
This article was originally published in a journal published by
Elsevier, and the attached copy is provided by Elsevier for the

author’s benefit and for the benefit of the author’s institution, for
non-commercial research and educational use including without

limitation use in instruction at your institution, sending it to specific
colleagues that you know, and providing a copy to your institution’s

administrator.

All other uses, reproduction and distribution, including without
limitation commercial reprints, selling or licensing copies or access,

or posting on open internet sites, your personal or institution’s
website or repository, are prohibited. For exceptions, permission

may be sought for such use through Elsevier’s permissions site at:

http://www.elsevier.com/locate/permissionusematerial

http://www.elsevier.com/locate/permissionusematerial

Aut
ho

r's

pe
rs

on
al

co

py

From case-based reasoning to traces-based reasoning

Alain Mille

LIRIS UMR CNRS 5205, Université Lyon1, Insa-Lyon, Université Lyon2, ECL, France

Received 19 January 2006; accepted 19 September 2006

Abstract

CBR is an original AI paradigm based on the adaptation of solutions of past problems in order to solve new similar problems. Hence, a case is a

problem with its solution and cases are stored in a case library. The reasoning process follows a cycle that facilitates ‘‘learning’’ from new solved

cases. This approach can be also viewed as a lazy learning method when applied for task classification. CBR is applied for various tasks as design,

planning, diagnosis, information retrieval, etc. The paper is the occasion to go a step further in reusing past unstructured experience, by considering

traces of computer use as experience knowledge containers for situation based problem solving.

2006 Elsevier Ltd. All rights reserved.

Keywords: Problem solvers; Artificial intelligence; Knowledge-based systems; Knowledge representation

1. Context

This tutorial paper aims to present efficient technologies to

amalgamate human operators and computer driven systems for

tasks implying man–machine cooperation. The operator’s

experience and the computer’s reliability have to be combined

in a virtuous spiral. The ability to continuously capitalize on

human experience while solving new problems in a techno-

logical context is what could be the key to softly amalgamate

human operators and complex computer driven systems. The

Case-Based Reasoning (CBR) paradigm, and further the Trace-

Based Reasoning (TBR) approach are suitable for such a goal.

In order to be able to understand the CBR AI paradigm, the

paper recalls its cognitive foundations and details how it works

technically. A number of useful pointers to technical papers will

allow the reader to go further depending on her interest. This

part of the paper borrows its formalization and especially its

adaptation description from a common work between the team

of LIRIS and LORIA (see Fuchs, Lieber, Mille, & Napoli,

2006). In the second part of the paper we take the opportunity to

shortly present the TBR paradigm, a recent generalization of

the CBR paradigm able to deal – with dynamic problem solving

in episodes while CBR needs well-predefined context descrip-

tions. In this way TBR-manages to dynamically build contexts,

which can be very fruitful in man–machine cooperation for

controlling complex systems.

2. Case-based reasoning

2.1. CBR foundations

Minsky, Schank, Abelson and others gave general directions

for reusing past problem solving schemes to solve new

problems in new situations. In this paper, we focus on Minsky’s

and Schank’s pioneering works. Interested reader will find

biographical information about them in Crevier (1993).

2.1.1. Marvin MINSKY and ‘‘stereotypes based reasoning’’

Marvin Minsky argues that usual theoretical approaches in

AI try to be too ‘‘precise’’, local and not really structured to face

‘‘real world’’ problems (see Minsky, 1975 for details1). He

considers several approaches in Artificial Intelligence and

Cognitive Psychology:

� The proposal, he made with Papert, to divide ‘‘knowledge’’ in

structures they called ‘‘microworlds’’ (Minsky & Papert,

1974).

� The definition of ‘‘problem spaces’’ by Newell and Simon

(1960).

� The expression of linguistic objects by Schank and Abelson

(1977).

He describes these approaches as promising and contrasting

to the classical approaches that attempt to describe knowledge

www.elsevier.com/locate/arcontrol

Annual Reviews in Control 30 (2006) 223–232

E-mail address: alain.mille@liris.cnrs.fr. 1 http://web.media.mit.edu/�minsky/papers/Frames/frames.html.

1367-5788/$ – see front matter # 2006 Elsevier Ltd. All rights reserved.

doi:10.1016/j.arcontrol.2006.09.003

Aut
ho

r's

pe
rs

on
al

co

py

as one set of unstructured knowledge pieces. Minsky proposes

the notion of ‘‘Frame’’ as a convenient structure to support

these theories. A frame is supposed to describe the ‘‘context’’ in

which the reasoning process has to be done.

As Minsky explains ‘‘Here is the essence of the theory: when

one encounters a new situation (or makes a substantial change

in one’s view of the present problem) one selects from memory a

structure called a Frame. This is a remembered framework to be

adapted to fit reality by changing details as necessary.’’

A frame has three main parts:

� A part about its use (its goal and context of use).

� A part about what can occur after using this frame.

� A part about what to do if there is an unwanted result after the

frame’s application.

‘‘We can think of a frame as a network of nodes and

relations. The ‘‘top levels’’ of a frame are fixed, and

represent things that are always true about the supposed

situation. The lower levels have many terminals—‘‘slots’’

that must be filled by specific instances or data. Each

terminal can specify conditions its assignments must meet.

(The assignments themselves are usually smaller ‘‘sub-

frames.’’) Simple conditions are specified by markers that

might require a terminal assignment to be a person, an object

of sufficient value, or a pointer to a sub-frame of a certain

type. More complex conditions can specify relations among

the things assigned to several terminals’’ (see Fig. 1).

The complete frame-system works like a frame with ‘‘always

true’’ things at the very top nodes and ‘‘sensors on the world’’ at

the lowest level.

This theoretical approach has mainly led to Object

Languages, such as Smalltalk and Frame Languages, such as

KL-One, but the ‘‘analogical reasoning process’’ has not really

been implemented.

2.1.2. Roger Schank: one of the firsts to speak of case-

based reasoning

Understanding stories in natural language was one of the first

objectives of Schank when he developed his theory on CBR see

Schank (1982). The basic idea is that mental schemes are

guiding the understanding of texts, allowing to complement

what was not said. ‘‘Understanding is Explaining’’: was

claimed by Robert Schank2.

Consider the following sentences: ‘‘John went to the

restaurant. He took a piece of ham. It was good.’’ In order

to understand this short text, we need to know, for example, that

when we take a piece of ham in a restaurant, this is for eating.

Nothing of that is said in the text, but we guess that John ate the

piece of ham. Schank proposes to represent the behavior (here,

in a restaurant) by a ‘‘script’’ splitting it in different steps which

can be finer scripts and so on. See Fig. 2 for an illustration of a

potential script structure.

So, a script describes an episode of a known behavior in the

form of a sequence of events as they generally occur

(experimented usual situations). When a new situation is

encountered, the script is adapted to take this exception into

account. In order to complement events with useful informa-

tion, scripts contain other pieces of information, mainly:

� Actual goals.

� Current plans.

� Social links.

� Played roles.

� Character traits.

� And generally speaking, anything indicating the exhibited

behavior by the script in a given situation.

Scripts and frames share many properties but what is really

different is the status of ‘‘immediate experience’’. While

Minsky argues that frames are ‘‘idealized stereotypes’’ of

encountered situations, Schank proposes to keep ‘‘concrete

episodes’’ in memory, i.e. such as these episodes occurred in

reality. They are organized in a dynamic memory and reused by

adaptation. This episodic memory is automatically organized

by a simple generalization process as illustrated in Fig. 3.

Many researches complemented these pioneering works and

the main concepts are established. AI technologies now

integrate this paradigm of CBR for Problem Solving and Lazzy

Learning.

2.2. Knowledge and CBR principles

Minsky and Schank were CBR pioneers but Janet Kolodner

worked explicitly on CBR and wrote the first book on the

subject in 1993 (Kolodner, 1993). From an engineering point of

view, Agnar Aamodt and Enric Plaza (1994) proposed a

CBR reasoning cycle and many research works and CBR

applications have been developed since then [http://www.ai-

cbr.org]. Useful references are given at the end of the principle

section.

2.2.1. What is a case?

A case is the description of a problem solving episode. Its

structure is designed to describe the context of the task:

diagnosis, planning, decision making, help desk, configuring,

Fig. 1. Frame example (Minsky). 2 http://www.edge.org/3rd_culture/bios/schank.html.

A. Mille / Annual Reviews in Control 30 (2006) 223–232224

Aut
ho

r's

pe
rs

on
al

co

py

etc. In a pedagogical context, we consider a case as one list of

descriptors, where each descriptor can as well be a complex

structure.

A case is composed of a problem part and a solution part:

case = (pb, sol(pb)). A source case source_case = (source,

sol(source)) is a case of which the solution sol(source) will be

reused in order to solve a new problem. The new problem is

called a target case target_case = (target, sol(source)).

A case is described by its descriptors:

source ¼ fds
1; . . . ; ds

ng where ds
i is a source problem

descriptor.

SolðsourceÞ ¼ fDs
1; . . . ;Ds

mg where Ds
i is a source solution

descriptor

cible ¼ fdc
1; . . . ; dc

ngwhere dc
i is a target problem descriptor.

SolðcibleÞ ¼ fDc
1; . . . ;Dc

ng where Dc
i is a target solution

descriptor.

Example 1. Consider the problem of finding the adequate

price for a flat.

Problem part

ds
1 : flat surfaceðrealÞ.

ds
2 : flat locationða structureÞ.

ds
3 : flat stateða list of defectsÞ.

Solution part

Dc
1 : salling price of the flatðrealÞ.

Dc
2 : sale conditionsðpayment facilities for exampleÞ.

Example 2. Consider the task of car breakdown diagnosis.

Problem part

ds
1: noises (list of symbolic descriptors).

ds
2: external symptoms (list of symbolic descriptors).

ds
3: car model (symbolic descriptor).

ds
4: first ‘‘put into circulation’’ date (date descriptor).

Solution part

Dc
1: mechanical parts to troubleshoot (list of symbolic

descriptors).

Dc
2: diagnosed faults on the mechanical parts.

2.3. Ontology of description attributes

To match and compare cases, attribute values have to be

compared for the purpose of similarity evaluation. Each

attribute has a type. Knowing the type makes it possible to

choose the appropriate comparison operators. It is useful to

describe the ontology of the types of attributes to enable an

efficient similarity measure but not for ‘‘describing the

world’’!

Fig. 2. Illustration of a script (Schank).

Fig. 3. Episodes E1 and E2 are combined in order to build their generalization

EG. ES1 and ES2 are specializations of EG.

Table 1

A small case base on the ‘‘Flat sale problem’’

Attribute label Case 1 Case 2 Case 3 Attribute type

Pb_surface 55 35 55 Real

Pb_district_location Rhône

district

Rhône

district

Ain

district

Symbol

Sol_sale_price 20,000 45,000 15,000 Real

Pb_flat_type F2 F2 F2 Symbol

Pb_town_location Lyon Lyon Bourg en Bresse Symbol

A. Mille / Annual Reviews in Control 30 (2006) 223–232 225

Aut
ho

r's

pe
rs

on
al

co

py

The ontology can be shared by a whole case base, but it is not

mandatory to build such an ontology. Each attribute can have a

‘‘facet’’ explaining how to manage the similarity measure for

each specific case. Theoretically, ‘‘pure CBR’’ contains all

necessary knowledge in cases.

2.3.1. What is a case base?

A case base is a collection of solved cases for a class of

problems. For example, there are separate and different case

bases for the ‘‘Flat sale problem’’ and for the ‘‘Card diagnosis

problem’’. For the ‘‘Flat sale problem’’, a case is the description

of a sale episode and descriptors obey the corresponding

ontology. In the following table (Table 1), the blank rows stand

for problem descriptors and the pink row stands for the solution

description (here, the sale price).

The district location descriptor Pb_Disrtict_Location can be

easily inferred from the ontology (see Fig. 4). Even if it seems

that building a case base is easier than building a set of rules,

there still exist problems with respect to knowledge engineer-

ing. Most of the industrial CBR applications propose forms to

establish a library of cases. A case base can be small (if

different possible types of cases are well represented and the

Fig. 4. Examples of domain ontologies for case descriptors.

A. Mille / Annual Reviews in Control 30 (2006) 223–232226

Aut
ho

r's

pe
rs

on
al

co

py

domain knowledge is rich) or very large (if it exists a wide

variety of cases and the domain knowledge is poor).

For each case base, there exists an associated metric that,

when combined with values of problem descriptors, allows to

project case on the ‘‘solutions plan’’. Similar cases are cases

that have similar solutions for similar problems.

2.3.2. What is the resolution process? How to choose a

source case in the case base?

In order to decide if it is possible to adapt a source case to

solve a target case, a similarity threshold between problem

descriptions has to be reached. Moreover, there is no chance

to use the same adaptation process for different kind of

problems (for example, adapting the price of an old flat is not

the same as adapting the price of a new one, even if

everything else is very similar). Consequently, similarity

measures are used to build dynamic clusters of cases in order

to choose which kind of adaptation method has to be chosen

for a given new problem.

The resolution process is illustrated in Figs. 5 and 6:

similarity of the new target case (C) is computed with all the

other cases3. The algorithm chooses the type of adaptation

which is the most significant and the most represented in the

cluster of neighbors. (C) has been assessed to be associated with

a ‘‘blue’’ adaptation process.

Case-Based Reasoning needs a case base on which a metric

and a measure of similarity have been defined.

2.3.3. CBR cycle

Aamodt and Plaza (1994) were the first who proposed a CBR

cycle to make evident the knowledge engineering effort needed

when developing CBR applications. This general cycle has

been complemented by an ‘‘Elaborate’’ step which was not part

of the original cycle (Fig. 7). This step is sometimes called

‘‘indexing’’ step.

Each step has its own method to exploit the knowledge base

and the case base but ‘‘retrieve’’ and ‘‘adapt’’ steps explain how

to build the knowledge representation for the domain and the

cases.

2.3.4. Elaborate

Elaborating a new case is a method that decides which

descriptors are useful for finding ‘‘adaptable’’ cases in the case

base. Similarity is here a synonym of ‘‘adaptability’’.

Adaptability depends directly on the supposed effort to adapt

a source case solution in the context of the target case problem.

A general elaboration method completes or s filters the raw

description of a problem on the basis of domain knowledge, and

then infers new descriptors and importance weights. Depen-

dencies are very important to be explicitly available at this step.

This ‘‘elaborate’’ step is illustrated in Table 2 while Fig. 8

illustrates how the domain knowledge can be used to deduce a

new descriptor from others.

2.3.5. Retrieve

The ‘‘retrieve’’ step is the key step in CBR because the

quality of the adaptation depends on the quality of the retrieval.

We have to keep in mind that we are searching for ‘‘similar’’

solutions by matching source and target problems. It is

necessary to define a similarity measure, which takes into

account dependencies between problem and solution descrip-

tors and to verify the availability of adaptation operators for the

observed differences. Numerous similarity measures are

described in literature (coming from data analysis for example)

that take into account specificities of descriptors (time, space,

complex structures, plans, sequences, etc.). It is often possible

Fig. 5. Clustering cases by ‘‘type of adaptation process’’. Fig. 6. Resolution process.

Table 2

Elaboration of a problem

Attribute label Attribute

type

Attribute

value (raw)
Attribute value

(elaborated)

General status Symbol

(inferred)

?? Good

Nb of kms Real 198,000 198,000

Nb of years

of the car

Real 10 10

Car manufacturer Symbol

(inferred)

?? Peugeot

Car model Symbol 206 205

Car type Symbol Break Break

Defects List of

symbols

(superficial

problems)

(superficial

problems)

Sale price

(solution)

Real ??? ???

3 The case base can be structured in order to cut the number of matches to do.

A. Mille / Annual Reviews in Control 30 (2006) 223–232 227

Aut
ho

r's

pe
rs

on
al

co

py

to translate these ‘‘special’’ similarity measures into simpler

ones by transforming complex descriptors in a set of simpler

ones. Intuitively, we understand that we have to give a high

weight for problem descriptors exhibiting a high dependency

with solution descriptors and for which, at the same time, no

simple adaptation operators exist (see Table 3 for an example of

such weights). Conversely, we can put low weights on problem

descriptors exhibiting little dependency and for which it is easy

to adapt dependent descriptors of the solution.

For simplicity, we consider here the following measure of

distance: d ¼
P

i pi � di=
P

i pi, where the distance between

two problem descriptions is constituted by the weighted sum of

distances between attributes. Weights represent the knowledge

about the importance of the ‘‘influence’’ of problem descriptor

values on the solution.

The retrieval step utilizes these weights for choosing the

best case, i.e. the easiest case to adapt. The classical algorithm

is the KNN algorithm (K nearest neighbors) (Cover & Hart,

1967).

2.3.6. Adapt

Adaptation is the last step of the analogical inference. It

computes what could be a target solution by adapting the

solution of the most similar case. Adaptation rules have to

express the management of differences between source and

target problems for guiding the adaptation of the source

solution. The schema in Figs. 9 and 10 illustrates relevant

knowledge and the inference process of adaptation:

Dt
k ¼ Ds

k � DDk; Dt
k ¼ Ds

k � I

�
Ds

k

ds
i

�
� Ddi (1)

Dt
k ¼ Ds

k � DDk; Dt
k ¼ Ds

k �
Z

i¼f j;mg

�
I

�
Ds

k

ds
i

�
� Ddi

�

(2)

The formula (Eq. (1)) expresses that Dt
k is computed by

‘‘adding’’ the influence IðD2
k=ds

i Þ ‘‘in proportion of’’ the

difference Ddi between source and problem descriptors.

‘‘Addition’’ operator and ‘‘in proportion of’’ operator can be

Fig. 8. General knowledge to infer the value of ‘‘general status’’ from the value

of ‘‘defects’’.

Fig. 7. CBR cycle steps.

Table 3

Attribute weights = influence importance of the attribute on the solution

Attribute label Attribute type Influence weight

of the attribute

on the solution

General status Symbol (inferred) 20%

Nb of kms Real 35%

Nb of years of the car Real 25%

Car manufacturer Symbol (inferred) 5%

Car model Symbol 5%

Car type Symbol 10%

Observed defects list List of symbols No importance

Sale price (solution) Real ???

A. Mille / Annual Reviews in Control 30 (2006) 223–232228

Aut
ho

r's

pe
rs

on
al

co

py

very specifically coined for the types of descriptors and to the

context of the case (the type of adaptation to process).

Eq. (2) generalizes the previous one by ‘‘integrating’’ the

effect of several differences on problems parts.

Ddi: difference between values of source and target problem

descriptors according to a specific matching function.

IðDs
k=ds

i Þ ¼ influence of a differenceds
i on the value ofDs

k.

� = operator to compute ‘‘influence’’ according to the

observed differences between problem descriptors.R
i¼f j;mg I

Ds
k

ds
i

� �
� Ddi

� �
sums individual influence effects of

the differences between problem descriptors for an ‘‘indivi-

dual’’ source solution descriptor (there is no general equation

for several source solution descriptors).

� = operator of ‘‘addition’’ of the integrated computed

influence to a source solution descriptor to propose a value for

the corresponding target solution descriptor.

Consider the following ‘‘car sale problem’’ (Table 4)

He adaptation rule could be the following:

In this rule (Fig. 11), we consider only two influences of

problem descriptors on the price: number of kilometers and car

status. Each positive (negative) difference of 1 km on the first

descriptor adds (subtracts) s 0.1 to the price while the fact to go

from ‘‘bad status’’ to ‘‘good status’’ (or vice-versa) adds (or

subtracts) s 1000.4

2.3.7. Revise

Revising is sometimes necessary when the adapted solution

did not match the current situation and needs ‘‘revisions’’ to

correspond. In order to revise, we can:

� Try the adapted solution in the ‘‘real’’ world (for example, we

try to sell our car with the adapted selling price. . .).
� Introspect the case base with the complete case in order to

verify how similar complete cases worked when applied (for

example, we could verify that similar cars were really sold

with a similar price).

� Use another problem solving process (simulator, expert

system. . .)

In each option we can observe differences between what the

system proposed and what would have been a correct proposal.

After the revising step, we could use these differences as

starting points to revise the domain knowledge and to learn

about the retrieval/adaptation process.

2.3.8. Memorize (learn)

Adding a new solved case to the case base is the basic

‘‘learning’’ mechanism of CBR. Other important entities can be

capitalized:

� Similarity measure.

� Influence knowledge (functions?).

� New dependencies, etc.

It is possible to learn from the ‘‘trace’’ of the ‘‘reasoning

process’’ which led to the new case. For example, if we keep

trace of the adaptation process, we can consider the traces as

cases of adaptation usable during the ‘‘adaptation’’ step.

2.4. CBR knowledge engineering

We briefly summarize important steps usually found during

knowledge engineering for a CBR application:

Fig. 9. Illustration of a single simple adaptation.

Table 4

A ‘‘car sale problem’’

Attribute label Attribute type Attribute-value Elaborated value

General status Symbol (inferred) ?? Good
Nb of kms Real 198,000 198000

Nb of years

of the car

Real 10 10

Car manufacturer Symbol (inferred) ?? Peugeot
Car model Symbol 206 206

Car type Symbol Break Break

Defects List of symbols (superficial

problems)

(superficial

problems)

Sale price (solution) Real ??? ???

4 In order to take into account the ‘‘car status’’, it would be, for example,

possible to express it by a ‘‘mark’’ between 1 and 10 and to use it in classical

metrics.

A. Mille / Annual Reviews in Control 30 (2006) 223–232 229

Aut
ho

r's

pe
rs

on
al

co

py

� Collecting potential cases.

� Describing the case descriptors.

� Testing the structures of cases with users and experts.

� Trying to build an ontology of descriptors attributes.

� Observing the reusing of cases by users and experts for real

concrete problems.

� Focusing on the adaptation process.

� Eliciting dependencies and influences as they have to be used

in adaptation.

� Building a measure of similarity on the base of known

dependencies and influences.

� Testing the measure of similarity with the set of solved cases.

� Building the adaptation rules according to dependencies and

influences.

� Testing the adaptation process on the set of known cases.

� Building the first cases with experts’’ (we call this period the

learning period of the system).

� Revising the whole system.

� Delivering the CBR system with an initial case base,

useful for the reusing. . . and with continuous learning

possibilities!

2.5. Organized bibliography in order to go further

In order to be able to understand deeply the CBR paradigm,

there exists a rather comprehensive body of literature:

� Aamodt and Plaza (1994) give a ‘‘knowledge engineering’’

point of view on the CBR cycle which is now broadly

accepted.

� Despite the fact that given URLs are no more working (Aha,

1998) gives a good idea of very different areas of CBR

applications.

� Bergmann (2004) is the second edition of a book reporting the

INRECA project5 which aimed to define a knowledge

Modeling Framework for CBR.

� Hanney, Keane, Smyth and Cunningham (1995) is a founda-

tional article written by main CBR researchers. It focuses

on adaptation which is probably the key problem in CBR.

� Kolodner (1993) makes the synthesis between cognitive

approaches and computer models. A rather pedagogical

book.

� Kolodner and Leake (1996) is a nice introduction to CBR. It

is a tutorial taking place in Leake (1996), a book gathering

experiences and lessons of research on CBR.

� Kolodner, Simpson, and Sycara-Cyranski (1985) is con-

sidered a seminal paper on the CBR process.

� Lenz (1998) is a book trying to link foundations to

applications, and could be useful for people willing to

develop CBR applications.

� Lòpez De Màntaras et al. (2006) is the most recent synthesis

on the subject of CBR. It is a collective paper bringing

together 13 important researchers of the field.

� Schank and Riesbeck (1989) is probably the first book on the

subject. A seminal document. This book completes Schank

(1982) which is the classical reference on CBR.

� Watson (1997) gathers many interesting enterprise applica-

tions giving good ideas on what can be done concretely.

� Renaud et al. (2006) is the first book presenting 11 CBR

applications in French (to appear).

CBR has been widely studied for design tasks:

Fig. 10. General adaptation.

Fig. 11. Adaptation rule for sale price. 5 http://www.wi2.uni-trier.de/de/cms/projects/INRECA/.

A. Mille / Annual Reviews in Control 30 (2006) 223–232230

Aut
ho

r's

pe
rs

on
al

co

py

� Maher and Pu (1997) makes an interesting and valuable

synthesis on Case-Based Design, completing the influential

book on the subject Maher, Balachandran, and Zhang (1995).

� Faltings and Sun (1996) propose an original use of CBR in

design for supporting innovation.

Help Desk is a very successful CBR application (Thurman

et al., 1997):

� For customer technical support (Simoudis, 1992).

� For recommender systems (McSherry, 2005).

Diagnosis is a well known application of CBR, combined

with other kinds of reasoning process (Portinale, Magro, &

Torasso, 2004).

Planning has been widely studied by the CBR community

Veloso, Munoz-Avila, and Bergmann (1996).

Knowledge management is a very promising domain of

CBR application:

� Bergman (2002) founds the notion of ‘‘Experience Manage-

ment’’.

� Champin, Mille, and Prié (2003) proposes a bridge between

CBR and TBR for experience management and experience

reusing.

Capitalizing on human expertise to support control tasks
is an active area for CBR application:

� Brann, Thurman, and Mitchell (1995) focus on the

accumulation of human expertise for discrete system control.

In the same domain, Jurisica and Glasgow (1996) propose

formal ways to learn control from cases.

� Fuchs, Mille, and Chiron (1995) propose an original way to

help human decision in industrial supervision.

3. Trace-based reasoning

We share the idea that human experience, temporally

situated by definition, is well represented by a temporal

recording or by a trace of events that describe an underlying

implicit process. CBR also claims that by addressing problem

solving episodes, even if, de facto, CBR systems exploiting the

temporal dimension of cases are not so numerous, case

descriptors are not compulsorily described with time stamps.

Moreover, a problem solving episode is considered indepen-

dently of the different ‘‘stories’’ (contexts) where this episode

occurred. A case is described with a fixed granularity, in a

specific temporality and is constrained by an intangible

description vocabulary. According to our intuition, we

proposed to exploit use traces of a computer environment as

possible indirect recordings of knowledge, which emerged

while the user did her tasks with the help of the computer

environment Champin et al. (2003). This theory defines what

we call a ‘‘trace’’, how it can be represented and which kind of

computations can be performed in order to retrieve useful past

sequences of events for new uses.

When traces are exploited on the basis of pattern similarities,

allowing some adaptations to new situations, we propose to call

this kind of computation ‘‘Trace-Based Reasoning’’ (TBR).

TBR is a kind of generalization of CBR principles as illustrated

in Fig. 12.

The CBR cycle handles cases, which are stored in a case

base, under a predefined form while the TBR cycle dynamically

elaborates episodes which could be potentially useful in

available traces according to some ‘‘task signature’’. The target

episode is built on the base of other proposed episodes under

control of the user. The target episode belongs to the current

trace and will be stored inside without particular indexing.

Stored traces are containers of potential episodes which will be

shown up in new situations.

Fig. 12. The TBR cycle.

A. Mille / Annual Reviews in Control 30 (2006) 223–232 231

Aut
ho

r's

pe
rs

on
al

co

py

In the same way as in CBR, we consider that most steps of

the reasoning cycle in TBR can be realized by the computer

environment or/and by the user himself.

4. Conclusion

Case-Based Reasoning is an efficient AI paradigm for

problem solving. Its robustness comes from its ability to learn

from experience. Despite its big success, it suffers from the

‘‘frame problem’’ which means that new case structures are

very difficult to manage with different structures of past cases.

A case has to describe its ‘‘context’’ of use, which is difficult to

decide before any reuse and can change in time and space. We

propose an extension of the CBR paradigm by considering

problem solving episodes as they can be found in computer use

traces. Traces offer the possibility to build dynamically new

case structures and to extend the context of cases if necessary.

Acknowledgment

The authors wish to thank Frank Nack and Amélie Cordier

for their comments and remarks.

References

Aamodt, A., & Plaza, E. (1994). Case-based reasoning foundational issues,

methodological variations and system approaches. AI Communication, 7.1,

39–59.

Aha, J. (1998). The omnipresence of case-based reasoning in science and

application. Knowledge-Based Systems, 11(5–6), 261–273.

Bergman, R. (Ed.). (2002). Experience Management: Foundations, Develop-

ment Methodology, and Internet Based Applications. Berlin: Springer.

Bergmann, R. (Ed.). (2004). Developing Industrial Case-Based Reasoning

Applications: The Inreca Methodology (2nd ed.). Springer Verlag.

Brann, D. M., Thurman, D. A., & Mitchell, C. M. (1995). Case-based reasoning

as a methodology for accumulating human expertise for discrete system

control. In Proceedings of the 1995 International Conference on Systems,

Man and Cybernetics.

Champin P.-A., Mille A., & Y. Prié. (2003). MUSETTE: Modelling USEs and

Tasks for Tracing Experience. ICCBR’03: Workshop ‘‘From structured

cases to unstructured problem solving episodes’’ ICCBR’03: NTNU, 279–

286.

Cover, T. M., & Hart, P. E. (1967). Nearest neighbor pattern classification. IEEE

Transactions on Information Theory, IT–13(1), 21–27.

Crevier, D. (1993). AI, the tumultuous history of the search for artificial

intelligence. Harper-Collins: Basic Books.

Faltings, B., & Sun, K. (1996). FAMING: supporting innovative mechanism

shape design. Computer Aided Design, 28(3), 207–216.

Fuchs B., Lieber J., Mille A., & Napoli A. (2006). ‘‘A general Strategy for

Adaptation in Case-Based Reasoning’’. Research Report. http://liris.cnrs.fr/

alain.mille/publications/cbr-journal-paper-250806.pdf.

Fuchs, B., Mille, A., & Chiron, B. (1995). Operator decision aiding by

adaptation of supervision strategies. Lecture Notes in Artificial Intelligence

vol 1010, Firs International Conference, ICCBR’95 (pp. 23–32).

Hanney, K., Keane M. T., Smyth B. & Cunningham P. (1995). ‘‘Systems, tasks

and adaptation knowledge’’, in International Conference on Case-Based

Reasoning, Manuela Veloso and Agnar Aamodt Eds, Sesimbra, Portugal.

Lecture Notes in Artificial Intelligence, pp. 461–470, Springer Verlag.

Jurisica, I., & Glasgow, J. (1996). A Case-Based Reasoning Approach to

Learning Control. In Proceedings of the Fifth Conference on Data an

Knowledge Systems for Manufacturing and Engineering, DSKME-96.

Kolodner, J. (1993). Case-based reasoning. Morgan Kaufman Publishers.

Kolodner, J., & Leake, D. B. (1996). A tutorial introduction to case-based

reasoning. Case-based reasoning: experiences, lessons & future directions.

MIT Press. 420 p..

Kolodner, J., Simpson, R., & Sycara-Cyranski, K. (1985). A process model of

case-based reasoning in problem solving. In Proceedings of the Ninth

International Joint Conference on Artificial Intelligence (IJCAI-85) (pp.

284–290).

Leake, D. B. (Ed.). (1996). Case-based reasoning: experiences, lessons and

future directions. AAAI Press.

Lenz, M. (1998). Case-based reasoning technology: from foundations to

applications. Berlin: Springer.

Lòpez De Màntaras, R., Mc Sherry, D., Bridge, D., Leake, D., Smyth, B., Craw,

S., et al. (2006). Retrieval, reuse, revision and retention in case-based

reasoning. Knowledge Engineering Review, 20(3), 215–240.

Maher, M.-L., Balachandran, B., & Mei Zhang, D. (1995). Case-Based reason-

ing in design. Lawrence Erlbaum Associates.

Minsky, M. (1975). ‘‘A framework for representing knowledge’’. The Psychol-

ogy of Computer Vision Ed.. Patrick Winston Mc Graw Hill.

Minsky, M., & Papert, S. (1974). Artificial intelligence, condon lectures. Univ

of Oregon Press.

Newell A. (1960). J.C. Shaw and Herbert Simon Report on a general problem-

solving program. In Proceedings of the International Conference on

Information Processing (pp. 256–264).

Portinale, L., Magro, D., & Torasso, P. (October 2004). Multi-modal diagnosis

combining case-based and model-based reasoning: a formal and experi-

mental analysis. Artificial Intelligence, v.158(n.2), 109–153.

Maher, M.-L., & Pu, P. (Eds.). (1997). Issues and applications of case-based

reasoning to design. LEA Publisher.

Renaud J., Chebel Morello B., Fuchs B., Lieber J., (Eds.), Raisonnement à partir

de cas: principes, méthodes et applications industrielles, Hermès, Paris,

Collection Lavoisier Information et Commande (to appear).

Schank, R. C. (1982). Dynamic memory. A theory of reminding and learning in

computers and people. Cambridge University Press.

Schank, R. C., & Abelson, R. P. (1977). Scripts, plans, goals and under-

standing: an inquiry into human knowledge structures. Hillsdale, NJ: L.

Erlbaum. (Chap. 1–3).

Schank, R. C., & Riesbeck, C. (1989). Inside case-based reasoning. Hillsdale,

New Jersey: LEA Publishers.

McSherry, D. (2005). Explanation in recommender systems. Artificial Intelli-

gence Review, 24(2), 179–197.

Simoudis, E. (1992). Using case-based reasoning for customer technical

support. IEEE Expert, 7(5), 7–13.

Thurman S D.A., Tracy, J. S., & Mitchell, C. M. (1997). Design of an Intelligent

Web-Based Help Desk System. In Proceedings of the 1997 IEEE Interna-

tional Conference on Systems, Man and Cybernetics.

Veloso, M. M., Munoz-Avila, H., & Bergmann, R. (1996). General purpose

case-based planning: methods and systems. AI Commun., 9(3), 128–137.

Watson, I. (Ed.). (1997). Applying case-based reasoning: techniques for

enterprise systems. San Francisco: Morgan Kaufmann.

Prof. Alain Mille is professor in Information Systems at the University Claude

Bernard Lyon 1 in France. He is in charge of the ‘‘Cognition, experience and

situated agents’’ team of the LIRIS CNRS Lab. His research work is based on

artificial intelligence models allowing to reuse concrete experience in order to

help users in their tasks. He applies this approach in several industrial domains

as robotics, industrial supervision, computer assisted design,

A. Mille / Annual Reviews in Control 30 (2006) 223–232232

