Query-based Linked Data Anonymization

Companion appendix

Remy Delanaux®, Angela Bonifati', Marie-Christine Rousset?3, and Romuald Thion!

L Université Lyon 1, LIRIS CNRS, 69100 Villeurbanne, France
[name] . [surname] Quniv-lyonl.fr
2 Université Grenoble Alpes, CNRS, INRIA, Grenoble INP, 38000 Grenoble, France
[name] . [surname] @imag.fr
3 Institut Universitaire de France, 75000 Paris, France

1 Example 5 complete results

This is the full list of operation sequences found using Algorithm [2] distributing operations in Oy
and 023

O = {{DELETE {(?u, vcard:hasAddress, ?ad)} WHERE G}, DELETE {(?c, tcl:user, ?u)} WHERE G% },
{DELETE {(?u, vcard:hasAddress, ?ad)} INSERT {(?u, vcard:hasAddress, [])} WHERE G¥,
DELETE {(?c, tcl:user, ?u)} WHERE G4},

{DELETE {(?u, vcard:hasAddress, ?ad)} INSERT {([],vcard:hasAddress, ?ad)} WHERE G¥,
DELETE {(?c, tcl:user, ?u)} WHERE G4},

{DELETE {(?u, vcard:hasAddress, ?ad)} WHERE G} ,

DELETE {(?c, tcl:user, ?u)} INSERT {([],tcl:user,?u)} WHERE G },

{DELETE {(?u, vcard:hasAddress, ?ad)} INSERT {(?u,vcard:hasAddress, [])} WHERE G7 ,
DELETE {(?c, tcl:user, ?u)} INSERT {([],tcl:user,?u)} WHERE G },

{DELETE {(?u, vcard:hasAddress, ?ad)} INSERT {([],vcard:hasAddress, ?ad)} WHERE G},
DELETE {(?¢, tcl:user,?u)} INSERT {([],tcl:user, ?u)} WHERE G4},

{DELETE {(?u, vcard:hasAddress, ?ad)} WHERE G} ,

DELETE {(?c, tcl:user,?u)} INSERT {(?c,tcl:user, [])} WHERE G4},

{DELETE {(?u,vcard:hasAddress, ?ad)} INSERT {(?u,vcard:hasAddress, [])} WHERE G¥,
DELETE {(?c, tcl:user, ?u)} INSERT {(?c, tcl:user, [1)} WHERE G},

{DELETE {(?u, vcard:hasAddress, ?ad)} INSERT {([],vcard:hasAddress, ?ad)} WHERE G?,
DELETE {(?c, tcl:user, ?u)} INSERT {(?c,tcl:user, [1)} WHERE G1'},}

2 Full proofs

For the sake of conciseness we write Q = (Z, G) for the query SELECT Z WHERE G(Z,). Similarly,
we write update(H, I, W) for the function to the update query DELETE H INSERT I WHERE W and
delete(H, W) for the function of the deletion query DELETE H WHERE W that is:

update(H, I, W) = ADB. Result(DELETE H INSERT [WHERE W, DB))

delete(H, W) = ADB. Result(DELETE H WHERE W, DB))

Lemma 1 (BGP queries are monotonic). Let Q1 = (Z,G1) and Q2 = (T, G2) be two queries
(with identical heads) and Q1 C Q2, then for all DB and DB’ such that DB C DB’, it is the case
that Ans(Q2, DB) C Ans(Q1,DB’).

Proof. Writing ¢ : Q1 — Q2 and ¢/ : DB < DB’ the inclusion morphisms, any morphism
i Qo — DB can be extended to a morphism ¢/ o po¢: Q1 < DB’ which is identical to u on
Q1’s variables.

We now provide a slightly extended version of the main Algorithm where H is not a renaming
of G* but any of subset with a morphism 7 : G < H. Indeed, there is no need to traverse all
GF but only an H such that Core(G¥) C H C GF.

Algorithm 1: Find delete operations to satisfy a unitary privacy policy

Input : a unitary privacy policy P = {P} with P = (zF, GT)
Input : a utility policy & made of m queries U; = (a’sgj, ng)
Output: a set of operations O satisfying both P and U

1 function find-ops-unit (P, U):

2 Let H C G'P with an additional 1 : G’ < H where G'T is a renaming of G¥;
3 Let O := 0);

4 forall (s,p,0) € H do

5 Let ¢ := true;

6 forall GY do

7 forall (s',p',0") € GY do

8 if Jdo (o(s',p',0) = o(s,p,0)) then

9 L L ¢ := false;

10 if ¢ then

11 O := O U {DELETE {(s,p, 0)} WHERE H };

12 if check-subject((s,p,0), H) V s € z¥ then

13 L O := O U {DELETE {(s,p, 0)} INSERT {([1,p,0)} WHERE H };
14 if 0 €I A (check-object((s,p,0),H) V o€ z¥) then

15 | O :=OU {DELETE {(s,p,0)} INSERT {(s,p, [1)} WHERE H };
16 return ops;

Lemma 2 (Boolean satisfiability). Let Q = (z,G) be a query, let DB € BGP be a graph
and let H be a subset of G together with a morphism n: G — H, then Ans({(Z,G), DB) = () if and
only if Ans({(), H), DB) =0

Proof. Let us denote the inclusion H C G by its canonical inclusion morphism ¢ : H — G. We
prove the only if direction by contraposition. Assume that there is an answer in Ans({{), H), DB).
By the definition of Ans, there is at least one morphism p : H < DB. By composing p and
7 we obtain a morphism pon : G < DB, thus Ans({(Z,G), DB) is not empty. We prove the
if direction by contraposition similarly. Assume that there is an answer in Ans({Z,G), DB) and
call it v : G — DB. By composing v and ¢ we obtain a morphism from vo¢: H — DB, thus
Ans({(), H), DB) is not empty.

Lemma 3 (Soundness for privacy). Let Q = (Z,G) be a query, let H be G renamed with
fresh variables and (s,p,0) € H. For all DB € BGP, the following update queries satisfy privacy

policy P = {Q}:

DELETE {(s, p, 0)} WHERE H, DB)
DELETE {(s,p,0)} INSERT {(z,,p,0)} WHERE H, DB)

DELETE {(s,p, 0)} INSERT {(s,p,x,)} WHERE H, DB)

where z,, € B a fresh blank node (equivalent to the [] convention used in the main article).

Proof. Let’s consider the three possible cases.

First query: By Lemma [2] and by definition of query answers and privacy policy satisfi-
ability, it is equivalent to prove that Ans({(), H), DB’) = () that is, to prove that there is no
morphism v : H < DB’. For the sake of contradiction, assume that such a v exists. Let
DB’ = delete({(s,p,0)}, H)(DB) the graph obtained after deletion. Let’s consider the triple
v(s,p,0) € DB’. On the other hand, DB’ = DB\ {u(s,p,0) | u : H — DB} by the defini-
tion of delete, but picking p = v shows that v(s,p,0) ¢ DB’ a contradiction.

Second query: Let DB’ = update({(s,p,0)},{xu,p,0)}, H)(DB) the graph obtained after
subject update. Three possibles cases can trigger this operation.

— Case 1: 3(¢',p',s) € H

Let a € Ans({(), H), DB’) an answer on DB’ so that 3 | wu(H) € DB’. In particular, this
applies to the subgraph H = {(s, p,0), (s',p’, s)}, and we have u(H) C DB, which is equivalent to
{(us, pp, po), (us', pp’, us)} < DB’

But by the definition of update, DB’ = DB\ {v(s,p,0)|v : H < DB} U {v(zy,p,0)lv: H —
DB}, as we replace every subject of matching triples (s,p,0) by a fresh blank node. Therefore
with 4 = v, we have us = b € B, a fresh blank node.

We would then have u(H) = {(b, up, o), (us’, up’,b)}, which is not possible since b is by
construction created as a fresh variable in each insertion and cannot be found in two differ-
ent triples: there is a contradiction and a cannot exist. With this operation and this condition

Ans(((),H), DB’") = () and the privacy is fulfilled.
— Case 2: 3(s,p’,0') € H and fo (o(s,p',0') = o(s,p,0))

We apply the same methodology as in Case 1: Let a € Ans(((), H), DB’) an answer, and let a
subgraph H = {(s, p,0), (s,p',0')}, and we then have u(H) = {(us, up, po), (us, up’, po')} € DB'.
By construction of update, we have us = b € B, a fresh blank node. We would then have u(H) =
{(b, up, po), (b, up’, po’). Plus, by hypothesis, (s,p,0) and (s,p’,0’) are not unifiable. Therefore,
such a case is not possible and Ans(((), H), DB’) must be empty. The privacy condition is satisfied.

— Case 3: s ¥

Let’s consider an answer Ans({Z, H), DB’). By definition of update, DB’ = DB\ {u(s,p,0)|u :
H — DB} U {u(zy,p,0)|n : H — DB}, as we replace every subject of matching triples (s, p, o)
by a fresh blank node z,. By hypothesis, s € %, therefore Va € Ans((Z, H), DB'), mus € a, that
is 3z, € B | x, C a. Which entails that for any tuple full of constants ¢, ¢ ¢ Ans((Z, H), DB’),
which means that the privacy is ensured.

Third equality: Let DB’ = update({(s,p,0)},{s,p,z.)}, H)(DB) the graph obtained after
value update. Let’s consider the triple v(s,p,0) € DB’.
We consider the same 3 cases as the second equality and show using the same rules that:

— In the first case (3(o, p’,0’) € H), an answer to the query would mean that u(H) = {(s, up,b), (b, up,0)}
with b € B a fresh blank node, which is not possible.

— In the second case ((3(s',p’,0) € H and Po (o(s',p',0) = o(s,p,0)), an answer would imply
pw(H) = {(us, up, b), (us’, pp', b) with b € B a fresh blank node, which is not possible.

— In the third case (o € %), we have Ya € Ans((Z, H), DB'), jio € a, that is 3b € B € a.

Theorem 1 (Correction of Algorithm find-ops-unit). Let P = (7, G") be a query and
let U = {U;} be a set of m queries U; = (2Y,GY). Let O =find-ops-unit(P,U). For all
o € O, for all DB € BGP, it is the case that Vt,t € Ans(P,o,(DB)) = hasBlank(t) and
Ans(U;, 0,,(DB) = Ans(U;, DB) for allU; € U, in other words, both P and U are satisfied by each
operation oy.

Proof. The privacy query P is satisfied because each operation created at Lines [TI|[I3] and [L5] of
Algorithm I is of a form covered by Lemmal 3] for all choice of (s, p,0) € H made in the main loop
at Line [

Next, we check that all U; are satisfied, i.e., that Ans(GY,o,(DB) = Ans(GY, DB) for all
Uj eU.

Let j € [1..m] and a € Ans(G?, DB) an answer of G;J on DB. By definition of Ans, a = M(ﬁc?)
for some p : G;J — DB, we show that p is a morphism into o, (DB) as well so a € Ans(ng, ox(DB))
and the proof is complete.

We now have to show that Ans(GU op(DB)) C /-\ns(GU DB) We explore the three possibilities
given by Lines [TTJ[I3] and [I5] of the algorlthm to be apphed as oy.

Line Let con51der t'=(s,p,0) € GU for the sake of contradiction, assume that pu(t') ¢
or(DB), that is u(t') € DB\ ox(DB). By constructlon in Algorithm [1] and by the definition of
the delete operation DB\ o (DB) = DB\ delete({(s,p,0)}, H)(DB) = DB\ DB\ (U{v(s,p,0) |
v:H < DB}) = ((U{v(s,p,0) | v : H — DB}). Thus u(t') € DB\ o(DB) implies that
u(t") = v(t) for some t = (s,p,0) € H and v : H — DB. As p and v have distinct domains
thanks to the renaming of G, they can be combined into the morphism o such that o(t') = o(t)
defined by o(v) = p(v) when v € dom(u), o(v) = v(v) when v € dom(v) and o(v) = v otherwise.
But this is precisely the condition at Line [§ so o, ¢ O. We obtained the desired contradiction so
a€ Ans(UJU7 or(DB)) and the proof is complete.

Line 13}

Let j € [L.m] and a € Ans(GY,0,(DB)) an answer of GY on ox(DB). By definition of
Ans, a = p(z; Y) for some p : GU — DB and by definition of update we have u(GU) C DB\
update({(s,p,0)}, {(zu,p,0)}, H)(DB) We can write this as u(GY) € DB\ d(DB)Ui(DB) where
d is the d(DB) and i(DB) are two graphs, respectively consisting in triples deleted from DB and
added to DB by the update operation. a € Ans(GY, DB) would imply that x(GY) Ni(DB) = 0.

Let ¢ a triple (s, p,0) such that ¢t € u(GY) and ¢ € i(DB). The first criteria gives: 3tV € GV |
t = p(tY). Additionally, t € i(DB) implies 3t € H,3uP 3s | u?(#¥) =t = (s,p, 0). We write tV
as (sU,pY, oY) and t¥ as (s*,pf, o). Therefore, the followmg equalities must hold:

I
P () while by hypothesis, u(tV) = u PPy =

We have a contradiction, since u(tV)) t.
Ni(DB) = (), and by deduction that Ans(GY,0x(DB)) C

Therefore this indeed proves that pu(GY')
Ans(Gg-], DB).

Line [15¢

We apply the same reasoning as the Line [13]| proof, showing that in this case we would obtain
w(tY) = (s,p,) by definition of the update operation used at this line, while uf (t) = (s, p, 0).

This proves again that 4(GY)Ni(DB) =), and therefore that Ans(ng7 ox(DB)) C Ans(GY, DB).

Algorithm 2: Find delete operations to satisfy policies

Input : a privacy policy P made of n queries P, = (zI’, GF)

Input : a utility policy & made of m queries U; = (iy, G?)

Output: a set of sets of operations Ops such that each sequence obtained from ordering
any O € Ops satisfies both P and U

1 function find-ops(P,U):

2 Let Ops = {0};

3 for P, € P do

4 Let ops; :=find-ops-unit (P;,U);

5 L Ops :={0OU{d'} | O € Ops N0 € ops; };
6 return Ops;

Theorem 2 (Correction of Algorithm find-ops). Let P be a privacy policy made of n
queries P, = (zF,GF) and let U be a utility policy made of m queries U; = (:EEJ,GJU> Let O =
find-ops(P,U) and DB an RDF graph. For any set of operations Oy, € O, and for any ordering
Sk of Ok, VP; € P,Ans(P;, Sp(G)) =0 and VU; € U, Ans(U;, G) = Ans(U;, Sk(G)), that is both P
and U are satisfied by each sequence Sk.

Proof. First of all let us note that Oy, is either () when some ops; is empty or it is of the form
O = {o1,...,0,} with n = |P|. Indeed, the loop at Line |3|is executed once for each P;, so at
line [5] either one ops; is empty and thus Ops = 0 because {O U {0’} | O € Ops Ao’ € 0} =0, or
all ops; # () an each O € Ops contains exactly one operation for each P;.

By construction of Algorithm [2| and by Theorem [I| each o € Oy, satisfies at least one of the P;
and all U; and each P; is satisfied by at least one o € Oy. Thus any choice of an ordering S of
Oy, is such that all P; are satisfied.

	Query-based Linked Data Anonymization

