, most of the computed
paths are generated with MTMH perturbations and the
MH paths obtained with bidirectional mutations only are
much less numerous. When we compute a new frame, we
can therefore re-read the stored paths, mutate them with
a sequential sampler, and make them follow the density
of the current frame as done by Ghosh et al. to compute
illumination with environment maps in [GDHO06]. In other
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Diffuse Office Glossy Office Diffuse Conference Glossy Conference
4Tri | 16 Tri | 128 Tri || 4Tri | 16 Tri | 128 Tri || 4 Tri | 16 Tri | 128 Tri || 4 Tri | 16 Tri | 128 Tri
MLT | 55% | 61% 62% 38% | 40% 45% 65% | T7% 79% 70% | T4% 77%
CMLT | 87% | 92% 99% 82% | 91% 98% 80% | 95% 98% 81% | 95% 99%
IR 87% | 92% 99% 81% | 90% 98% 81% | 96% 98% 82% | 95% 99%

Table 1: Some cache hit statistics with the four test scenes presented in Figure 6. We use 3 cache sizes
gles. Coherent Metropolis Light Transport (CMLT) easily outperforms standard Metropolis Light Transport (MLT). It roughly

: 4, 16, and 128 trian-

behaves as Instant Radiosity (IR) does.

words, if we have a set of paths which follow the density
f,@ of frame n, a sequential sampler can mutate these paths

to make them follow fyfi)l. As the MTMH samples do not
need to be independent, we can moreover use deterministic
quasi random sequences of samples which can easily be
regenerated from one frame to the next one. These ideas
may thus provide satisfactory results to handle flickering
problems since most of the paths of the previous frame
could be "reprojected" in an unbiased way into the next
frame.

Other Sampling Strategies

The MTMH mutations strategies can finally certainly
be applied to other samplers: there must be no specific
problems to handle participating medias, motion blurs
or a spectral representation of materials. Furthermore,
MTMH mutations can certainly be combined to an Energy
Redistribution Path Tracing algorithm [CTEOS]. Instead of
performing a sequence of MH perturbations, it would be
not too difficult to replace them by a sequence of coherent
MTMH candidates as we did with MLT.

Implementing a Distributed Framework

One difficult challenge is to efficiently implement a
Metropolis Light Transport algorithm with a computer
cluster. With our current implementation, it seems impos-
sible to achieve interactive or real time frame rate, since
running separate MLT on separate threads / computer
is not appropriate to a distributed frame work (it would
require a too large bandwidth to gather all pictures). A good
approach would perhaps be to use an Interleaved Sampling
technique [KHO1] and therefore to compute the contribu-
tions of different pixel sub-sets on different machines. This
would require only few changes into the different MLT
samplers. Combining MLT and Interleaved Sampling could
also provide good results with inhomogeneous multi-core
architectures like Cell processors.

9. Conclusion

We present in this paper, a coherent extension of Metropolis
Light Transport which can easily be combined with most of
the recent advances achieved in the field of ray tracing. By
adding Multiple-Try perturbations, we can coherently com-
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pute most of the intersection and BRDF operations by effi-
ciently using ray packets or ray packet frustums. We now be-
lieve that an interactive and even real time MLT system, can
be implemented: if the remaining problems previously pre-
sented are resolved, we could finally have an uncondition-
ally robust rendering system which could handle any scene
of any complexity and as MLT initially did, any lighting lay-
outs without the necessity to use aggressive filters or bias the
method.
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