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Abstract

The aim of this paper is to present a methodological approach for problems en-

countered in structural analysis. This approach is based upon the pretopological con-

cepts of pseudoclosure and minimal closed subsets. The advantage of this approach is

that it provides a framework which is general enough to model and formulate different

types of connections that exist between the elements of a population. In addition, it has

enabled us to develop a new structural analysis algorithm. An explanation of the def-

initions and properties of the pretopological concepts applied in this work is first shown

and illustrated in sample settings. The structural analysis algorithm is then described

and the results obtained in an economic study of the impact of geographic proximity on

scientific collaborations are presented. � 2002 Elsevier Science Inc. All rights reserved.

1. Introduction

The data of a structural analysis problem are represented by a finite set E,
composed of elements which are related to each other by some form of con-
nection. The goal of structural analysis is to highlight groups of ‘‘interdepen-
dent’’ elements. The necessity of applying precise concepts to illustrate notions
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as abstract as ‘‘interdependency’’ and ‘‘connection’’ has been recognized for
years in structural analysis [11,17]. Indeed, it is possible to perceive connections
between elements by means of dissimilarity measures, binary relations, or
neighborhoods. It is also possible to define a graph structure, valued or not, on
the population. Depending on the concept retained to formulate the connec-
tion between the elements of a population, structural analysis problems can be
approached in various manners: from a metric point of view if distance has
been retained, in terms of topological space if neighborhoods have been cho-
sen, or by graph theory.
In this paper, we will apply the concepts of pseudoclosure and minimal

closed subsets that have been developed in pretopological theory [2,9]. The
advantage of this approach is that it enables us to formulate and treat struc-
tural analysis problems in a unified manner, even if the connections between
elements are diverse. It is enough to select a pseudoclosure adapted to the
application. Obviously, according to certain definitions of pseudoclosures, our
approach provides results which can also be obtained using usual methods like
graph algorithms or single linkage method.
Closure operators have been widely studied in algebra [3], topology [12]

and computer science theory. Nevertheless, the axiomatics that define them
are often too limited to treat concrete problems. For this reason, in preto-
pology [2], as in [7,8], it is not assumed that the pseudoclosure application is
idempotent. This approach enabled us to develop a new algorithm for
structural analysis [4,5,13]. The principle consists in constructing a pseudo-
closure application að�Þ from parts of E onto themselves based on the con-
nection between the elements of population E. This pseudoclosure expresses
the extension phenomena (dilatation, propagation, influence, etc.) of these
subsets. As the pseudoclosure application is not idempotent, it is the suc-
cessive aggregations that lead to the obtention of closed subsets. These
closed subsets represent the homogenous or interdependent subsets in rela-
tion to the pseudoclosure function. The algorithm determines the smallest
possible closed subsets of E (minimal closed subsets), then those which
contain them, until the structural analysis of the entire population has been
completed. This means defining an inclusion relation on the set of minimal
closed subsets.
It is important to note that the structural method is not a clustering method:

it does not build a partition or a hierarchy on the population E. In the
structuration process, the aim is:
• first to define the closed subset associated to each element x of E: this subset
contains all elements of E related directly or not directly to x,

• secondly to display the inclusion relation between these closed subsets.
Thus, the aim of our method is to uncover the structure of the population E
(relations between elements, relations between groups of elements, etc.) with a
view to extracting new information from E.
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The pretopological concepts applied in this study are defined in the fol-
lowing section. They are illustrated by a simple geographical example on ar-
tificial data. The structural analysis algorithm is then presented. In order to
illustrate the method, an application to co-authorships of publications between
French geographical areas is provided.

2. The pretopological concepts of ‘‘pseudoclosure’’ and ‘‘closure’’

Let us consider a population E, composed of elements in the widest sense of
the term (individuals, plots of land, etc.). E is a non-empty finite set, and PðEÞ
designates all of the subsets of E.

2.1. Pseudoclosure and pretopological space definitions

Definition 1. A pseudoclosure is a map að�Þ from PðEÞ to PðEÞ satisfying the
following two conditions:

ðP1Þ : að;Þ ¼ ;
ðP2Þ : 8A 2 PðEÞ; A � aðAÞ

A pretopological space is a pair ðE; aÞ where E is endowed with a pseudoclo-
sure að�Þ [2].

The subset aðAÞ is also called pseudoclosure of A. As said before, aðaðAÞ) is
not always equal to aðAÞ. Thus, að�Þ can be applied on a set A in sequence, so as
to model expansions: A � aðAÞ � a2ðAÞ � � � �.
This definition of pretopological space is not exactly the same in other works

like in [7] where the application að�Þ must verify not only (P1) and (P2) but the
following as well:

ðP3Þ : 8A 2 PðEÞ; 8B 2 PðEÞ; aðA [ BÞ ¼ aðAÞ [ aðBÞ:

In [2], this is the definition of a particular space which is called D-pretopo-
logical space.

Definition 2. A V-pretopological space ðE; aÞ is a pretopological space that
satisfies (P4):

ðP4Þ : 8A 2 PðEÞ; 8B 2 PðEÞ; A � B ) aðAÞ � aðBÞ

A D-pretopological space is necessarily a V-pretopological space but the
converse property is false ððP3Þ ) ðP4ÞÞ. The demonstration of this can be seen
in [2]. Throughout the remainder of this paper ðE; aÞ is at least a V-pretopo-
logical space which is less restrictive than a D-pretopological space. In this
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context of V-space, the pretopological approach is really useful especially to
formulate connection between elements in real applications when usual
methods are not suitable.

2.2. Construction of a V-pretopological structure based on a pseudoclosure

There are of course many ways in which a pseudoclosure can be constructed
from, either real data, or from other properties E is equipped with. In order to
illustrate the concepts, we will give three short examples where E is composed
of 10 elements. We suppose that each element of E represents a plot of land in a
given geographical zone, each of which contains a form of water supply
(aquifer, spring, etc.). We will study the risk of toxic products spreading across
the plots of land. The connections between the elements of E will be modeled
by a distance (case 1), a binary relation (case 2), and a valued graph (case 3)
depending on the manner in which these products are disseminated

Case 1, where E is endowed with a metric defined by a distance d.
Let r be a positive real. For each element x of E; Bðx; rÞ is defined by:

Bðx; rÞ ¼ fy 2 E; dðx; yÞ6 rg.
A pseudoclosure að�Þ can be defined from Bðx; rÞ by:

8A 2 PðEÞ; aðAÞ ¼ fx 2 E;Bðx; rÞ \ A 6¼ ;g ðA1Þ
aðAÞ is composed of all elements of A and all elements y 62 A such as y is not so
far (with regard to r) from, at least, one element of A.
It is clear that application að�Þ, thus defined, verifies axioms (P1), (P2) and

also (P3) and (P4), and as such, the pretopological structure induced by að�Þ on
E is Type D and thus also Type V.

Example 1. Table 1 indicates, for each element x of E, the coordinates ðx1; x2Þ
of x in the plane, Bðx; 2Þ, the pseudoclosure aðxÞ of x. This case could corre-
spond to the situation where a plot y can be contaminated by plot x, if x and y
are geographically situated close by to one another, i.e., if they are situated at a
distance that is less or equal than a specific predetermined level r (e.g. r ¼ 2Þ.

Case 2, where E is endowed with a binary and reflexive relation.
Let R be a reflexive binary relation defined on E. R is not necessarily sym-

metric. We define RðxÞ ¼ fy 2 E; xRyg and R�1ðxÞ ¼ fy 2 E; yRxg.
As the relation R is reflexive, x belongs to RðxÞ and to R�1ðxÞ.
From a such relation R, it is possible to define several D-pretopological

spaces with pseudoclosure satisfying for example (A2) or (A3):

8A 2 PðEÞ; aðAÞ ¼ fx 2 E;RðxÞ \ A 6¼ ;g; ðA2Þ
8A 2 PðEÞ; aðAÞ ¼ fx 2 E;R�1ðxÞ \ A 6¼ ;g: ðA3Þ

Both these pseudoclosures are not equivalent when R is not symmetric.
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aðAÞ is composed of A (R is reflexive) and all elements y in relation (R or R�1)
with, at least, one element of A.

Example 2. Table 2 illustrates, for all elements x of E, set RðxÞ and its
pseudoclosure aðxÞ verifying (A2). In this example, the connection between the
elements of E could be formulated by a binary reflexive relation R, which is not
symmetric, such that for all pairs ðx; yÞ belonging to E � E, we have xRy, if
there is a pipe which conveys products from y to x.

Case 3, where ðE;U ; LÞ is a valued and directed graph.
Let ðE;U ; LÞ be a directed and valued graph, with:
E: the set of vertices;
U: the set of edges ðU � fðx; yÞ=x 2 E; y 2 EgÞ;
L: a valuation map which associate to u 2 U the length LðuÞ.
The pseudoclosure að�Þ can be defined by

8A 2 PðEÞ; aðAÞ ¼ y 2 E

(
� A

X
x2A

Lðx; yÞ
,

P s

)
[ A; ðA4Þ

where s is a positive real.

Table 1

x x1 x2 Bðx; 2Þ ¼ fy 2 E; dðx; yÞ6 2g aðxÞ ¼ fy 2 E;Bðy; 2Þ \ fxg 6¼ ;g

1 1 2 f1; 2g f1; 2g
2 3 2 f1; 2; 3; 4; 5g f1; 2; 3; 4; 5g
3 3 4 f2; 3; 6g f2; 3; 6g
4 4 2 f2; 4; 5g f2; 4; 5g
5 4 1 f2; 4; 5g f2; 4; 5g
6 5 4 f3; 6; 7g f3; 6; 7g
7 6 4 f6; 7g f6; 7g
8 8 3 f8; 9; 10g f8; 9; 10g
9 9 2 f8; 9; 10g f8; 9; 10g
10 8 1 f8; 9; 10g f8; 9; 10g

Table 2

x RðxÞ ¼ fy 2 E=xRyg aðxÞ ¼ fy 2 E;RðyÞ \ fxg 6¼ ;g

1 f1g f1; 2; 3g
2 f1; 2g f2; 3; 4; 5g
3 f1; 2; 3; 7g f3; 6g
4 f2; 4g f4g
5 f2; 5g f5g
6 f3; 6g f6; 7g
7 f6; 7; 8g f3; 7g
8 f8; 9g f7; 8; 9; 10g
9 f8; 9g f8; 9g
10 f8; 10g f10g
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aðAÞ is composed of A and all elements y where the sum of valued edges
between some elements of A and y is greater than the threshold s.
It is easy to verify that ðE; aÞ is a V-pretopological space but it is not a

D-pretopological space ((P3) is not satisfied).

Example 3. Table 3 gives the value LðuÞ of each arc u of U, whereas Table 4
provides the pseudoclosure aðxÞ. In this example, the connection between the
elements of E, taken two by two, can be represented by a valued graph
G ¼ ðE;U ; LÞ where for each pair of vertices ðx; yÞ 2 E � E, there is an edge of
x towards y, if there is a pipe which conveys products from x to y. The val-
uation Lðx; yÞ corresponds to the capacity of the flow between plots x and y.
We will consider here that a plot y can only be contaminated by plots for which
there is a pipe which conveys products from y to x and for which the sum of the
flows arriving at x is equal to or greater than a given level s (e.g. s ¼ 2).

Table 3

u 2 U LðuÞ

ð1; 2Þ 2

ð1; 3Þ 1

ð2; 3Þ 1

ð2; 4Þ 1

ð2; 5Þ 2

ð3; 6Þ 2

ð6; 7Þ 1

ð7; 3Þ 2

ð8; 7Þ 2

ð8; 9Þ 3

ð8; 10Þ 1

ð9; 8Þ 3

Table 4

x aðxÞ

1 f1; 2g
2 f2; 5g
3 f3; 6g
4 f4g
5 f5g
6 f6g
7 f3; 7g
8 f7; 8; 9g
9 f8; 9g
10 f10g
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2.3. Closed subsets, minimal closed subsets and elementary closed subsets

Contrary to topological theory, in pretopology, a pseudoclosure is not
idempotent: for a given subset A of E, aðAÞ may be contained in aðaðAÞ)
without being equal to aðaðAÞ):

8A � E; aðAÞ � aðaðAÞÞ:

In fact, the property of idempotence is verified only by the so-called closed
subsets of E. These closed subsets are of particular interest within the context
of structural analysis. They enable the representation of the homogenous
subsets of E in regard to the pseudoclosure retained. A closed subset F is a
subset of E and for which no elements of E–F belong to the pseudoclosure of F.
More precisely, given a set E endowed with a V-pretopological structure

defined by a pseudoclosure að�Þ, let us recall the following definitions pertaining
to closed subset.

Definition 3. A subset F of E such as aðF Þ ¼ F is called a closed subset of E for
að�Þ.
Let IðE; aÞ be the family of closed subsets of E for að�Þ:

IðE; aÞ ¼ fF � E=aðF Þ ¼ F g;

and

IðE; aÞ� ¼ IðE; aÞ � f;g:

Property 1. In a V pretopological space the intersection of closed subsets is a
closed subset.

Proof. Given, A ¼
T

i2I Ai, with Ai closed subset.
We first prove that aðAÞ � A:
By definition of A : 8i 2 I ; A � Ai:
In a Type V pretopological space: 8i 2 I ; aðAÞ � aðAiÞ,
As Ai is a closed subset: 8i 2 I ; aðAiÞ ¼ Ai,
So: 8i 2 I ; aðAÞ � Ai,
And aðAÞ �

T
i2I Ai () aðAÞ � A,

By definition of a pseudoclosure: A � aðAÞ,
Thus A ¼ aðAÞ Therefore A is a closed subset. �

Definition 4. Let F be a subset of E. The closure of F is the smallest closed
subset in terms of inclusion in the family IðE; aÞ, containing F.

Property 2. In a Type V pretopological space, each subset of E possesses a
closure.
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Proof.

Given A 2 PðEÞ and IA the set of closed sets containing A : IA ¼ fG 2
IðE; aÞ=A � Gg.
As E is a closed set, IA 6¼ ; because E 2 IA.
Given HA ¼

T
G2IA

G. HA is a closed subset according to the property (P1).
Thus, the smallest closed subset containing A, noted FA, is contained in HA,

but as HA is the intersection of all closed subsets containing A, then: FA ¼ HA.
The closure of a subset A included in E is therefore equal to the intersection of
all closed subsets containing A. �

Property 2 being true for all subsets of E, it is particularly true for all sin-
gletons.

Definition 5. An elementary closed subset, noted as Fx, is the closure of a one
element set {x}of E.

Note that IeðE; aÞ represents the set of elementary closed subsets of E:
IeðE; aÞ ¼ fFx; x 2 Eg, therefore:

IeðE; aÞ � IðE; aÞ�:

Property 3. Two distinct elementary closed subsets Fx and Fy are either disjoint
ðFx \ Fy ¼ ;Þ or contain a non-empty intersection such that for all z 2 Fx \ Fy , we
have Fz � Fx \ Fy (see Fig. 1).

Proof. Let z 2 Fx \ Fy and let Fz be the smallest closed subset containing z in the
sense of inclusion in IðE; aÞ. According to Property 1, Fz \ Fx is a closed subset,
therefore: Fz � Fx \ Fy . �

Definition 6. A minimal closed subset of E with regard to að�Þ is an element of
IðE; aÞ� minimal in terms of inclusion in IðE; aÞ�:

Let ImðE; aÞ represent the set of minimal closed subsets of E:
ImðE; aÞ ¼ fF 2 IðE; aÞ�; qðG 2 IðE; aÞ� � fF g;G � F Þg:

Fig. 1. Property 3.
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According to [2], if E is finite, the existence of minimal closed subsets is
guaranteed.

Examples: Table 5 indicates for each element x of E the elementary closed
subset Fx, in the three previous cases. Minimal elementary closed subsets are
designated by an asterisk ð�Þ.
The following property proves that minimal closed subsets of IðE; aÞ� can

be discovered in the elementary closed subsets IeðE; aÞ.

Property 4. F 2 ImðE; aÞ () F 2 IeðE; aÞ and F is minimal by inclusion in
IeðE; aÞ.

Proof. In fact, it is enough to prove that:
(i) F 2 ImðE; aÞ ) F 2 IeðE; aÞ and F is minimal by inclusion in IeðE; aÞ:
Given F 2 ImðE; aÞ, a minimal closed subset for inclusion in IðE; aÞ�
Given x 2 F , then Fx � F , for Fx is the smallest closed subset containing x.
However, as F is minimal: Fx ¼ F .
Therefore: 8F 2 ImðE; aÞ; F 2 IeðE; aÞ and F minimal for inclusion in
IðE; aÞ�.
(ii) F 2 IeðE; aÞ and F is minimal by inclusion in IeðE; aÞ ) F 2 ImðE; aÞ
If F 62 ImðE; aÞ then G 2 IðE; aÞ� � fF g exists such that G � F . However,

9y 2 G therefore, Fy � G � F , which contradicts the fact that F is minimal in
IeðE; aÞ. Therefore: F 2 ImðE; aÞ. �

As the aim of the structural process is to find minimal closed subsets, it is
easy to understand that this property reduces the algorithmic complexity.

3. Structural analysis process

The underlying idea of the structural analysis method is to first highlight
homogenous groups (minimal closed subsets), then those containing them

Table 5

x Case 1 Fx Case 2 Fx Case 3 Fx

1 f1; 2; 3; 4; 5; 6; 7g� f1; 2; 3; 4; 5; 6; 7g f1; 2; 3; 5; 6g
2 f1; 2; 3; 4; 5; 6; 7g� f2; 3; 4; 5; 6; 7g f2; 5g
3 f1; 2; 3; 4; 5; 6; 7g� f3; 6; 7g� f3; 6g
4 f1; 2; 3; 4; 5; 6; 7g� f4g� f4g�
5 f1; 2; 3; 4; 5; 6; 7g� f5g� f5g�
6 f1; 2; 3; 4; 5; 6; 7g� f3; 6; 7g� f6g�
7 f1; 2; 3; 4; 5; 6; 7g� f3; 6; 7g� f3; 6; 7g
8 f8; 9; 10g� f3; 6; 7; 8; 9; 10g f3; 6; 7; 8; 9g
9 f8; 9; 10g� f3; 6; 7; 8; 9; 10g f3; 6; 7; 8; 9g
10 f8; 9; 10g� f10g� f10g�
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(non-minimal elementary closed subsets) until the structural analysis of the
entire population has been completed. Nevertheless, according to Property 4, it
is enough to define the inclusion relation on the set of elementary closed
subsets: ðIeðE; aÞ;�Þ. It is necessary to proceed in three stages:
• The first step consists in determining the set of elementary closed subsets

IeðE; a) by associating a closure Fx to all elements x of E by means of the
function ElementaryClosedSubsets described hereafter.

• The second step aims at searching for minimal closed subsets ImðE; aÞ by
means of the functionMinimalClosedSubsets. In line with the previous state-
ment, this means enumerating the set of elementary minimal closed subsets
by inclusion in IeðE; aÞ (see Property 4).

• The third step is the structural analysis phase. The aim of this step is to pic-
ture the inclusion relation between elements of IeðE; aÞ. This process enables
us to generate the structure from each elementary closed subset by means of
successive enlargements.

The structural analysis which is named StructuralAnalysis can thus be defined
as follows.
The inputs of our StructuralAnalysis procedure are:

• the population E,
• the pseudoclosure að�Þ defined on E.
The outputs are:

• the family of the elementary closed subsets IeðE; aÞ,
• the family of the minimal closed subsets ImðE; aÞ,
• the structure characterized by relations of inclusion between minimal closed
subsets and elementary ones and relations of inclusion between elementary
closed subsets with each other.

Procedure StructuralAnalysis;
begin

// Computation of IeðE; aÞ by associating a closure Fx to all elements x of
E
IeðE; aÞ¼ElementaryClosedSubsets(E);
// Computation of ImðE; aÞ finding in IeðE; aÞ
ImðE; aÞ¼MinimalClosedSubsets(IeðE; aÞÞ;
// Extraction of the structure IeðE; aÞ
ExtractStructure(IeðE; aÞ;ImðE; aÞÞ;
end;
Function ElementaryClosedSubsets(E: set): set;
var F: subset;

x: element;
begin

I ¼ ;;
for all x 2 E do
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begin

F¼ a({x});
while (aðFÞ 6¼ F) do F¼ a(F);
I ¼ I [ fF g;
end;
ElementaryClosedSubsets¼I;

end;
Function MinimalClosedSubsets (I: set): set;
var minimal: boolean;

Im, It: set;
F, G: subset;

begin
Im ¼ ;;
while ðI 6¼ ;Þ do
begin

let F 2 I;
I ¼ I � fFg;
minimal¼ true;
It ¼ I;
while ððIt 6¼ ;Þ and (minimal)) do
begin

let G 2 It;
if ðG � FÞ then minimal¼ false // F isn’t minimal

else if ðF � GÞ then I ¼ I � fGg; // G isn’t minimal
It ¼ It� fGg;
end;

if(minimal) then Im ¼ Im [ fFg;
end;
MinimalClosedSubsets¼Im;
end;
Procedure ExtractStructure ðIe;Im: set);
var Q: queue;

I: set;
F, G: subset;

Begin

Q ¼ ;;
for all F 2 Im do enqueue(Q,F);
while ðQ 6¼ ;Þ do
begin

F¼ dequeue(Q);
I ¼ fG 2 Ie;F � G and F 6¼ Gg; // supersets to F
for all G2MinimalClosedSubsets (I) do
begin

C. Largeron, S. Bonnevay / Information Sciences 144 (2002) 169–185 179



if G 62Q then enqueue(Q,G);
G is a descendant of F;
end;

end;
end;

Software can be found at http://lass.univ-lyon1.fr/softs/index.html
Examples: The results of the structural analysis obtained by the algorithm

are respectively illustrated in Figs. 2 (Case No. 1), 3 (Case No. 2) and 4 (Case
No. 3).
In the first case, the structural analysis brings two elementary closed subsets

to light. In terms of toxic spread, we can deduce that if a plot of land belonging
to an elementary closed subset is contaminated, then all of the other plots of
land belonging to this elementary closed subset will also be contaminated.
Furthermore, as the intersection of these closed subsets taken two by two is
empty, there is no risk of toxic spread between elements belonging to distinct
elementary closed subsets.

Fig. 2. Case 1.

Fig. 3. Case 2.
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The two other structuration cases can be interpreted as follows:
• an elementary closed subset Fx reduced to a single-element set {x} corre-
sponds to a plot of land x that cannot contaminate any other land in the
geographical zone. This refers to elements {4}, {5} and {10} in Case No.
2, and {4}, {5}, {6} and {10} in Case No. 3;

• two elementary closed subsets Fx and Fy distinct such that Fx � Fy correspond
to two plots x and y, whereby toxic products may spread from y to x. In
other words, if y is contaminated, then x will also be: either directly, or in-
directly through a third plot of land;

• two elementary closed subsets Fx and Fy such that Fx ¼ Fy correspond to two
plots x and y, whereby toxic products may spread from y to x or from x to y.
Moreover, x and y can be contaminated by the same set of plots and can also
contaminate the same other plots.
In the second case, for example, if any one plot of land f3; 6; 7g is con-

taminated, the other two will also be, for F3 ¼ F6 ¼ F7, and if 9 is contami-
nated, then 3 will also be, for F3 � F9:
As mentioned in Section 1, our method provides well known results in

certain cases. For instance, when the pseudoclosure is defined by (A1) (case
one), our process gives the partition obtained by the single-linkage method
cutting the hierarchy when a marginal gain is greater or equal to the radius r of
Bðx; rÞ. In the same way, if E contains a pretopological structure defined in
accordance with a pseudoclosure application verifying (A2), then the elemen-
tary closed subset associated with an element x of E is the set of successors of x
in graph G ¼ ðE; r) where r, the application which gives for each vertex x of E
its successors, is such that r ðxÞ ¼ RðxÞ. Thus, the set of elementary closed
subsets IeðE; aÞ in a pretopological space ðE; aÞ where að�Þ verifies (A2), cor-
responds to the transitive closure of r in graph G ¼ ðE; r) where rðxÞ ¼ Rðx)
for all elements x of E. It is obvious that in certain cases, general structural
analysis method corresponds to less effective procedures (from an algorithmic
point of view) than more specific algorithms. On the other hand, it provides a
general framework which is applicable to a wider range of structural analysis

Fig. 4. Case 3.
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problems, especially when the pseudoclosure used to formulate connections
between elements defines a V-pretopological space.

4. Application

To illustrate our method, we present the results of an economics study that
analyses the impact of geographic proximity on scientific collaborations in the
French context [1,6,14]. The question is: are scientific interactions favoured by
geographic proximity? In order to answer this question, we use data on co-
authored scientific publications between French ‘‘counties’’ (counties are
French administrative geographical areas). Indeed, co-authorship is a good
indicator of scientific interactions in scientometrics analysis. The data come
from OST (Observatoire des Sciences et des Techniques) and are extracted
from the Science Citation Index (SCI). For each year, we have a matrix
C ¼ ½cxy �x;y2f1;...;ng, where cxy gives the number of co-authored publications
written by at least one author belonging to department x and at least one
author belonging to county y and n is the total number of counties. The
structural method enables us to show relations between counties according to
co-authorhips of scientific publications. In that case, the connections between
the counties are defined by a reflexive binary relation R such that
RðxÞ ¼ fy 2 E; xRyg is the set of counties with which x mainly publish:

RðxÞ ¼ fy 2 E; cxy ¼ maxfcxz;z 6¼ xgg [ fxg

R is not symmetric. The pseudoclosure is defined by (A2) ð8A 2 PðEÞ; aðAÞ ¼
fx 2 E;RðxÞ \ A 6¼ ;gÞ as in Section 2. So, by definition of R, a county x be-
longs to the pseudoclosure aðAÞ of a set of counties A, if and only if x has
mainly published with one county in A. F ðxÞ is the set of counties which have
mainly published either with x directly or with other elements which have
mainly published with x, directly or indirectly.
The result obtained for the matrix of co-authored publications in 1997 is

illustrated in Fig. 5. An elementary closed subset F ðxÞ reduced to a singleton
{x} corresponds to a county such that F ðxÞ ¼ aðfxgÞ ¼ fxg. It means that it
does not exist any county that has mainly published with x. This refers for
example to elements 61 and 62 (Orne and Pas-de-Calais). An element y, such
that y 2 F ðxÞ, with x 2 E � fyg, corresponds to a county y which has con-
nections with x, either directly, or indirectly through other counties. For ex-
ample, county 52 (Haute-Marne) has mainly published with 60 (Oise), so
52 2 F ð60Þ. In the same way, 30, 66, 84, 82 2 F ð34Þ and 82, 16, 24, 40, 64 and
101 2 F ð33Þ.
One notices that Paris (75) and Essonne (91) are very strong attractors as

they include the whole set of other counties. It means all counties have directly
or indirectly published with Paris and Essonne. Globally the result is consti-
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tuted of separated groups around an attractor (single element inside the
group), i.e. an element with which the other members of the group mainly
publish. These attractors correspond to the main French University centres.
They generally attract the smallest counties that are located close to them.
Indeed, the counties with large universities do not privilege the relations be-
tween them: they publish inside the county or choose Paris as partner. They
are, on the other hand, selected as main partners by the counties that surround
them. Finally, counties having rather few publishing activities, carry these out
with outside help primarily with the closest large universities. Thus, plotted on
a map, this result shows clearly groups (sometimes connected to each other)
around the main universities (Lille, Strasbourg, Clermond-Ferrand, Toulouse,
Bordeaux, Lyon, Grenoble, Marseille, Nice and Montpellier). In the French
case, globally, scientific interaction is favoured by geographic proximity even if

Fig. 5. Structuration of the co-authorship between French counties in 1997 (‘‘departements’’ are

situated in their correct geographic positions apart from those shaded in grey. They are identified

by their correct post code number, except Haute corse (101) and Corse du Sud (102)).
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the role of Paris and some other large universities seems determined by a
specific effect of attraction rather than by any geographic factor.

5. Conclusion

By weakening topological axiomatics, pretopology provides a conceptual
framework which opens the path to a wider range of applications. This concept
has already been used in pattern recognition, for example, in image analysis
[16], optical character recognition [15], and cluster analyses techniques [10]. In
this paper we show that this concept can help formulate and treat structural
analysis problems in a unified manner when connections between the elements
of a population are diverse. This method has been applied in spatial economics
[2] as well as in transportation economics [4,5]. It enables us to extract
knowledge on the structure of a population from connections that exist be-
tween the elements. The aim is to find significant connections between groups
of interdependent elements. Examples and software corresponding to this
method are available at http://lass.univ-lyon1.fr/softs/index.html.
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