
Modelling And Inferring On Role-Based Access
Control Policies Using Data Dependencies

Romuald Thion and Stéphane Coulondre

LIRIS: Lyon Research Center for Images and Intelligent Information Systems,
Bâtiment Blaise Pascal, 20 av. Albert Einstein, 69621 Villeurbanne Cedex, France

firstname.surname@liris.cnrs.fr

Abstract. Role-based access control (RBAC) models are becoming a
de facto standard, greatly simplifying management and administration
tasks. Organizational constraints were introduced (e.g.: mutually exclu-
sive roles, cardinality, prerequisite roles) to reflect peculiarities of organi-
zations. Thus, the number of rules is increasing and policies are becoming
more and more complex: understanding and analyzing large policies in
which several security officers are involved can be a tough job. There is a
serious need for administration tools allowing analysis and inference on
access control policies. Such tools should help security officers to avoid
defining conflicting constraints and inconsistent policies.
This paper shows that theoretical tools from relational databases are
suitable for expressing and inferring on RBAC policies and their re-
lated constraints. We focused on using Constrained Tuple-Generating
Dependencies (CTGDs), a class of dependencies which includes tradi-
tional other ones. We show that their great expressive power is suitable
for all practical relevant aspects of RBAC. Moreover, proof procedures
have been developed for CTGDs: they permit to reason on policies. For
example, to check their consistency, to verify a new rule is not already
implied or to check satisfaction of security properties. A prototype of
RBAC policies management tool has been implemented, using CTGDs
dedicated proof procedures as the underlying inference engine.

1 Introduction

Databases management systems (DBMS) are cornerstones of information sys-
tems: they provide mechanisms to store, modify, retrieve and query information
of an organization. In order to enhance security of data, authorization (or access
control) mechanisms have been developed to manage users’ rights over data store
in the DBMS. In its broader sense, access control, denotes the fact of determining
whether a subject (process, computer . . . ) is able to perform an operation (read,
write . . . ) on an object (a tuple, a table, . . . ). An operation right on an object
is called permission. Access control policies define the subjects’ permissions.

Applications developed using a DBMS can contain large amount of data with
highly differentiated access for different users, depending upon their function or
role within the organization [1]. Role-based access control (RBAC) received con-
siderable attention as an alternative to traditional mandatory and discretionary



access control policies in databases. The RBAC models constitute a family in
which permissions are associated with roles. A role is a job function or job
title within the organization. Users are made members of appropriate roles. Per-
missions are not directly assigned to users (roles can be seen as collections of
permissions) [2]. RBAC provides a powerful mechanism for reducing the com-
plexity, cost, and potential for error in assigning permissions to users within the
organization. RBAC was found to be among the most attractive solutions for
providing access control in e-commerce, e-government or e-health [1, 3].

Fig. 1. RBAC Model

Nevertheless number of users in RBAC policies is increasing and rules are
more and more complex: diverse constraint 1 types introduced to reflect pecu-
liarities of organizations. RBAC constraints specify conditions that cannot be
violated by the components of the system.

Policies engineering is considered to be of high practical importance [4] : a
large part of flaws in information systems are due to administration mistakes or
security misconceptions. There is a need for tools facilitating design and main-
tenance of RBAC policies. Accroding to [5], such tools need to be able to cap-
ture access control model mechanisms and peculiarities (e.g. RBAC constraints).
These tools need to be able to check consistency of policies and to answer queries
for particular permissions or relation holdings in the policies. Last requirement
is a comprehensible inference mechanism, even by non-logicians. Our goal is to
provide a formal framework satisfying these requirements.

Thus our contribution is twofold:

1 constraint may be a confusing word in this paper: it may either designate relations
between variables (e.g., X ≤ Y, X ≥ 2 × Z + 1, 3 = T, 2 6= 3, etc.), restrictions on
RBAC model’s concepts (e.g. nobody is allowed to assume simultaneously roles r1
and r2) and even data dependencies (integrity constraints). In this paper we do not
use the term integrity constraints, constraints refers to semantic relations between
variables and RBAC constraints or organizational constraints refers to restriction
among elements in RBAC policies.



– identification of a theoretical tool from the databases field suitable for ho-
mogenous modeling of RBAC principles and its related constraints right into
the relational model,

– use tools built (e.g. proof procedures) on top of the underlying theoretical
model to provide a set of tools facilitating design and management of RBAC
policies in order to detect and correct administration mistakes or miscon-
ceptions.

The class of data dependencies we focused on is Constrained Tuple Gener-
ating Dependencies (CTGDs). In the literature Tuple-Generating Dependencies
are also known as Generalized Dependencies, [6, 7]. CTGDs actually subsume
many other known class of dependencies [8] and because the operational na-
ture of its dedicated proof procedures lead to a more comprehensible trace of
inference than generic ones. We will show that a framework based on CTGDs
(Constrained Tuple-Generating Dependencies) is an appropriate formal tool for
representing and checking RBAC policies.

In the next section we will introduce Constrained Tuple-Generating Depen-
dencies and proof procedure related in. Section 3 will show how CTGDs can
be used to model RBAC concepts, constraints and assignments, of which imple-
ments will be shown in section 4. Section 5 will summarize some papers related
to this work. Finally, last section will discuss our work and presents perspectives
using databases dependencies for security purposes.

2 Background

2.1 Constrained tuple-generating dependencies (CTGDs)

In [8], the authors expose a kind of data dependencies upon the most expressive
existing: CTGDs, subsuming any other ones. CTGDs extend tuple-generating
dependencies (TGDs) with a constraint domain (e.g. linear arithmetic over inte-
gers, rationals or real). These kinds of data dependencies which are interesting
for geographical modeling refers to deductive and constraint databases [9, 10].
CTGDs can be represented formally in first order logic by formulae [6]:

∀Xp1(X1)∧p2(X2)∧pi(Xi)∧c → ∃Y q1(X∪Y1)∧q2(X∪Y2)∧pj(X∪Yj)∧c′

Where pi and qj are predicates symbols, X is the set of all terms (no functions
symbols) in the left hand side. Terms of X are universally quantified. Y does
not designate all terms in the right hand side, but only those that are not bound
by the universal quantifier on the left hand side. Terms of Y are existentially
quantified. Finally, c and c′ are conjunctions of linear constraints (e.g. <,>,≤
,≥, 6=,=) over terms (terms of X for c and terms of Y ∪X for c′).

2.2 CTGDs dedicated proof procedures

In [8], the authors propose two bottom-up chase over CTGDs. Their paper ad-
dresses the implication problem, that is, given a collection of CTGDs F , and a
single CTGD g, determine whether in every database state where F is satisfied,



it is also the case that g is satisfied. The chase proves if F logically implies g,
stated briefly as F � g. The operational nature of these proof procedures is based
on the concept of tuple (a grounded atom, with no variables). Basic outline of
such procedures is based on [11] with the adjunction of constraints: hypothesize
the existence of some tuples in the relations such that the antecedent l of g is
satisfied, treat F as defining a closure operator generating tuples F (l). On each
computation step of F (l), the following condition is tested:
- if F (l) contains a copy of r, infer F � g (termination case one),
- if F (l) contains an inconsistency produced by constraints, infer F � g vacu-
ously (termination case two),
- if F (l) does not contain a copy of r, infer F 2 g (termination case three).

The CTGDs implication problem is semi-decidable: the procedures may run
forever. As each basic step is producing new facts through implication, we can
practically bound up the number of successively applied CTGDs (e.g. to avoid
circular generating facts leading to infinite loop), but it is unsound and must be
reserved for implementation purpose. Constraints are quite interesting when used
jointly with existential quantifiers because they permit a more precise definition
of such partially known facts (e.g., if a role is granted read-access, then another
role is granted write-access.

3 A framework for expressing and checking RBAC
policies

According to the authors of [12] we use the following predicates to model core
concepts of RBAC policies:
- ura(User, Role), to define User Role Assignments,
- pra(Access,Object, Role), to define Permission Role Assignment
- permitted(User,Access, Object), to specify that user User is granted Access
access privilege on object Object.

3.1 Capturing axiomatic definition of RBAC model

Once basic elements of the policies are defined, we need to model the “axiomatic
of RBAC”: the core of this access control model which settles how an access is
granted to a user through role assignment, how are defined hierarchies, etc. We
model an RBAC axiomatic based on [13]. dSenior(SeniorRole, JuniorRole) to
define direct inheritance between roles and senior(SeniorRole, JuniorRole) to
define role hierarchy (the transitive closure of seniorDirect).
- role inheritance is transitive: senior(X, Y ), dSenior(Y,Z) → senior(X, Z),
- role inheritance is irreflexive: senior(X, X) → false,
- a user is access granted to an object if he is assigned to a role which is assigned
to this permission: ura(U,R), pra(A,O,R) → permitted(U,A, O),
- eventually through inheritance ura(U,R1), senior(R1, R2), pra(A,O,R2) →
permitted(U,A,O).



3.2 Capturing RBAC constraints

Constraints are an important aspect of role-based access control and are a pow-
erful mechanism for laying out higher-level organizational policy [2]. The best
known RBAC constraints are:

Mutually exclusive roles constraints settle that no user should be assigned to
two roles which are in conflict with each other. In other words, it means that
conflicting roles cannot have common users. ssd(Role1, Role2), specificy that
Role1 and Role2 are in Static Separation of Duties (SSD): they are mutually
exclusive. Mutually exclusive roles can produce inconsistency. The authors of [13]
describe a set of properties that must hold in any RBAC policy. These properties
are described in the example of section 4.

Cardinality constraints settle that a number of assignments is limited. Car-
dinality constraints of n maximum users assigned to role r can be expressed in
CTGDs by ∧n+1

i=1 ura(U,Ni) ∀i ∈ [1..n + 1] ,∀j ∈ [i..n + 1]Ni 6= Nj → false.
Mutually exclusion and cardinality constraints are not limited to role and can
be used on any element of the policy model (for example with access: no role can
be granted both read access and write access on an object o). Our approach can
be generalized for maximum number of roles assigned to a users, permissions.

More generally, Nullity Generating Dependencies (NGDs) of the form pi(X)∧
c → false can be used to model RBAC constraints: an RBAC constraints define
that if a certain state (the left hand side of the CTGD) is reached, then the
policies are inconsistent (right hand side is false).

Prerequisite constraints settle that if a particular relation holds, another holds
too. Variables appearing only within the terms of the tail in CTGDs are exis-
tentially quantified. Intuitively that does mean at least one element such as ...
exists. This semantic is used to take into account prerequisite RBAC constraints.
E.g. role r2 is required by role r1: for any user assigned to role r1, at least one
another user must be assigned to role r2, ura(U1, r1) → ura(U2, r2)U1 6= U2.
Other prerequisite constraints can be expressed using CTGDs, according to the
administrator’s need. CTGDs can model other forms of prerequisite constraints
on any RBAC concept.

3.3 Inference on policies

Depending on which stage of the RBAC specification one is working on, different
needs of verification may exist:

– during the stage of modeling axiomatic (the core policy model), we are likely
to check the expected behavior of the model and rules redundancies. E.g. how
authorizations are derived from user-role and permission-role assignment,
3.1,

– during the stage of defining the role hierarchy, we are likely to check a set
of properties. E.g. there is no cycle in the hierarchy, or no role inherits the
administrator role,



– during the stage of defining user-role and permission-role assignment we are
likely query the policy and to check a set of properties. E.g there is no two
roles which have exactly the same permissions,

– during the stage of defining constraints it is interesting to check whether the
policy is consistent, in other words if we settled facts violating constraints.

Security requirements Reduction into CTGDs

Security property that must hold Use proof procedure to check
in all RBAC policy instances. implication
no role can be senior to itself

Security property that must hold Check consistency of policy or
in a policy instance. verify if the CTGDs are satisfied
no role inherits the administrator role in the database instance

Policy management capabilities:
queries and data manipulation Process query over the database
which users are assigned to role student?

Table 1. Reduction of security administration needs into CTGDs-dedicated tools

The second termination case (vacuously) of algorithms from [8] is very useful
while checking access control policies, it denotes that the policies are inconsis-
tent. This semantic is interesting for security administrators when dealing with
constrained access control policies: if there are facts violating constraints, the
policy is inconsistent.

4 Experimental validation

This section illustrates how a RBAC policy can be modeled into Constrained
Tuple Generating Dependencies. The sample code is separated into four parts:
the first one models the core mechanisms of the Role-based access control model
and settles a set of properties that must holds in any RBAC policy (from [13]).
The second part is a sample role hierarchy used in a virtual organization. Next is
a sample definition of User-Role Assignments and Permission-Role Assignments.
The last part defines a set of specific organizational constraints that must hold
in this particular policy.

%axiomatic definition of RBAC policies and generic constraints
%-------------------------------------------------------------
%senior is the transitive closure of dSenior
dSenior(SeniorRole,JuniorRole)->senior(SeniorRole,JuniorRole).
senior(SeniorRole,InterRole), dSenior(InterRole,JuniorRole)-> senior(SeniorRole,JuniorRole).
senior(Role,Role)->false.

%granting access to user through role assignments
ura(User,Role),pra(Access,Object,Role)->permitted(User,Access,Object).
ura(User,SeniorRole),senior(SeniorRole,JuniorRole),
pra(Access,Object,JuniorRole)->permitted(User,Access,Object).



%Property P1: any two roles assigned for a same user are not in separation of duties
ura(User,Role1),ura(User,Role2),ssd(Role1,Role2)->false.

%Property P2: no role is mutually exclusive with itself
ssd(Role,Role)-> false.

%Property P3: mutual exclusion is symetric
ssd(Role1,Role2)->ssd(Role2,Role1).

%Property P4: any two roles in ssd do not inherits one another
senior(Role1,Role2),ssd(Role1,Role2)->false.

%Property P5: there is no role inheriting to roles in ssd
ssd(Role1,Role2),senior(SeniorRole,Role1),senior(SeniorRole,Role2)->false.

%Property P6: If a role inherits another role and
%that role is in SSD with a third one, then the inheriting
%role is in SSD with the third one.
ssd(Role1,Role2),senior(SeniorRole,Role1)->ssd(SeniorRole,Role2).

%definition of role hierarchy
%----------------------------
%roles and hierarchy (with directly senior predicate) modeling
->role(student),role(researcher),role(teacher),role(phDStudent).
->role(postPhD),role(lecturer),role(seniorLecturer),role(professor).
->dSenior(phDStudent,student), dSenior(phDStudent,researcher).
->dSenior(postPhD,phDStudent), dSenior(postPhD,teacher).
->dSenior(lecturer,teacher), dSenior(lecturer,researcher).
->dSenior(professor,seniorLecturer), dSenior(seniorLecturer,lecturer).

%definition of assignments
%-------------------------
%Permission-Role Assignments
->pra(read,test,student),pra(write,test,teacher),pra(read,finalTest,professor).
->pra(read,smallPaper,lecturer),pra(write,bigPaper,professor).

%User-Role Assignments
->ura(alice,student),ura(bob,phDStudent),ura(charly,professor).

%definition of organizational constraints
%----------------------------------------
%prerequisite on permissions: if one can read and object, another one can write
pra(read,Object,Role1) -> pra(write,Object,Role2) {Role1=\=Role2}.

%uniqueness constraint on manager
ura(User1,manager),ura(User2, manager){User1=\=User2}->false.

%mutually exclusives roles: student and professor
->ssd(student,lecturer).

We have described chase procedures as algorithms proving that a set of CT-
GDs F implies a single CTGD g: F � g. The above ruleset is such an F collec-
tion, and g is the security property to check. The table 1 describes how CTGDs-
dedicated tools can be used by administrators to design, verify and manage their
policies. Six properties (P1 to P6) are settled in the sample policy, the authors of
[13] have manually demonstrated the following theorem : P2∧P3∧P6 ⇒ P4∧P5.

Our first example illustrates how chase procedures for CTGDs can be used
to automatically proove the same theorem:
- let F be the collection of CTGDs modeling properties P2, P3 and P6,
- let be g1 the CTGD modeling properties P4,
- let be g2 the CTGD modeling properties P5.
The chase procedure prove that F � g1 and F � g2, we can conclude the prop-



erties P4 and P6 are redundant. Such functionalities are very interesting for
security administrators: they can check that security properties (P4 and P6 in
this example) hold in all RBAC policy instances (that satisfy P2, P3 and P6 in
the example).

Another example is g ≡ ura(joe, student), ura(joe, seniorLecturer) →: “is
the policy consistent if joe is assigned to both student and seniorLecturer?”.
Clearly, with such assignments to user joe, the policy is inconsistent: roles
student and lecturer are in SSD, according to property number six, student and
seniorLecturer are in SSD too, thus the policy is inconsistent using property
number one. It is very interesting for administrators to conduct such verifica-
tions before any assignment: they can ensure the consistency of their policy in
the presence of updates.

We argue that dedicated proof procedures are conceptually simpler than more
generic ones (e.g. SLD-based) in the case of CTGDs. A dedicated proof procedure
avoids a prior transformation step required by classical proof procedure on first
order logic (e.g., avoiding Skolem Normal Form) which does not work on whole
formulae and had to alter them indeed. CTGDs may need to be transformed
into Horn clauses without existential quantifiers for example. The steps of such
a transformation are:
- convert each CTGD to an equivalent formula in prenex normal form,
- replace existentially quantified variable by functions,
- split each CTGD into Horn clauses.

We have implemented the chase procedures described in [8] in a prototype.
On top of this underlying inference engine, we have built a Microsoft Visio
2003 Template dedicated to RBAC policies design. It is able to determine if a
permission is granted to a user through his role assignment, it can check if the
set of policies is consistent and can answer queries about the relations holding
in the RBAC policy.

5 Related work

Our work has been influenced by [12] which express RBAC models with con-
straint logic programming and [4] which describes the “Flexible Authorization
Framework”, that can be analyzed using a variant of Datalog (typically either
safe stratified Datalog or Datalog with constraints).

The three main arguments we focused on are providing a framework which:
- is able to capture all relevant concepts of RBAC models,
- can benefit researches (e.g. evolutions, theoretical results, implementations)
from a well established community,
- can be easily linked with other components of the information system (e.g.
databases).

The authors of [12] describe access control programs able to deal with RBAC
models. This very complete work addresses many problems arising with the use
of closed policies (access denied as a default action, authorizations are only ever
positive), open policies (access granted as a default action) or hybrid policies



(authorizations and denial can be explicitly defined). However, logical programs
are not intuitive for non-specialits and the logic used do not integrate existential
quantifiers. Moreover, RBAC policy are already widespread, a framework base
on databases makes integration of administration tools and security data easier.

The autors of [4] argue“‘... extensive research activity has resulted in the
definition of a variety of access control ... Thus, the need arises for developing
tools for reasoning about the characteristics of these models. These tools should
support users in the tasks of model specification, analysis of model properties,
and authorization management”. Their logical framework is based on the C-
Datalog language, whereas our is based on CTGDs, which is a able to deal with
a wider class of rules thanks to existential quantifiers and constraints within
both head and tail of dependencies.

The authors of [14] describe a fragment of FOL which tractable and suffi-
ciently expressive to capture policies for many applications. This work is really
interesting and points out tractability and complexity results on their logic.
Constraints in policies are necessary to capture peculiarities of organizations,
but modeling such restrictions is not develop in [14]. We do agree the authors’
statement about the use of logic programming by non-logicians, but we disagree
that a “filling the blank on English sentences” interface is sufficient for secu-
rity administrators. We think that administrators must have a computer-aided
software engineering (CASE) interface to design and check policies and such a
CASE should provide a comprehensible trace of reasoning.

6 Conclusions and further work

We are confident that CTGDs can be used to express various kinds of access
policies such as Task-BAC, Workflow-BAC, Mandatory-BAC or Organization-
BAC. The fragment of first-order logic is really closed to the ones used in [12]
or [4], which are able to deal with temporal aspects and at least mandatory and
discretionary access control models.

For sake of clarity the example exposed in section 4 does not include session.
According to [12] sessions and dynamic constraints can be captured easily with
CLP, thus with CTGDs. We are investigating the interest of chase procedure to
check RBAC policies involving sessions. For example, using chase procedure we
might answer queries like Are the policies consistent for all possible sessions?.
Moreover, incorporating the model for administration of roles exposed in [15] is
promising for distributed policies verification purpose.

Integrating of temporal aspects in RBAC models has been investigated in [16].
The authors of [12] use the Constraint Logic Programming framework. We
can use the same approach to model Temporal-RBAC models, and according
to [17] we extend the inequalities to geographical trigerring of assignments.
Integrating temporal or geographical concerns into CTGDs, is mainly related
to the choice of a right constraint domain [8]. For example, to define that a
role is assigned to a user only on [t1, t2] shift, (between the times t1 and t2,):
time(H)t1 ≤ H ≤ t2 → ura(user, role).



A promising opening to the use of CTGDs for access control modeling pur-
pose are the results exposed in [18]. Their paper propose a new kind of depen-
dencies subsumming CTGDs : Disjunctive-CTGDs. Their enhanced expressivity
can be used to models new king of RBAC constraints involving disjunctions: a
new class of organizational constraints which have not been adressed yet but
that might be usefull to models desirable property.

References

1. Ramaswamy, C., Sandhu, R.: Role-based access control features in commercial
database management systems. In: Proc. 21st NIST-NCSC National Information
Systems Security Conference. (1998) 503–511

2. Sandhu, R.S., Coyne, E.J., Feinstein, H.L., Youman, C.E.: Role-based access con-
trol models. IEEE Computer 29(2) (1996) 38–47

3. CERT/CC, U.S.S., magazine, C.: E-crimewatch survey. Technical report,
http://www.cert.org/archive/pdf/ecrimesummary05.pdf (2005)

4. Bertino, E., Catania, B., Ferrari, E., Perlasca, P.: A logical framework for reasoning
about access control models. ACM Trans. Inf. Syst. Secur. 6(1) (2003) 71–127

5. Bonatti, P.A., Samarati, P.: Logics for authorization and security. In Chomicki,
J., van der Meyden, R., Saake, G., eds.: Logics for Emerging Applications of
Databases, Springer (2003) 277–323

6. Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison-Wesley
(1995)

7. Coulondre, S.: A top-down proof procedure for generalized data dependencies.
Acta Inf. 39(1) (2003) 1–29

8. Maher, M.J., Srivastava, D.: Chasing constrained tuple-generating dependencies.
In: PODS, ACM Press (1996) 128–138

9. Ramakrishnan, R., Ullman, J.D.: A survey of research on deductive database
systems. Journal of Logic Programming 23(2) (1993) 125–149

10. Revesz, P.Z.: Constraint databases: A survey. In Libkin, L., Thalheim, B., eds.:
Semantics in Databases. Volume 1358 of Lecture Notes in Computer Science.,
Springer (1995) 209–246

11. Beeri, C., Vardi, M.Y.: A proof procedure for data dependencies. J. ACM 31(4)
(1984) 718–741

12. Barker, S., Stuckey, P.J.: Flexible access control policy specification with constraint
logic programming. ACM Trans. Inf. Syst. Secur. 6(4) (2003) 501–546

13. Gavrila, S.I., Barkley, J.F.: Formal specification for role based access control
user/role and role/role relationship management. In: ACM Workshop on Role-
Based Access Control. (1998) 81–90

14. Halpern, J.Y., Weissman, V.: Using first-order logic to reason about policies. In:
CSFW, IEEE Computer Society (2003) 187–201

15. Sandhu, R.S., Munawer, Q.: The arbac99 model for administration of roles. In:
ACSAC, IEEE Computer Society (1999) 229–240

16. Bertino, E., Bonatti, P.A., Ferrari, E.: Trbac: A temporal role-based access control
model. ACM Trans. Inf. Syst. Secur. 4(3) (2001) 191–233

17. Grumbach, S., Rigaux, P., Segoufin, L.: Spatio-temporal data handling with con-
straints. GeoInformatica 5(1) (2001) 95–115

18. Wang, J., Topor, R., Maher, M.: Reasoning with disjunctive constrained tuple-
generating dependencies. Lecture Notes in Computer Science 2113 (2001) 963–973


