
This article was originally published in a journal published by
Elsevier, and the attached copy is provided by Elsevier for the

author’s benefit and for the benefit of the author’s institution, for
non-commercial research and educational use including without

limitation use in instruction at your institution, sending it to specific
colleagues that you know, and providing a copy to your institution’s

administrator.

All other uses, reproduction and distribution, including without
limitation commercial reprints, selling or licensing copies or access,

or posting on open internet sites, your personal or institution’s
website or repository, are prohibited. For exceptions, permission

may be sought for such use through Elsevier’s permissions site at:

http://www.elsevier.com/locate/permissionusematerial

http://www.elsevier.com/locate/permissionusematerial


Aut
ho

r's
   

pe
rs

on
al

   
co

py

Information Systems 32 (2007) 446–457

Semantic sampling of existing databases through
informative Armstrong databases

Fabien De Marchia,�, Jean-Marc Petitb

aUniversité Lyon 1, bâtiment Nautibus, 8 boulevard Niels Bohr, 69 622 Villeurbanne Cedex, France
bINSA Lyon, Bâtiment Blaise PASCAL, 20 Avenue Albert Einstein, 69621 Villeurbanne, France

Received 17 November 2004; received in revised form 21 October 2005; accepted 7 December 2005

Recommended by J. Van den Bussche

Abstract

Functional dependencies (FDs) and inclusion dependencies (INDs) convey most of data semantics in relational

databases and are very useful in practice since they generalize keys and foreign keys. Nevertheless, FDs and INDs are often

not available, obsolete or lost in real-life databases. Several algorithms have been proposed for mining these dependencies,

but the output is always in the same format: a simple list of dependencies, hard to understand for the user. In this paper, we

define informative Armstrong databases (IADBs) from databases as being small subsets of an existing database, satisfying

exactly the same FDs and INDs. They are an extension of the classical notion of Armstrong databases, but more suitable

for the understanding of dependencies, since tuples are real-world tuples. The main result of this paper is to bound the size

of an IADB in the case of non-circular INDs. A constructive proof of this result is given, from which an algorithm has been

devised. An implementation and experiments against a real-life database were performed; the obtained database contains

0.6% of the initial database tuples only. More importantly, such semantic sampling of databases appear to be a key feature

for the understanding of existing databases at the logical level.

r 2006 Elsevier Ltd All rights reserved.

Keywords: Functional dependencies; Inclusion dependencies; Armstrong databases; Database maintenance; Dependency visualization

1. Introduction

Functional dependencies (FDs) and inclusion
dependencies (INDs) convey most of data semantics
in relational databases [1] and are very popular in
practice since they generalize keys and foreign keys.
For example, they are necessary to define normal
forms [2,3] and are widely used in many database
applications such as database design and mainte-

nance [4,3,5], data integration [6], or semantic query
optimization [7,8]. A friendly alternative representa-
tions of sets of functional and inclusion dependen-
cies are known to be Armstrong databases [9,10].
They are databases verifying exactly a given set of
FDs and INDs and their implications. Up to now,
they are proved to be mainly useful in database
design processes, integrated in ‘‘design-by-example’’
tools [11,12].

In practice, FDs and INDs satisfied by existing
databases cannot be defined as such; they have to
appear as key or foreign key constraints in the best
cases. Moreover, they could have been lost, or never

ARTICLE IN PRESS

www.elsevier.com/locate/infosys

0306-4379/$ - see front matter r 2006 Elsevier Ltd All rights reserved.

doi:10.1016/j.is.2005.12.007

�Corresponding author.

E-mail addresses: fabien.demarchi@liris.cnrs.fr

(F. De Marchi), jean-marc.petit@liris.cnrs.fr (J.-M. Petit).



Aut
ho

r's
   

pe
rs

on
al

   
co

py

been defined in case of bad conception. For these
reasons, the discovery of satisfied FDs and INDs
into an existing database has been considered as a
challenging KDD task [13–16]. But, to our knowl-
edge, the result offered to the final user is always the
same: a list of dependencies, hard to understand
even for a domain expert, typically a database
administrator (DBA).

In the framework of this paper, we assume the
discovery of FDs and INDs has been already done in
order to focus on the final part of the discovery task:
the visualization by a DBA of FDs and INDs
satisfied by the database. For this purpose, the
definition of Armstrong databases seems to be not
really adapted, since tuples in such example relations
are completely fictitious. Even when an existing
database is available, example tuples are constructed
(in the best case) using active domain values of
attributes, but always randomly chosen [10,17,12,15].
As a consequence, tuples in Armstrong databases do
not reflect at all those of the initial database and are
not informative enough for a DBA. A convincing
example of this kind of problem will be exhibited in
the sequel of the paper (see Example 2).

1.1. Paper contribution

We propose in this paper to extend the definition
of Armstrong databases, to take into account FDs

and INDs satisfied by a database. Given an existing
database, we define informative Armstrong databases

(IADBs), which satisfy exactly the same functional
and inclusion dependencies as the input database,
and in which all tuples come from the input
database. The main result of this paper is to bound
the size of an IADB in the case of non-circular
INDs. A constructive proof of this result is given,
from which an algorithm has been devised. Note
also that circular INDs are taken into account in
our implementation, but the bounds do not apply.
An implementation and experiments against a real-
life database were performed: the obtained database
contains only 0.6% of the initial database tuples.

1.2. Related works

To our knowledge, very few works consider the
visualization of FDs and INDs from databases. In
[12,15], the classical definition of Armstrong relations
(i.e. Armstrong databases considering only FDs) is
directly applied to propose example relations to
domain expert. The basic idea is to give some help

to understand the FDs satisfied by a given relation.
The drawback of such a solution in our context
comes from the way tuples are built, almost randomly
(cf. Section 3). In [21], from an existing database,
potential constraints are derived from heuristics
considerations; for such a constraint, an example
from the database is proposed to the user. The
constraint is validated only if the user considers that
this example is a valid one. Even if the aim is close to
ours, our approach is quite different. Moreover, in
our proposal, the user obtains a small database
sample, with same FDs and INDs.

1.3. Application

Given an existing database, such database exam-
ples could be very useful to better understand data
semantics usually conveyed by FDs and INDs. We
expect the greatest impact of our work to be for the
problem of logical database tuning, e.g. a DBA would
have the opportunity to quickly visualize FDs and
INDs and then detect data integrity problems [22].

In order to observe IADB users, and getting their
feedbacks, we proposed to master students the
following case study: ‘‘Reverse engineering the
database movies using DBA Companion [23]’’.
Their first attempt was to discover keys and foreign
keys using data mining techniques. As soon as their
initial intuition was contracted by the discovered
constraints, they generated our IADB for movies to
go one step beyond. We observed that, thanks to the
small size of the IADB, they were able to perform
instantaneous sorts, selections, projections and joins
to manipulate and visualize the examples and
counter-examples. IADBs were a key feature of
their work, and conducted them to understand the
logical database design, which is a mandatory step
before reverse engineering the database schema.

This work takes place in a project devoted to the
logical tuning of existing databases [22,23]: its goal
is to be able to connect any database (independently
of the underlying DBMS) in order to give some
insights to DBA/analyst such as:

� FDs and INDs satisfied by the database,
� small examples of the database, thanks to IADBs.

1.4. Paper organization

Preliminaries are given in Section 2. Armstrong
databases for databases are defined in Section 3.
IADBs for databases are presented in Section 4;

ARTICLE IN PRESS
F. De Marchi, J.-M. Petit / Information Systems 32 (2007) 446–457 447



Aut
ho

r's
   

pe
rs

on
al

   
co

py

then, the main theorem which bounds the size of
IADBs is given. Experimental results are reported in
Section 5, and we conclude in Section 6.

2. Preliminaries

We recall some basic concepts of relational
databases theory, helpful for the understanding of
the paper, for details see e.g. [24,25]. We follow the
notation proposed in [25].

Let A be an attribute, the set of all its possible
values is called the domain of A and is denoted by
DomðAÞ. A relation schema R is a finite set of
attributes. A database schema R ¼ fR1; . . . ;Rng is a
finite set of relation schemas.

A tuple over a relation schema R is a mapping
t : R!

S
A2RDomðAÞ, where tðAÞ 2 DomðAÞ;

8A 2 R. A relation r over R is a finite set of tuples
over R. A database d ¼ fr1; . . . ; rng over a database
schema R ¼ fR1; . . . ;Rng is a finite set of relations
over elements of R.

Let t be a tuple over R, and X � R a set of
attributes. The projection of t onto X, denoted by
t½X �, is the restriction of t over X. The projection of
a relation r over R onto X, denoted as pX ðrÞ, is
defined by pX ðrÞ ¼ ft½X � j t 2 rg. The active domain

of an attribute A 2 R is the set pAðrÞ.
Let t and u be tuples of a relation r over a schema

R, and X � R an attribute set. We denote by agðt; uÞ
the set: agðt; uÞ ¼ fA 2 R j t½A� ¼ u½A�g. The agree

sets of r, denoted by agðrÞ are defined by
agðrÞ ¼ fagðt; uÞ j t; u 2 r; taug.

2.1. Functional dependencies

A functional dependency (FD) over a relational
schema R is an expression X ! Y where X ;Y � R.
X ! Y is satisfied in a relation r over R (denoted by
r � X ! Y ) if and only if 8t; u 2 r; t½X � ¼ u½X � )

t½Y � ¼ u½Y �. We call Fr the set of all FDs satisfied
by a relation r.

Let F be a set of functional dependencies over R.
An FD X ! Y is said to be logically implied by F,
denoted F � X ! Y , if 8r over R, if r � F then
r � X ! Y . The closure of a attribute set X with
respect to F is the set: XþF ¼ fA 2 R j F � X ! Ag.
A set X � R is closed if and only if XþF ¼ X . We
note CLðF Þ the family of closed sets induced by F

and GENðF Þ the unique minimal sub-family of
generators in CLðF Þ such that each member of
CLðF Þ can be expressed as an intersection of sets in
GENðF Þ [26].

2.2. Inclusion dependencies

An inclusion dependency (IND) over a database
schema R is an expression of the form R½X � � S½Y �,
where R;S 2 R, X and Y are sequences of attributes,
respectively, in R and S. Moreover, X and Y are
sequences of same size. R½X � � S½Y � is satisfied in a
database d over R (denoted by d � R½X � � S½Y �) if
and only if 8t 2 r; 9u 2 s such that t½X � ¼ u½Y � (or
equivalently pX ðrÞ � pY ðsÞ).

A set of INDs I is said to be circular if (1) it
contains an IND R½X � � R½Y � or (2) it contains
mðm41Þ INDs of the form: R1½X 1� � R2½Y 2�,
R2½X 2� � R3½Y 3�; . . . ;Rm½X m� � R1½Y 1�. If X 1 ¼

Y 1 I is said to be proper circular [25].
Let I be a set of INDs over R. An IND R½X � �

S½Y � is said to be logically implied by I, denoted
I � R½X � � S½Y �, whenever for each d over R, if d �
I then d � R½X � � S½Y �.

Let I and J be two sets of INDs. I is a cover of J if
and only if Iþ ¼ Jþ, with Iþ ¼ fR½X � � S½Y � s.t.
I � R½X � � S½Y �g.

Given i ¼ R½X � � S½Y � and j ¼ R½X 0� � S½Y 0�

two INDs over a database schema R, we say that i

generalizes j (or j specializes i), denoted by i � j, if
X 0 ¼ hA1; . . . ;Ani, Y 0 ¼ hB1; . . . ;Bni, and there ex-
ists a set of indices k1o � � �okl 2 f1; . . . ; ng with
lpn such that X ¼ hAk1

; . . . ;Akl
i and Y ¼

hBk1
; . . . ;Bkl

i [27,28].

Example 1. For example, R½AC� � S½DF � �

R½ABC� � S½DEF �, but R½AB� � S½DF �IR½ABC�

� S½DEF �.

Let d be a database over R. The IND satisfaction
is anti-monotone, i.e. if dji and i � j, then djj.
Thus, each set I of INDs can be expressed by its
positive border denoted by BdþðIÞ, which is the set
of the most specialized elements in I, or by its
negative border Bd�ðIÞ, the set of the most general-
ized elements not in I [27].

2.3. Armstrong databases for FDs and INDs

Armstrong relations were first defined for FDs [9],
and extended to Armstrong databases for FDs and
INDs [10].

Given a database schema R ¼ fR1; . . . ;Rng, F a
set of FDs and I a set of INDs defined over R, an
Armstrong database d ¼ fr1; . . . ; rng over R for F [ I

is such that for all FDs or INDs a, we have:
d � a()F [ I � a.

ARTICLE IN PRESS
F. De Marchi, J.-M. Petit / Information Systems 32 (2007) 446–457448



Aut
ho

r's
   

pe
rs

on
al

   
co

py

In the case of FDs alone, a characterization of
Armstrong relations is given in [17]: if r and F are,
respectively, a relation and a set of FDs over a
schema R, then r is an Armstrong relation for F if
and only if GENðF Þ � agðrÞ � CLðF Þ.

An Armstrong database exists for all sets of
(standard) FDs and INDs [10]. Algorithms were
proposed for computing Armstrong databases in
the case of not circular or proper circular set of
INDs [12,29].

2.4. Notations

Given a relation r, the number of tuples in r,
denoted by jrj, is called the size of r. Given a
database d ¼ fr1; . . . ; rng, the number of tuples in d,
denoted by jdj, is called the size of d and is equal toPn

i¼1jrij.
Finally, for convenience, we note F d and Id,

respectively, the set of all FDs and INDs satisfied by
d over R, i.e. Id ¼ fR½X � � S½Y � j d � R½X � � S½Y �g

and F d ¼ [r2dF r (up to a renaming of attribute
names in relation schema).

3. Armstrong databases for databases

Armstrong databases for databases are a natural
extension of Armstrong databases for FDs and
INDs: the FDs and INDs considered are simply the
ones satisfied by the original database.

Definition 1. Let R ¼ fR1; . . . ;Rng be a database
schema and d a database over R. An Armstrong
database for d is a database d over R such that d is
an Armstrong database for Fd [ Id.

Thus, an Armstrong database for a database d is
an alternative representation of the dependencies
satisfied by d. This definition raises several ques-
tions:

(1) Database is an Armstrong database for itself,
what about the size of an Armstrong database
with respect to the size of the initial database?

(2) What is the ‘‘semantic power’’ of such data-
bases?

3.1. Limits of existing solutions

Armstrong databases were showed helpful for
design by examples of databases [11,12]. Giving a
schema and a user-defined set of constraints, an
Armstrong database can be generated (also called

example database) so that the designer can visualize
the dependencies through this example. She/he can
decide to modify the example database, and then
dependencies are recalculated until the designer
agrees with the example database and the set of
constraints.

Our framework is different since we are interested
in database understanding, occurring quite often in
practice; either for database maintenance or during
a KDD process. In this setting, a naive approach
would be: (1) discovering FDs and INDs satisfied by
the input database and (2) constructing Armstrong
databases from these dependencies.1 In this case, the
computed database should be very small in practice,
according to the bounds exhibited in [17], but
suffers an important drawback pointed out by the
following example.

Example 2. The database movies (Fig. 1) will be
used as a running example throughout the paper.
This toy sample comes from a real-life database [30]
(presented in details in Section 5). The relation
movies stores a set of movies; if a movie is a remake
of other ones, it is reported in relation remakes. The
column FRAC in remakes aims at storing the
similarity rate between a movie and its remake.

We first consider the relation remakes only. To
understand remakes, the set of satisfied FDs has to
be discovered. We get: F ¼ fA�!B;B�!AC;CE

�!B;DE�!C;AE�!D;AD�!Eg2 and we want
to produce an Armstrong relation for F. Several
methods exist [10,17,31], they all construct tuples
either from the integer set or from the (active)
attribute domains. Fig. 2 gives such an Armstrong
relation, which could be obtained from exist-
ing algorithms using the active domains of attri-
butes [15].

An analyst (DBA or data miner person) may
visualize that A is not a key, from the two first
tuples. Nevertheless, these two tuples do not carry
semantic information, and do not give clues to the
DBA to understand why A is not a key. We shall see
in the sequel (cf. Example 3) how to tackle this
problem.

To cope with this limitation, we propose to define
and compute informative Armstrong databases for a
given database.

ARTICLE IN PRESS

1Obviously, if the set of INDs is not proper circular, such

database cannot be computed using state of the art algorithms.
2F is a cover of FDs that hold in remakes, i.e. an equivalent

representation of FDs satisfied by remakes.

F. De Marchi, J.-M. Petit / Information Systems 32 (2007) 446–457 449



Aut
ho

r's
   

pe
rs

on
al

   
co

py

4. Informative Armstrong databases

An IADB is an Armstrong database, but with an
additional constraint: all the tuples have to be real
tuples from the input database, rather than being
artificially constructed.

In the following, we extend the classical definition
of operator � to databases: Let d ¼ fr1; . . . ; rng and

d ¼ fr1; . . . ; rng be two databases over the same
database schema. We assume without loss of general-
ity that relation schemas are arranged in some order
(indices here). We say that d is included in d, denoted
by d � d, if for all i ¼ 1::n ri 2 d, ri � ri.

Definition 2 (Informative Armstrong databases).
Given a database d ¼ fr1; . . . ; rng over a schema

ARTICLE IN PRESS

Fig. 1. The movies database.

Fig. 2. An Armstrong relation for remakes.

F. De Marchi, J.-M. Petit / Information Systems 32 (2007) 446–457450



Aut
ho

r's
   

pe
rs

on
al

   
co

py

R ¼ fR1; . . . ;Rng, an IADB d for d is defined over R
and is such that:

� d is an Armstrong database for d and
� d � d.

Thus, the idea is to highlight a subset of each
relation in d, keeping exactly the same FDs in each
relation and the same INDs between relations.
Thus, tuples in IADBs will reflect most of the
semantic of the initial data, keeping a coherent
meaning of the underlying ‘‘real world’’.

4.1. Toward ‘‘small’’ informative Armstrong

databases

The existence of IADBs is ensured by the fact that
any database is an IADB for itself. Of course the
interest would be to construct IADBs whose size is
less than the size of the input database. The main
result of this paper is given in Theorem 1. Roughly
speaking, the size of any IADB for a database d can
be bounded using: (1) the generator sets of FDs
satisfied by each relation in d, (2) the positive border
of INDs satisfied by d, and (3) the negative border
of INDs not satisfied by d.

We denote by Bd�ðIdÞR!S the negative border of
INDs from R to S satisfied by d, i.e.
Bd�ðId ÞR!S ¼ fR½X � � S½Y � 2 Bd�ðIdÞg. A similar
notation BdþðIdÞR!S is used for the positive
border.

Theorem 1. Let d ¼ fr1; . . . ; rng be a database over a

schema R ¼ fR1; . . . ;Rng. If BdþðId Þ is non-circular,
an IADB d ¼ fr1; . . . ; rng for d exists, such that jdj ¼Pn

i¼1jrij with, 8i ¼ 1; . . . ; n:

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 8	 jGENðF ri

Þj
p

2

& ’
pjrij

and

jrijp2	 jGENðF ri
Þj þ

Xn

j¼1

jBd�ðIdÞRi!Rj
j

þ
Xn

j¼1

jBdþðIdÞRj!Ri
j 	 jrjj.

Note that the upper bound is recursively defined,
and then relations have to be considered in a specific
order. Such a partial order exists and is easily
computable if BdþðIdÞ is non-circular.

To prove this theorem, we exhibit a constructive
proof whose main parts are explained through
Algorithm 1.

Algorithm 1. Informative Armstrong database

Input: d, GENðFd Þ, BdþðIdÞ and Bd�ðIdÞ;

Output: An IADB d for d;

1: d ¼ ;;
2: for all r 2 d do

3: Compute GENðF rÞ;

4: d ¼ d [ GenIARðr;GENðF rÞÞ—Dealing with

satisfied and not satisfied FDs

5: end for

6: d ¼ InvalidINDðd;Bd�ðIdÞ; dÞ;—Dealing with not

satisfied INDs

7: d ¼ ValidINDðd;BdþðIdÞ; dÞ;—Dealing with

satisfied INDs

8: Return d.

The functions GenIAR; InvalidIND and ValidIND

are defined latter on.
This algorithm takes as input a database d, the

generator sets of FDs satisfied by d, and the positive
and negative borders of INDs satisfied by d. An
IADB for d is then computed through three steps;
each one consists in adding tuples from d into the
database under construction, in order to obtain a
database d such that F

d
¼ Fd and I

d
¼ Id. As

shown by the next property, this is a sufficient
condition for d to be an IADB for d.

Property 1. Let d and d be two databases over a

schema R such that d � d. d is an IADB for d if and

only if F
d
¼ F d and I

d
¼ Id.

Proof. It is sufficient to show that Fd and Id do not
have interaction, i.e. no dependence can be implied
by Fd [ Id if it is not implied by F d or by Id .

Let a be a dependence (IND or FD) such that
Fd [ Id � a. Since d � F d and d � Id, we have d � a.
Since F d and Id are the set of all FDs and INDs
satisfied by d, we have a 2 F d or a 2 Id. Thus F d and
Id have no interaction. &

In the sequel, each step of Algorithm 1 is detailed
and illustrated with the running example. Finally,
we give the proof of Theorem 1.

4.2. Dealing with FDs only

Given a database d, the function GenIAR aims at
computing a database d such that (1) d � d and (2)

ARTICLE IN PRESS
F. De Marchi, J.-M. Petit / Information Systems 32 (2007) 446–457 451



Aut
ho

r's
   

pe
rs

on
al

   
co

py

F
d
¼ Fd. We propose to achieve this task by

computing, for each relation ri in d, a so-called
informative Armstrong relation (IAR) ri such that:
(1) ri � ri and (2) Fri

¼ Fri
.

The following lemma characterizes exactly IARs,
and gives some insights on their construction.
A similar result was given in [19].

Lemma 1. Let R be a relation schema, r a relation

over R, and GENðF rÞ the family of generators of the

closed sets w.r.t. F r. A subset r of r is an IAR for r if

and only if GENðFrÞ � agðrÞ.

Proof. ð(Þ Since GENðFrÞ � agðrÞ, it remains to
show that agðrÞ � CLðFrÞ (cf. preliminaries in
Section 2). r � r thus agðrÞ � agðrÞ. Since r is an
Armstrong relation for Fr, agðrÞ � CLðFrÞ and then
agðrÞ � CLðFrÞ.

Moreover, we have r � r, thus r is an IAR for r.
()) r is an Armstrong relation for Fr, and

GENðFrÞ � agðrÞ � CLðF rÞ. &

An algorithm can be deduced from this char-
acterization. It takes randomly two tuples in r that
agree on each generator of F r, and inserts them into
the IAR under construction. Such an algorithm is
linear in the number of generator sets of F r and is
referred as GenIARðr;GenðFrÞÞ in line 4 of Algo-
rithm 1.

Example 3. Fig. 3 gives the database movies, made
up of informative Armstrong relations for each
relation of movies (Fig. 1). These relations are
computed from the following generator sets:
fABC;CD;D;Eg for remakes and fH; Ig for movies.
Note that drawbacks mentioned in the Example 2
do not longer exist, since the two remakes whose ID

is equal to 16 correspond to ‘‘real-life’’ remakes, and
thus make sense for the analyst. At the same time,
the analyst can observe that attribute PRID does
not determine attribute PRTITLE. The third tuple
(‘‘Fours sisters’’ in place of ‘‘Four sisters’’) suggest
syntax errors.

From Lemma 1, we can deduce bounds for the
size of each relation ri, from which a bound for the
size of the database d can be easily derived.

Lemma 2. Let d ¼ fr1; . . . ; rng be a database. There

exists a database d � d such that F
d
¼ F d and jdj ¼Pn

i¼1jrij with, 8i ¼ 1; . . . ; n:

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 8	 jGENðF ri

Þj
p

2

& ’
pjrijp2	 jGENðFri

Þj.

Proof. The lower bound is due to [17]. Intuitively, it
corresponds to the minimum number of tuples in
order to have one pair of tuples that agrees on each
generator set of Fri

. The upper bound is reached if
all these pairs are distinct. &

The next lemma ensures that any tuple of d can be
inserted into d without changing the set of FDs in d,
and thus ensures the correctness of our proposition
w.r.t. FDs.

Lemma 3. Let d be a database and d � d such that

F
d
¼ Fd. For every database b such that d � b � d,

we have F b ¼ F d.

Proof. Let ri 2 d, ri 2 d and bi 2 b such that
ri � bi � ri. From Lemma 1, GENðFri

Þ � agðriÞ.
Suppose ri � bi � ri. We have agðriÞ � agðbiÞ, and

thus GENðF ri
Þ � agðbiÞ.

ARTICLE IN PRESS

Fig. 3. The database movies for FDs only.

F. De Marchi, J.-M. Petit / Information Systems 32 (2007) 446–457452



Aut
ho

r's
   

pe
rs

on
al

   
co

py

Since bi � ri, bi is an IAR for ri according to
Lemma 1. &

4.3. Dealing with non-satisfied INDs

The aim of the second step (function InvalidIND

in Algorithm 1) is to add tuples from d into d, in
order to violate INDs not satisfied by d. Recall that
Id represents INDs satisfied by d. Thus, we compute
d such that

� d � d,
� I

d
� Id.

To ensure that an IND is violated, we define the
simple notion of disqualifying tuple as follows:

Definition 3 (Disqualifying tuple). Let d ¼ fr1; . . . ; rng

be a database over a schema R ¼ fR1; . . . ;Rng, and
Ri½X � � Rj½Y � an IND over R. A tuple t 2 ri is a
disqualifying tuple for Ri½X � � Rj½Y � if t½X �epY ðrjÞ.

Therefore, we have to insert into d only one
disqualifying tuple for each IND i such that ieId. In
fact, thanks to the anti-monotony property of IND
satisfaction, it is enough to violate the negative
border of Id, i.e. Bd�ðId Þ. The function
InvalidINDðd;Bd�ðIdÞ; dÞ, line 6 of Algorithm 1,
performs this task. For each IND in Bd�ðIdÞ, if a
disqualifying tuple does not belong to the database
under construction, such a tuple is elicited in d and

is inserted in d. Clearly, such an algorithm is linear
in the size of Bd�ðIdÞ.

Example 4. On the running example, the database
movies is first initialized to the database movies of
Fig. 3.

Bd�ðImoviesÞ is made up of 12 INDs, not listed
here. Let us consider two significant examples of
INDs in Bd�ðImoviesÞ:

� A � E: since pAðremakesÞ � pEðremakesÞ is not
empty, a disqualifying tuple for this IND is
already into remakes.
� H � B: pH ðmoviesÞ � pBðremakesÞ is empty, a
disqualifying tuple has to be chosen in movies,
for example h11;MrsFifi; 1944i, and has to be
inserted into movies.

Finally, we obtain the database movies repre-
sented in Fig. 4, such that movies � movies,
F

movies
¼ Fmovies and I

movies
� Imovies.

Note that such a solution is not unique; in
general, many disqualifying tuples can be chosen to
enforce that an IND is violated. Nevertheless, a
bound for the size of d can be given.

Lemma 4. Let d be a database. There exists a

database d � d, such that F
d
¼ F d and I

d
� Id and:

ARTICLE IN PRESS

Fig. 4. The database movies for FDs and not satisfied INDs.

F. De Marchi, J.-M. Petit / Information Systems 32 (2007) 446–457 453



Aut
ho

r's
   

pe
rs

on
al

   
co

py

jdj ¼
Pn

i¼1jrij with, 8i ¼ 1; . . . ; n:

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 8	 jGENðFri

Þj
p

2

& ’

pjrijp2	 jGENðF ri
Þj þ

Xn

j¼1

jBd�ðIdÞRi!Rj
j.

Proof. The lower bound corresponds to the best
case which occurs when disqualifying tuples already
belong to d (cf. Lemma 2).

The upper bound is reached if the upper bound
for d has already been reached when considering
only FDs (Lemma 2), and if one disqualifying tuple
has to be inserted for each IND in Bd�ðIdÞ. &

The next lemma ensures that properties of d still
hold if new tuples from d are inserted into d.

Lemma 5. For all database b such that d � b � d, we

have Fb ¼ Fd and Ib � Id.

Proof. Fb ¼ Fd is entailed by Lemma 3. Since
d � b, there is in b at least one disqualifying tuple
for each IND in Bd�ðIdÞ, and thus Ib � Id. &

4.4. Dealing with satisfied INDs

The aim of the last step (function ValidIND in
Algorithm 1) is to add new tuples from d in d in
order to enforce INDs satisfied by d. Thus, we
compute a database d such that d is an IADB for d,
i.e. F

d
¼ Fd and I

d
¼ Id.

The principle is to consider one by one each IND
i in BdþðIdÞ and to check whether or not i is
satisfied by the database under construction. If not,
i has to be ‘‘enforced’’, by inserting some tuples
from d into d.

In the next sections, we consider the case where
BdþðId Þ is circular and the one where it is not.

4.4.1. BdþðIdÞ non-circular

Let us consider that an IND i ¼ Ri½X � � Rj½Y �

has been enforced in d. Since we never drop tuples,
the only way to violate i is to add tuples into the
relation ri over the left-hand side schema Ri of i.
This action occurs only if an IND entering in Ri has
to be enforced. Thus, if a relation schema Ri has no
incoming IND in BdþðIdÞ, every IND from Ri to
another schema can be definitively enforced.

The function referred to as ValidINDðd;Bdþ

ðIdÞ; dÞ line 8 of Algorithm 1 is based on this
principle. We consider the partial order induced by
INDs between relation schemas, i.e. R1 precedes R2

if there is an IND from R1 to R2. Each IND whose
left-hand side is a relation schema with no
predecessor is enforced and can be safely removed
from BdþðId Þ. This process is iterated until BdþðIdÞ

is empty; this termination condition is ensured by
the fact that BdþðIdÞ is non-circular. Such an
algorithm has a linear complexity with respect to the
size of BdþðIdÞ.

Example 5. In our example, the database movies is
first initialized to movies of Fig. 4. BdþðImoviesÞ is
made up of 2 INDs: BdþðImoviesÞ ¼ fABC � GHI ;
E � Gg. The relation remakes is first considered,
since it does not have incoming IND. The IND
ABC � GHI is enforced by the insertion of the
tuple h16;Le voyage; 1959i into movies, and then
E � G by the insertion of h17;Four sisters; 1938i
and h30; casablanca; 1944i into movies.

The two INDs are then dropped, and the algo-
rithm terminates. We obtain the database movies
which is an IADB for d, represented in Fig. 5.

We are now able to give a formal proof of
Theorem 1.

Proof of Theorem 1. Theorem 1 can be deduced
from bounds given in Lemma 4 for d considering
FDs and not satisfied INDs only. Recall that, to
enforce satisfied INDs we only add tuples from d.

The lower bound can be reached if each IND in
BdþðId Þ is already satisfied by d for FDs and not
satisfied INDs only (Lemma 4). The upper bound is
reached if, to enforce each IND R½X � � S½Y � of
BdþðId Þ, one tuple has to be inserted into the
relation s for each tuple into the relation r. &

4.4.2. BdþðId Þ circular

The case of non-circular IND is easy to handle
since each step is definitive, i.e. each element is
considered only once. Unfortunately, things are
different in the case of circular INDs which may
exist in BdþðIdÞ: enforcing an incoming IND into a
relation r may violate another IND previously
enforced if they belong to the same cycle. In that
case, Theorem 1 does not apply. Nevertheless, a
simple solution does exist in practice: repeating the
enforcement of INDs until a stable state is reached.
Even if we are unable to predict the number of
iterations, we can guarantee that no infinite loop
may arise since any database is by definition an
IADB for itself.

To the best of our knowledge, even if classical
Armstrong databases exist for all set of FDs and

ARTICLE IN PRESS
F. De Marchi, J.-M. Petit / Information Systems 32 (2007) 446–457454



Aut
ho

r's
   

pe
rs

on
al

   
co

py

INDs, no algorithm does exist to compute them in
the case of circular set of INDs.

4.4.3. Discussion

A natural question arises concerning the rele-
vance of the upper bound given in Theorem 1: can
we expect small sizes for IADBs in practice? Two
parameters influence the size of IADBs: the number
of generator sets for FDs in each relation, and the
size of negative and positive borders for INDs in the
database. The first one is known to be potentially
exponential in the number of attributes [17]. The
second one is also exponential in the number of
attributes. Indeed, IND discovery is a problem
‘‘representable as sets’’ [27,16] and thus the borders
of INDs are isomorph to the borders of frequent
itemsets, which may be exponential in the number
of attributes. However, these worst cases corre-
spond to highly artificial databases. For FDs, all
existing real-life and synthetic experiments have
reported a small number of generator sets [15]. For
INDs, the borders are also small in practice (more
specially the positive border), since INDs of size
greater than 4 or 5 are quite rare in operational
databases [32]. Experiments in the next section tend
to confirm this discussion.

5. Experiments

The aim of this section is twofold: showing the
feasibility of our approach and illustrating the

power of reduction of IADBs on a medium-size
real-life database.

The database movies is part of the UCI KDD

Archive [30]. The original format is plain text, and
thus minor changes were necessary to import the
data into an Oracle 9i database. The largest relation
is made up of 40,000 tuples and the overall
cardinality of the database is 68,262. Algorithms
were implemented using the C++ language and
STL (Standard Template Library), and executed on
a Pentium II 500MHz processor, 392Mbytes of
main memory. For each step of Algorithm 1, we
have reported in Fig. 6 the size of the IADB under
construction. The last two columns are the lower
and upper bounds given in Theorem 1.

As one can see in Fig. 6, we are ensured to
compute an IADB with a maximum of 5784 tuples.
This is an important result since it corresponds to a
reduction of movies by a factor of 11.8.

Step 1 (FDs): We have computed movies such that
Fmovies ¼ Fmovies. The size of movies is equal to 374,
which corresponds to a reduction by 182 with
exactly the same FDs.

Step 2 (not satisfied INDs): In the database
movies, there are 896 INDs in the negative border of
satisfied INDs. In our experiments, no disqualifying
tuple at all had to be inserted.

Step 3 (satisfied INDs): As seen before, it is
enough to enforce, in the database under construc-
tion, the positive border of satisfied INDs in movies.
Here, the positive border is made up of 10 INDs.

ARTICLE IN PRESS

Fig. 5. The database movies, IADB for movies.

F. De Marchi, J.-M. Petit / Information Systems 32 (2007) 446–457 455



Aut
ho

r's
   

pe
rs

on
al

   
co

py

Enforcing these INDs leads to the addition of 60
tuples. Thus, we obtain an IADB for movies
including 434 tuples, i.e. only 0.6% of the total

number of tuples in movies, keeping exactly the same
functional and inclusion dependencies.

6. Conclusion

In this paper, IADBs have been defined as small
subsets of existing databases, but satisfying exactly
the same set of functional and inclusion dependen-
cies. The existence of IADBs with a bounded size
has been pointed out by a theorem, in the case of
non-circular set of INDs. An algorithm is proposed
to compute such ‘‘small’’ IADBs, whose complexity
is linear in the number of generator sets and the size
of positive and negative borders of INDs. An
implementation of our algorithm has been per-
formed, taking in account the case of circular INDs;
results on a real-life database show the feasibility of
our approach. Moreover, the size of the constructed
IADB represents 0:6% of the size of the initial
database with exactly the same set of satisfied and
non-satisfied FDs and INDs. Due to this reduction,
IADBs can be seen as a semantic sampling of
existing databases.

Although Armstrong databases as such yield
limited benefits, IADBs are likely to show better
results for databases maintenance or for KDD
processing. Indeed, they convey both data semantics
(FDs and INDs) and the intended meaning of tuples
from the underlying databases. Moreover, since null

values are quite common in real life databases,
IADBs may also have a lot of null values. There-
fore, IADBs give also a faithful representation of
the initial DB with respect to null values, in addition
to a faithful representation of the dependencies.
This is indeed the case in the movies database.

We conclude the paper by pointing out three open
problems: given a database d, what is the size of ‘‘a
smallest’’ IADB for d? How far is this size from the
bounds given in Theorem 1? Is the associated
decision problem NP-complete? At the moment,
we obtain one interesting result, in the case of FDs
alone: we successfully formulated the problem as an
integer programming problem, and thus solved it

for movies using CPlex 7.1 [33]. We were able to
compute the size of the smallest IADB. Results
suggest two remarks: (1) the optimum is very far
from the lower bound of Theorem 1 and (2) the
optimum is very close to the size obtained by our
program (which implement a simple heuristic). As a
consequence we have good reasons to think that the
lower bound of Theorem 1 can be improved, taking
into account not only the number of generator sets,
but also their structure.

References

[1] M. Casanova, R. Fagin, C. Papadimitriou, Inclusion

dependencies and their interaction with functional depen-

dencies, J. Comput. Syst. Sci. 24 (1) (1984) 29–59.

[2] E.F. Codd, Recent investigations in relational data base

systems, in: J.L. Rosenfeld (Ed.), International Federation

for Information Processing (IFIP’74), Stockholm, Sweden,

1974, pp. 1017–1021.

[3] M. Levene, M.W. Vincent, Justification for inclusion

dependency normal form, IEEE Trans. Knowledge Data

Eng. 12 (2) (2000) 281–291.

[4] M.A. Casanova, L. Tucherman, A.L. Furtado, Enforcing

inclusion dependencies and referencial integrity, in: F.

Bancilhon, D.J. DeWitt (Eds.), International Conference

on Very Large Data Bases, (VLDB’88), Los Angeles, CA,

USA, Morgan Kaufmann, Los Altos, 1988, pp. 38–49.

[5] H. Mannila, K.-J. Räihä, Inclusion dependencies in database

design, in: International Conference on Data Engineering,

(ICDE’86), Los Angeles, CA, USA, IEEE Computer

Society, Silver Spring, MD, 1986, pp. 713–718.

[6] R.J. Miller, M.A. Hernández, L.M. Haas, L. Yan, C.T.H.

Ho, R. Fagin, L. Popa, The clio project: managing

heterogeneity, ACM Sigmod Rec. 30 (1) (2001) 78–83.

[7] J. Gryz, Query folding with inclusion dependencies, in: Inter-

national Conference on Data Engineering, (ICDE’98), Orlan-

do, FL, USA, IEEE Computer Society, 1998, pp. 126–133.

[8] Q. Cheng, J. Gryz, F. Koo, T.Y.C. Leung, L. Liu, X. Qian,

B. Schiefer, Implementation of two semantic query optimi-

zation techniques in DB2 universal database, in: M.P.

Atkinson, M.E. Orlowska, P. Valduriez, S.B. Zdonik,

M.L. Brodie (Eds.), International Conference on Very Large

Data Bases, (VLDB’99), Edinburgh, Scotland, UK, Morgan

Kaufmann, Los Altos, 1999, pp. 687–698.

[9] W.W. Armstrong, Dependency structures of database

relationships, in: J.L. Rosenfeld (Ed.), International Federa-

tion for Information Processing, (IFIP’74), Stockholm,

Sweden, 1974, pp. 580–583.

[10] R. Fagin, M. Vardi, Armstrong databases for functional and

inclusion dependencies, Inform. Process. Lett. 16 (1983)

13–19.

ARTICLE IN PRESS

Fig. 6. Experimental results (number of tuples).

F. De Marchi, J.-M. Petit / Information Systems 32 (2007) 446–457456



Aut
ho

r's
   

pe
rs

on
al

   
co

py

[11] A.M. Silva, M.A. Melkanoff, A method for helping discover

the dependencies of a relation, in: H. Gallaire, J.-M. Nicolas,

J. Minker (Eds.), Advances in Data Base Theory,

(ADBT’81), Toulouse, France, 1979, pp. 115–133.

[12] H. Mannila, K.-J. Räihä, Design by example: an application

of Armstrong relations, J. Comput. Syst. Sci. 63 (2) (1986)

126–141.

[13] Y. Huhtala, J. Karkkainen, P. Porkka, H. Toivonen, TANE:

an efficient algorithm for discovering functional and approx-

imate dependencies, Comput. J. 42 (2) (1999) 100–111.

[14] N. Novelli, R. Cicchetti, Functional and embedded depen-

dency inference: a data mining point of view, Inform. Syst.

26 (7) (2001) 477–506.

[15] S. Lopes, J.-M. Petit, L. Lakhal, Functional and approx-

imate dependencies mining: databases and FCA point of

view, JETAI 14 (2/3) (2002) 93–114 (special issue).

[16] F. De Marchi, J.-M. Petit, Zigzag: a new algorithm for

discovering large inclusion dependencies in relational

databases, in: International Conference on Data Mining,

(ICDM’03), Melbourne, FL, USA, IEEE Computer Society,

Silver Spring, MD, 2003, pp. 27–34.

[17] C. Beeri, M. Dowd, R. Fagin, R. Statman, On the structure

of Armstrong relations for functional dependencies, J. ACM

31 (1) (1984) 30–56.

[19] F. De Marchi, S. Lopes, J.-M. Petit, Samples for under-

standing data-semantics in relations, in: M.-S. Hacid, Z.W.

Ras, D.A. Zighed, Y. Kodratoff (Eds.), International

Symposium on Methodologies for Intelligent Systems

(ISMIS’02), Lyon, France, Lecture Notes in Artificial

Intelligence, vol. 2366, Springer, Berlin, 2002, pp. 565–573.

[21] M. Albrecht, E. Buchholz, A. Düsterhöft, B. Thalheim, An

informal and efficient approach for obtaining semantic

constraints using sample data and natural language proces-

sing, in: L. Libkin, B. Thalheim (Eds.), Semantics in

Databases, Lecture Notes in Computer Science, vol. 1358,

Springer, Berlin, 1995, pp. 1–28.

[22] F. De Marchi, S. Lopes, J.-M. Petit, F. Toumani, Analysis

of existing databases at the logical level: the DBA

companion project, ACM Sigmod Rec. 32 (1) (2003) 47–52.

[23] S. Lopes, F. De Marchi, J.-M. Petit, DBA Companion: a

tool for logical database tuning, in: Demo Session of

International Conference on Data Engineering (ICDE’04),

IEEE Computer Society, Silver Spring, MD, 2004, http://

www.isima.fr/ 
demarchi/dbacomp/.

[24] S. Abiteboul, R. Hull, V. Vianu, Foundations of Databases,

Addison-Wesley, Reading, MA, 1995.

[25] M. Levene, G. Loizou, A Guided Tour of Relational

Databases and Beyond, Springer, Berlin, 1999.

[26] W.W. Armstrong, C. Delobel, Decomposition of functional

dependencies in relations, ACM Trans. Database Syst. 5 (4)

(1980) 404–430.

[27] H. Mannila, H. Toivonen, Levelwise search and borders of

theories in knowledge discovery, Data Min. Knowledge

Discovery 1 (1) (1997) 241–258.

[28] F. De Marchi, S. Lopes, J.-M. Petit, Efficient algorithms for

mining inclusion dependencies, in: C.S. Jensen, K.G. Jeffery,

J. Pokorný, S. Saltenis, E. Bertino, K. Böhm, M. Jarke

(Eds.), International Conference on Extending Database

Technology (EDBT’02), Prague, Czech Republic, Lecture

Notes in Computer Science, vol. 2287, Springer, Berlin,

2002, pp. 464–476.

[29] M. Levene, G. Loizou, How to prevent interaction of

functional and inclusion dependencies, Inform. Process.

Lett. 71 (3–4) (1999) 115–125.

[30] S.D. Bay, The UCI KDD archive, Technical Report,

University of California, Irvine, CA, Department of

Information and Computer Science, 1999, [http://kdd.ics.u-

ci.edu].

[31] J. Demetrovics, V. Thi, Some remarks on generating

Armstrong and inferring functional dependencies relation,

Acta Cybern. 12 (2) (1995) 167–180.

[32] M. Kantola, H. Mannila, K.J. Räihä, H. Siirtola, Discover-

ing functional and inclusion dependencies in relational

databases, Int. J. Intell. Syst. 7 (1992) 591–607.

[33] F. De Marchi, Découverte et visualisation par l’exemple des

dépendances fonctionnelles et d’inclusion dans les bases de

données relationnelles, Ph.D. Thesis, 2003 (in French),

http://www.isima.fr/
demarchi/these_book.ps.

ARTICLE IN PRESS
F. De Marchi, J.-M. Petit / Information Systems 32 (2007) 446–457 457


