Query-based Linked Data Anonymization Companion appendix

Remy Delanaux¹, Angela Bonifati¹, Marie-Christine Rousset^{2,3}, and Romuald Thion¹

 ¹ Université Lyon 1, LIRIS CNRS, 69100 Villeurbanne, France [name].[surname]@univ-lyon1.fr
² Université Grenoble Alpes, CNRS, INRIA, Grenoble INP, 38000 Grenoble, France [name].[surname]@imag.fr
³ Institut Universitaire de France, 75000 Paris, France

1 Example 5 complete results

This is the full list of operation sequences found using Algorithm 2, distributing operations in O_1 and O_2 :

 $\mathcal{O} = \{\{\texttt{DELETE} \{(?u, \texttt{vcard:hasAddress}, ?ad)\} \text{ WHERE } G_1^P, \texttt{DELETE} \{(?c, \texttt{tcl:user}, ?u)\} \text{ WHERE } G_2^P\},$ {DELETE {(?u, vcard:hasAddress, ?ad)} INSERT {(?u, vcard:hasAddress, [])} WHERE G_1^P , DELETE $\{(?c, tcl: user, ?u)\}$ WHERE $G_2^P\}$, {DELETE {(?u, vcard:hasAddress, ?ad)} INSERT {([], vcard:hasAddress, ?ad)} WHERE G_1^P , DELETE $\{(?c, tcl: user, ?u)\}$ WHERE $G_2^P\}$, {DELETE {(?u, vcard: hasAddress, ?ad)} WHERE G_1^P , DELETE $\{(?c, tcl: user, ?u)\}$ INSERT $\{([], tcl: user, ?u)\}$ WHERE $G_2^P\}$, {DELETE {(?u, vcard:hasAddress, ?ad)} INSERT {(?u, vcard:hasAddress, [])} WHERE G_1^P , DELETE {(?c, tcl:user, ?u)} INSERT {([], tcl:user, ?u)} WHERE G_2^P }, {DELETE {(?u, vcard:hasAddress, ?ad)} INSERT {([], vcard:hasAddress, ?ad)} WHERE G_1^P , DELETE $\{(?c, tcl: user, ?u)\}$ INSERT $\{([], tcl: user, ?u)\}$ WHERE $G_2^P\}$, {DELETE {(?u, vcard: hasAddress, ?ad)} WHERE G_1^P , DELETE {(?c, tcl:user, ?u)} INSERT {(?c, tcl:user, [])} WHERE G_2^P }, {DELETE {(?u, vcard:hasAddress, ?ad)} INSERT {(?u, vcard:hasAddress, [])} WHERE G_1^P , DELETE $\{(?c, tcl: user, ?u)\}$ INSERT $\{(?c, tcl: user, [])\}$ WHERE $G_2^P\}$, {DELETE {(?u, vcard:hasAddress, ?ad)} INSERT {([], vcard:hasAddress, ?ad)} WHERE G_1^P , DELETE {(?c, tcl:user, ?u)} INSERT {(?c, tcl:user, [])} WHERE G_2^P },

2 Full proofs

For the sake of conciseness we write $Q = \langle \bar{x}, G \rangle$ for the query SELECT \bar{x} WHERE $G(\bar{x}, \bar{y})$. Similarly, we write update(H, I, W) for the function to the update query DELETE H INSERT I WHERE W and delete(H, W) for the function of the deletion query DELETE H WHERE W, that is:

$$\begin{split} \mathsf{update}(H,I,W) &= \lambda DB. \, \mathsf{Result}(\mathsf{DELETE}\ H\ \mathsf{INSERT}\ I\ \mathsf{WHERE}\ W, DB))\\ \mathsf{delete}(H,W) &= \lambda DB. \, \mathsf{Result}(\mathsf{DELETE}\ H\ \mathsf{WHERE}\ W, DB)) \end{split}$$

Lemma 1 (BGP queries are monotonic). Let $Q_1 = \langle \bar{x}, G_1 \rangle$ and $Q_2 = \langle \bar{x}, G_2 \rangle$ be two queries (with identical heads) and $Q_1 \subseteq Q_2$, then for all DB and DB' such that $DB \subseteq DB'$, it is the case that $\mathsf{Ans}(Q_2, DB) \subseteq \mathsf{Ans}(Q_1, DB')$.

Proof. Writing $\iota : Q_1 \hookrightarrow Q_2$ and $\iota' : DB \hookrightarrow DB'$ the inclusion morphisms, any morphism $\mu : Q_2 \hookrightarrow DB$ can be extended to a morphism $\iota' \circ \mu \circ \iota : Q_1 \hookrightarrow DB'$ which is identical to μ on Q_1 's variables.

We now provide a slightly extended version of the main Algorithm where H is not a renaming of G^P but any of subset with a morphism $\eta : G^P \hookrightarrow H$. Indeed, there is no need to traverse all G^P but only an H such that $\mathsf{Core}(G^P) \subseteq H \subseteq G^P$.

Algorithm 1: Find delete operations to satisfy a unitary privacy policy							
Input : a unitary privacy policy $\mathcal{P} = \{P\}$ with $P = \langle \bar{x}^P, G^P \rangle$ Input : a utility policy \mathcal{U} made of m queries $U_j = \langle \bar{x}_j^U, G_j^U \rangle$							
Output: a set of operations O satisfying both \mathcal{P} and \mathcal{U}							
1 function find-ops-unit(P, U):							
2 Let $H \subseteq G'^P$ with an additional $\eta: G'^P \hookrightarrow H$ where G'^P is a renaming of G^P ;							
a Let $O := \emptyset$;							
4 forall $(s, p, o) \in H$ do							
5 Let $c := $ true;							
forall G_i^U do							
7 forall $(s', p', o') \in G_i^U$ do							
s if $\exists \sigma (\sigma(s', p', o') = \sigma(s, p, o))$ then							
9 $\[\ \ \ \ \ \ \ \ \ \ \ \ \$							
10 if c then							
11 $O := O \cup \{ \text{DELETE} \{ (s, p, o) \} \text{ WHERE } H \};$							
12 if check-subject $((s, p, o), H) \lor s \in \bar{x}^P$ then							
13 $ \qquad $							
14 if $o \in \mathbf{I} \land (\text{check-object}((s, p, o), H) \lor o \in \bar{x}^P)$ then							
15 $O := O \cup \{ \text{DELETE} \{(s, p, o) \} \text{ INSERT} \{(s, p, []) \} \text{ WHERE } H \};$							
16 return ops;							

Lemma 2 (Boolean satisfiability). Let $Q = \langle \bar{x}, G \rangle$ be a query, let $DB \in \mathbf{BGP}$ be a graph and let H be a subset of G together with a morphism $\eta : G \hookrightarrow H$, then $\mathsf{Ans}(\langle \bar{x}, G \rangle, DB) = \emptyset$ if and only if $\mathsf{Ans}(\langle \langle \rangle, H \rangle, DB) = \emptyset$

Proof. Let us denote the inclusion $H \subseteq G$ by its canonical inclusion morphism $\iota : H \hookrightarrow G$. We prove the *only if* direction by contraposition. Assume that there is an answer in $\operatorname{Ans}(\langle \langle \rangle, H \rangle, DB)$. By the definition of Ans, there is at least one morphism $\mu : H \hookrightarrow DB$. By composing μ and η we obtain a morphism $\mu \circ \eta : G \hookrightarrow DB$, thus $\operatorname{Ans}(\langle \bar{x}, G \rangle, DB)$ is not empty. We prove the *if* direction by contraposition similarly. Assume that there is an answer in $\operatorname{Ans}(\langle \bar{x}, G \rangle, DB)$ and call it $\nu : G \hookrightarrow DB$. By composing ν and ι we obtain a morphism from $\nu \circ \iota : H \hookrightarrow DB$, thus $\operatorname{Ans}(\langle \langle \rangle, H \rangle, DB)$ is not empty.

Lemma 3 (Soundness for privacy). Let $Q = \langle \bar{x}, G \rangle$ be a query, let H be G renamed with fresh variables and $(s, p, o) \in H$. For all $DB \in \mathbf{BGP}$, the following update queries satisfy privacy policy $\mathcal{P} = \{Q\}$:

 $\label{eq:delta_based} \begin{array}{l} \texttt{Delete} \; \{(s,p,o)\} \; \texttt{WHERE} \; H, DB) \\ \\ \texttt{Delete} \; \{(s,p,o)\} \; \texttt{INSERT} \; \{(x_u,p,o)\} \; \texttt{WHERE} \; H, DB) \end{array}$

DELETE $\{(s, p, o)\}$ INSERT $\{(s, p, x_u)\}$ WHERE H, DB)

where $x_u \in \mathbf{B}$ a fresh blank node (equivalent to the [] convention used in the main article).

Proof. Let's consider the three possible cases.

First query: By Lemma 2 and by definition of query answers and privacy policy satisfiability, it is equivalent to prove that $\operatorname{Ans}(\langle \langle \rangle, H \rangle, DB') = \emptyset$ that is, to prove that there is no morphism $\nu : H \hookrightarrow DB'$. For the sake of contradiction, assume that such a ν exists. Let $DB' = \operatorname{delete}(\{(s, p, o)\}, H)(DB)$ the graph obtained after deletion. Let's consider the triple $\nu(s, p, o) \in DB'$. On the other hand, $DB' = DB \setminus \{\mu(s, p, o) \mid \mu : H \hookrightarrow DB\}$ by the definition of delete, but picking $\mu = \nu$ shows that $\nu(s, p, o) \notin DB'$, a contradiction.

Second query: Let $DB' = \text{update}(\{(s, p, o)\}, \{x_u, p, o\}\}, H)(DB)$ the graph obtained after subject update. Three possibles cases can trigger this operation.

- Case 1: $\exists (s', p', s) \in H$

Let $a \in Ans(\langle \langle \rangle, H \rangle, DB')$ an answer on DB', so that $\exists \mu \mid \mu(H) \subseteq DB'$. In particular, this applies to the subgraph $\overline{H} = \{(s, p, o), (s', p', s)\}$, and we have $\mu(\overline{H}) \subseteq DB$, which is equivalent to $\{(\mu s, \mu p, \mu o), (\mu s', \mu p', \mu s)\} \subseteq DB'$.

But by the definition of update, $DB' = DB \setminus \{\nu(s, p, o) | \nu : H \hookrightarrow DB\} \cup \{\nu(x_u, p, o) | \nu : H \hookrightarrow DB\}$, as we replace every subject of matching triples (s, p, o) by a fresh blank node. Therefore with $\mu = \nu$, we have $\mu s = b \in \mathbf{B}$, a fresh blank node.

We would then have $\mu(H) = \{(b, \mu p, \mu o), (\mu s', \mu p', b)\}$, which is not possible since b is by construction created as a fresh variable in each insertion and cannot be found in two different triples: there is a contradiction and a cannot exist. With this operation and this condition $Ans(\langle \langle \rangle, H \rangle, DB') = \emptyset$ and the privacy is fulfilled.

- Case 2:
$$\exists (s, p', o') \in H \text{ and } \nexists \sigma (\sigma(s, p', o') = \sigma(s, p, o))$$

We apply the same methodology as in Case 1: Let $a \in Ans(\langle \langle \rangle, H \rangle, DB')$ an answer, and let a subgraph $\overline{H} = \{(s, p, o), (s, p', o')\}$, and we then have $\mu(\overline{H}) = \{(\mu s, \mu p, \mu o), (\mu s, \mu p', \mu o')\} \subseteq DB'$. By construction of update, we have $\mu s = b \in \mathbf{B}$, a fresh blank node. We would then have $\mu(\overline{H}) = \{(b, \mu p, \mu o), (b, \mu p', \mu o')\}$. Plus, by hypothesis, (s, p, o) and (s, p', o') are not unifiable. Therefore, such a case is not possible and $Ans(\langle \langle \rangle, H \rangle, DB')$ must be empty. The privacy condition is satisfied.

- Case 3: $s \in \bar{x}^P$

Let's consider an answer $\operatorname{Ans}(\langle \bar{x}, H \rangle, DB')$. By definition of update, $DB' = DB \setminus \{\mu(s, p, o) | \mu : H \hookrightarrow DB\}$ $H \hookrightarrow DB\} \cup \{\mu(x_u, p, o) | \mu : H \hookrightarrow DB\}$, as we replace every subject of matching triples (s, p, o) by a fresh blank node x_u . By hypothesis, $s \in \bar{x}^P$, therefore $\forall a \in \operatorname{Ans}(\langle \bar{x}, H \rangle, DB'), mus \in a$, that is $\exists x_u \in \mathbf{B} \mid x_u \subseteq a$. Which entails that for any tuple full of constants $\bar{c}, \bar{c} \notin \operatorname{Ans}(\langle \bar{x}, H \rangle, DB')$, which means that the privacy is ensured.

Third equality: Let $DB' = \text{update}(\{(s, p, o)\}, \{s, p, x_u)\}, H)(DB)$ the graph obtained after value update. Let's consider the triple $\nu(s, p, o) \in DB'$.

We consider the same 3 cases as the second equality and show using the same rules that:

- In the first case $(\exists (o, p', o') \in H)$, an answer to the query would mean that $\mu(\bar{H}) = \{(s, \mu p, b), (b, \mu p, o)\}$ with $b \in \mathbf{B}$ a fresh blank node, which is not possible.
- In the second case $((\exists (s', p', o) \in H \text{ and } \nexists \sigma (\sigma(s', p', o) = \sigma(s, p, o)))$, an answer would imply $\mu(\bar{H}) = \{(\mu s, \mu p, b), (\mu s', \mu p', b) \text{ with } b \in \mathbf{B} \text{ a fresh blank node, which is not possible.}$
- In the third case $(o \in \bar{x}^P)$, we have $\forall a \in Ans(\langle \bar{x}, H \rangle, DB'), \mu o \in a$, that is $\exists b \in \mathbf{B} \in a$.

Theorem 1 (Correction of Algorithm find-ops-unit). Let $P = \langle \bar{x}^P, G^P \rangle$ be a query and let $\mathcal{U} = \{U_j\}$ be a set of m queries $U_j = \langle \bar{x}_j^U, G_j^U \rangle$. Let $O = \texttt{find-ops-unit}(P, \mathcal{U})$. For all $o_k \in O$, for all $DB \in \texttt{BGP}$, it is the case that $\forall t, t \in \texttt{Ans}(P, o_k(DB)) \Rightarrow \texttt{hasBlank}(t)$ and $\texttt{Ans}(U_j, o_k(DB) = \texttt{Ans}(U_j, DB)$ for all $U_j \in \mathbf{U}$, in other words, both P and \mathcal{U} are satisfied by each operation o_k . *Proof.* The privacy query P is satisfied because each operation created at Lines 11,13 and 15 of Algorithm 1 is of a form covered by Lemma 3 for all choice of $(s, p, o) \in H$ made in the main loop at Line 4.

Next, we check that all U_j are satisfied, i.e., that $\operatorname{Ans}(G_j^U, o_k(DB) = \operatorname{Ans}(G_j^U, DB)$ for all $U_j \in \mathbf{U}$.

Let $j \in [1..m]$ and $a \in Ans(G_j^U, DB)$ an answer of G_j^U on DB. By definition of Ans, $a = \mu(\bar{x}_j^U)$ for some $\mu : G_j^U \hookrightarrow DB$, we show that μ is a morphism into $o_k(DB)$ as well so $a \in Ans(G_j^U, o_k(DB))$ and the proof is complete.

We now have to show that $\operatorname{Ans}(G_j^U, o_k(DB)) \subseteq \operatorname{Ans}(G_j^U, DB)$ We explore the three possibilities given by Lines 11,13 and 15 of the algorithm to be applied as o_k .

Line 11: Let consider $t' = (s', p', o') \in G_j^U$, for the sake of contradiction, assume that $\mu(t') \notin o_k(DB)$, that is $\mu(t') \in DB \setminus o_k(DB)$. By construction in Algorithm 1 and by the definition of the delete operation $DB \setminus o_k(DB) = DB \setminus \text{delete}(\{(s, p, o)\}, H)(DB) = DB \setminus DB \setminus (\bigcup \{\nu(s, p, o) \mid \nu : H \hookrightarrow DB\}) = (\bigcup \{\nu(s, p, o) \mid \nu : H \hookrightarrow DB\})$. Thus $\mu(t') \in DB \setminus o_k(DB)$ implies that $\mu(t') = \nu(t)$ for some $t = (s, p, o) \in H$ and $\nu : H \hookrightarrow DB$. As μ and ν have distinct domains thanks to the renaming of G^P , they can be combined into the morphism σ such that $\sigma(t') = \sigma(t)$ defined by $\sigma(v) = \mu(v)$ when $v \in \text{dom}(\mu)$, $\sigma(v) = \nu(v)$ when $v \in \text{dom}(\nu)$ and $\sigma(v) = v$ otherwise. But this is precisely the condition at Line 8 so $o_k \notin O$. We obtained the desired contradiction so $a \in \text{Ans}(U_i^U, o_k(DB))$ and the proof is complete.

Line 13:

Let $j \in [1..m]$ and $a \in \operatorname{Ans}(G_j^U, o_k(DB))$ an answer of G_j^U on $o_k(DB)$. By definition of Ans, $a = \mu(\bar{x}_j^U)$ for some $\mu : G_j^U \hookrightarrow DB$ and by definition of update, we have $\mu(G_j^U) \subseteq DB \setminus \operatorname{update}(\{(s, p, o)\}, \{(x_u, p, o)\}, H)(DB)$. We can write this as $\mu(G_j^U) \subseteq DB \setminus d(DB) \cup i(DB)$ where d is the d(DB) and i(DB) are two graphs, respectively consisting in triples deleted from DB and added to DB by the update operation. $a \in \operatorname{Ans}(G_i^U, DB)$ would imply that $\mu(G_i^U) \cap i(DB) = \emptyset$.

added to DB by the update operation. $a \in \operatorname{Ans}(G_j^U, DB)$ would imply that $\mu(G_j^U) \cap i(DB) = \emptyset$. Let t a triple (s, p, o) such that $t \in \mu(G_j^U)$ and $t \in i(DB)$. The first criteria gives: $\exists t^U \in G^U \mid t = \mu(t^U)$. Additionally, $t \in i(DB)$ implies $\exists t^P \in H, \exists \mu^P, \exists s \mid \mu^P(t^P) = t = (s, p, o)$. We write t^U as (s^U, p^U, o^U) and t^P as (s^P, p^P, o^P) . Therefore, the following equalities must hold:

$$\mu(s^{U}) = x_{u}, \ \mu(p^{U}) = p, \ \mu(o^{U}) = o$$
$$\mu^{P}(s^{P}) = s, \ \mu^{P}(p^{P}) = p, \ \mu^{P}(o^{P}) = o$$

We have a contradiction, since $\mu(t^U) \neq \mu^P(t^P)$ while by hypothesis, $\mu(t^U) = \mu^P(t^P) = t$. Therefore this indeed proves that $\mu(G_j^U) \cap i(DB) = \emptyset$, and by deduction that $\operatorname{Ans}(G_j^U, o_k(DB)) \subseteq \operatorname{Ans}(G_j^U, DB)$.

Line 15:

We apply the same reasoning as the Line 13 proof, showing that in this case we would obtain $\mu(t^U) = (s, p, x_u)$ by definition of the update operation used at this line, while $\mu^P(t^P) = (s, p, o)$. This proves again that $\mu(G_i^U) \cap i(DB) = \emptyset$, and therefore that $\operatorname{Ans}(G_i^U, o_k(DB)) \subseteq \operatorname{Ans}(G_i^U, DB)$.

Algorithm	2:	Find	delete	operations	to	satisfy	policies
-----------	----	------	--------	------------	----	---------	----------

Input : a privacy policy \mathcal{P} made of n queries $P_i = \langle \bar{x}_i^P, G_i^P \rangle$

Input : a utility policy \mathcal{U} made of m queries $U_j = \langle \bar{x}_j^U, G_j^U \rangle$

Output: a set of sets of operations Ops such that each sequence obtained from ordering any $O \in Ops$ satisfies both \mathcal{P} and \mathcal{U}

1 function find-ops(\mathcal{P}, \mathcal{U}):

2 Let $Ops = \{\emptyset\};$

3 for $P_i \in \mathcal{P}$ do

- 4 Let $ops_i := find-ops-unit(P_i, U);$
- 5 | $Ops := \{O \cup \{o'\} \mid O \in Ops \land o' \in ops_i\};$
- 6 return Ops;

Theorem 2 (Correction of Algorithm find-ops). Let \mathcal{P} be a privacy policy made of n queries $P_i = \langle \bar{x}_i^P, G_i^P \rangle$ and let \mathcal{U} be a utility policy made of m queries $U_j = \langle \bar{x}_j^U, G_j^U \rangle$ Let $\mathcal{O} =$ find-ops $(\mathcal{P}, \mathcal{U})$ and DB an RDF graph. For any set of operations $O_k \in \mathcal{O}$, and for any ordering S_k of O_k , $\forall P_i \in \mathcal{P}$, $Ans(P_i, S_k(G)) = \emptyset$ and $\forall U_j \in \mathcal{U}$, $Ans(U_j, G) = Ans(U_j, S_k(G))$, that is both \mathcal{P} and \mathcal{U} are satisfied by each sequence S_k .

Proof. First of all let us note that O_k is either \emptyset when some ops_i is empty or it is of the form $O_k = \{o_1, \ldots, o_n\}$ with $n = |\mathbf{P}|$. Indeed, the loop at Line 3 is executed once for each P_i , so at line 5, either one ops_i is empty and thus $Ops = \emptyset$ because $\{O \cup \{o'\} \mid O \in Ops \land o' \in \emptyset\} = \emptyset$, or all $ops_i \neq \emptyset$ an each $O_k \in Ops$ contains exactly one operation for each P_i .

By construction of Algorithm 2 and by Theorem 1 each $o \in O_k$ satisfies at least one of the P_i and all U_j and each P_i is satisfied by at least one $o \in O_k$. Thus any choice of an ordering S_k of O_k is such that all P_i are satisfied.