Query-based Linked Data Anonymization Companion appendix

Remy Delanaux ${ }^{1}$, Angela Bonifati ${ }^{1}$, Marie-Christine Rousset ${ }^{2,3}$, and Romuald Thion ${ }^{1}$
${ }^{1}$ Université Lyon 1, LIRIS CNRS, 69100 Villeurbanne, France
[name]. [surname]@univ-lyon1.fr
${ }^{2}$ Université Grenoble Alpes, CNRS, INRIA, Grenoble INP, 38000 Grenoble, France [name].[surname]@imag.fr
${ }^{3}$ Institut Universitaire de France, 75000 Paris, France

1 Example 5 complete results

This is the full list of operation sequences found using Algorithm 2 distributing operations in O_{1} and O_{2} :
$\mathcal{O}=\left\{\left\{\operatorname{DELETE}\{(? u\right.\right.$, vcard:hasAddress, $? a d)\}$ WHERE G_{1}^{P}, DELETE $\{(? c$, tcl :user, $? u)\}$ WHERE $\left.G_{2}^{P}\right\}$, $\left\{\right.$ DELETE $\{(? u$, vcard:hasAddress, $? a d)\}$ INSERT $\{(? u$, vcard:hasAddress, [] $)\}$ WHERE G_{1}^{P}, DELETE $\{(? c$, tcl:user, $? u)\}$ WHERE $\left.G_{2}^{P}\right\}$,
$\left\{\right.$ DELETE $\{(? u$, vcard:hasAddress, $? a d)\}$ INSERT $\{([]$, vcard:hasAddress, $? a d)\}$ WHERE G_{1}^{P}, DELETE $\{(? c$, tcl:user, $? u)\}$ WHERE $\left.G_{2}^{P}\right\}$,
$\left\{\right.$ DELETE $\{(? u$, vcard:hasAddress, $? a d)\}$ WHERE G_{1}^{P},
DELETE $\{(? c$, tcl:user, $? u)\}$ INSERT $\{([]$, tcl:user, $? u)\}$ WHERE $\left.G_{2}^{P}\right\}$,
$\left\{\right.$ DELETE $\{(? u$, vcard:hasAddress, $? a d)\}$ INSERT $\left\{(? u\right.$, vcard:hasAddress, []) $\}$ WHERE G_{1}^{P}, DELETE $\{(? c$, tcl:user, $? u)\}$ INSERT $\{([], \mathrm{tcl}:$ user, $? u)\}$ WHERE $\left.G_{2}^{P}\right\}$,
$\left\{\right.$ DELETE $\{(? u$, vcard:hasAddress, $? a d)\}$ INSERT $\{([]$, vcard:hasAddress, $? a d)\}$ WHERE G_{1}^{P}, DELETE $\{(? c$, tcl:user, $? u)\}$ INSERT $\{([], \mathrm{tcl}:$ user, $? u)\}$ WHERE $\left.G_{2}^{P}\right\}$,
\{DELETE $\{(? u$, vcard:hasAddress, $? a d)\}$ WHERE G_{1}^{P},
DELETE $\{(? c, \mathrm{tcl}$:user, $? u)\}$ INSERT $\{(? c, \mathrm{tcl}$:user, []$)\}$ WHERE $\left.G_{2}^{P}\right\}$,
$\left\{\right.$ DELETE $\{(? u$, vcard:hasAddress, $? a d)\}$ INSERT $\left\{(? u\right.$, vcard:hasAddress, []) $\}$ WHERE G_{1}^{P},
DELETE $\{(? c$, tcl:user, $? u)\}$ INSERT $\{(? c$, tcl:user, []$)\}$ WHERE $\left.G_{2}^{P}\right\}$,
\{DELETE $\{(? u$, vcard:hasAddress, $? a d)\}$ INSERT $\{([]$, vcard:hasAddress, $? a d)\}$ WHERE G_{1}^{P}, DELETE $\{(? c$, tcl:user, $? u)\}$ INSERT $\left\{(? c\right.$, tcl:user, []) $\}$ WHERE $\left.\left.G_{2}^{P}\right\},\right\}$

2 Full proofs

For the sake of conciseness we write $Q=\langle\bar{x}, G\rangle$ for the query SELECT \bar{x} WHERE $G(\bar{x}, \bar{y})$. Similarly, we write update (H, I, W) for the function to the update query DELETE H INSERT I WHERE W and delete (H, W) for the function of the deletion query DELETE H WHERE W, that is:

$$
\begin{gathered}
\text { update }(H, I, W)=\lambda D B . \text { Result(DELETE } H \text { INSERT } I \text { WHERE } W, D B)) \\
\text { delete }(H, W)=\lambda D B . \operatorname{Result(DELETE~} H \text { WHERE } W, D B))
\end{gathered}
$$

Lemma 1 (BGP queries are monotonic). Let $Q_{1}=\left\langle\bar{x}, G_{1}\right\rangle$ and $Q_{2}=\left\langle\bar{x}, G_{2}\right\rangle$ be two queries (with identical heads) and $Q_{1} \subseteq Q_{2}$, then for all $D B$ and $D B^{\prime}$ such that $D B \subseteq D B^{\prime}$, it is the case that $\operatorname{Ans}\left(Q_{2}, D B\right) \subseteq \operatorname{Ans}\left(Q_{1}, D B^{\prime}\right)$.

Proof. Writing $\iota: Q_{1} \hookrightarrow Q_{2}$ and $\iota^{\prime}: D B \hookrightarrow D B^{\prime}$ the inclusion morphisms, any morphism $\mu: Q_{2} \hookrightarrow D B$ can be extended to a morphism $\iota^{\prime} \circ \mu \circ \iota: Q_{1} \hookrightarrow D B^{\prime}$ which is identical to μ on Q_{1} 's variables.

We now provide a slightly extended version of the main Algorithm where H is not a renaming of G^{P} but any of subset with a morphism $\eta: G^{P} \hookrightarrow H$. Indeed, there is no need to traverse all G^{P} but only an H such that $\operatorname{Core}\left(G^{P}\right) \subseteq H \subseteq G^{P}$.

```
Algorithm 1: Find delete operations to satisfy a unitary privacy policy
    Input : a unitary privacy policy \(\mathcal{P}=\{P\}\) with \(P=\left\langle\bar{x}^{P}, G^{P}\right\rangle\)
    Input : a utility policy \(\mathcal{U}\) made of \(m\) queries \(U_{j}=\left\langle\bar{x}_{j}^{U}, G_{j}^{U}\right\rangle\)
    Output: a set of operations \(O\) satisfying both \(\mathcal{P}\) and \(\mathcal{U}\)
    function find-ops-unit \((P, \mathcal{U})\) :
        Let \(H \subseteq G^{\prime P}\) with an additional \(\eta: G^{\prime P} \hookrightarrow H\) where \(G^{P}\) is a renaming of \(G^{P}\);
        Let \(O:=\emptyset\);
        forall \((s, p, o) \in H\) do
            Let \(c:=\) true;
            forall \(G_{j}^{U}\) do
                forall \(\left(s^{\prime}, p^{\prime}, o^{\prime}\right) \in G_{j}^{U}\) do
                    if \(\exists \sigma\left(\sigma\left(s^{\prime}, p^{\prime}, o^{\prime}\right)=\sigma(s, p, o)\right)\) then
                        \(c:=\mathrm{false} ;\)
            if \(c\) then
                \(O:=O \cup\{\operatorname{DELETE}\{(s, p, o)\}\) WHERE \(H\}\);
                if check-subject \(((s, p, o), H) \vee s \in \bar{x}^{P}\) then
                    \(O:=O \cup\{\operatorname{DELETE}\{(s, p, o)\}\) INSERT \(\{([], p, o)\}\) WHERE \(H\} ;\)
                if \(o \in \mathbf{I} \wedge\left(\right.\) check-object \(\left.((s, p, o), H) \vee o \in \bar{x}^{P}\right)\) then
                \(O:=O \cup\{\operatorname{DELETE}\{(s, p, o)\}\) INSERT \(\{(s, p,[])\}\) WHERE \(H\} ;\)
        return ops;
```

Lemma 2 (Boolean satisfiability). Let $Q=\langle\bar{x}, G\rangle$ be a query, let $D B \in$ BGP be a graph and let H be a subset of G together with a morphism $\eta: G \hookrightarrow H$, then $\operatorname{Ans}(\langle\bar{x}, G\rangle, D B)=\emptyset$ if and only if $\operatorname{Ans}(\langle\rangle, H\rangle, D B)=\emptyset$

Proof. Let us denote the inclusion $H \subseteq G$ by its canonical inclusion morphism $\iota: H \hookrightarrow G$. We prove the only if direction by contraposition. Assume that there is an answer in Ans $(\langle\rangle, H\rangle, D B)$. By the definition of Ans, there is at least one morphism $\mu: H \hookrightarrow D B$. By composing μ and η we obtain a morphism $\mu \circ \eta: G \hookrightarrow D B$, thus $\operatorname{Ans}(\langle\bar{x}, G\rangle, D B)$ is not empty. We prove the if direction by contraposition similarly. Assume that there is an answer in $\operatorname{Ans}(\langle\bar{x}, G\rangle, D B)$ and call it $\nu: G \hookrightarrow D B$. By composing ν and ι we obtain a morphism from $\nu \circ \iota: H \hookrightarrow D B$, thus $\operatorname{Ans}(\langle\rangle, H\rangle, D B)$ is not empty.

Lemma 3 (Soundness for privacy). Let $Q=\langle\bar{x}, G\rangle$ be a query, let H be G renamed with fresh variables and $(s, p, o) \in H$. For all $D B \in \mathbf{B G P}$, the following update queries satisfy privacy policy $\mathcal{P}=\{Q\}$:

DELETE $\{(s, p, o)\}$ WHERE $H, D B)$
deLETE $\{(s, p, o)\}$ INSERT $\left\{\left(x_{u}, p, o\right)\right\}$ WHERE $\left.H, D B\right)$

```
DELETE {(s,p,o)} INSERT {(s,p,\mp@subsup{x}{u}{})}\mathrm{ WHERE }H,DB)
```

where $x_{u} \in \mathbf{B}$ a fresh blank node (equivalent to the [] convention used in the main article).
Proof. Let's consider the three possible cases.
First query: By Lemma 2 and by definition of query answers and privacy policy satisfiability, it is equivalent to prove that $\operatorname{Ans}\left(\left\langle\rangle, H\rangle, D B^{\prime}\right)=\emptyset\right.$ that is, to prove that there is no morphism $\nu: H \hookrightarrow D B^{\prime}$. For the sake of contradiction, assume that such a ν exists. Let $D B^{\prime}=\operatorname{delete}(\{(s, p, o)\}, H)(D B)$ the graph obtained after deletion. Let's consider the triple $\nu(s, p, o) \in D B^{\prime}$. On the other hand, $D B^{\prime}=D B \backslash\{\mu(s, p, o) \mid \mu: H \hookrightarrow D B\}$ by the definition of delete, but picking $\mu=\nu$ shows that $\nu(s, p, o) \notin D B^{\prime}$, a contradiction.

Second query: Let $D B^{\prime}=$ update $\left.\left(\{(s, p, o)\},\left\{x_{u}, p, o\right)\right\}, H\right)(D B)$ the graph obtained after subject update. Three possibles cases can trigger this operation.

- Case 1: $\exists\left(s^{\prime}, p^{\prime}, s\right) \in H$

Let $a \in \operatorname{Ans}\left(\left\langle\rangle, H\rangle, D B^{\prime}\right)\right.$ an answer on $D B^{\prime}$, so that $\exists \mu \mid \mu(H) \subseteq D B^{\prime}$. In particular, this applies to the subgraph $\bar{H}=\left\{(s, p, o),\left(s^{\prime}, p^{\prime}, s\right)\right\}$, and we have $\mu(\bar{H}) \subseteq D B$, which is equivalent to $\left\{(\mu s, \mu p, \mu o),\left(\mu s^{\prime}, \mu p^{\prime}, \mu s\right)\right\} \subseteq D B^{\prime}$.

But by the definition of update, $D B^{\prime}=D B \backslash\{\nu(s, p, o) \mid \nu: H \hookrightarrow D B\} \cup\left\{\nu\left(x_{u}, p, o\right) \mid \nu: H \hookrightarrow\right.$ $D B\}$, as we replace every subject of matching triples (s, p, o) by a fresh blank node. Therefore with $\mu=\nu$, we have $\mu s=b \in \mathbf{B}$, a fresh blank node.

We would then have $\mu(\bar{H})=\left\{(b, \mu p, \mu o),\left(\mu s^{\prime}, \mu p^{\prime}, b\right)\right\}$, which is not possible since b is by construction created as a fresh variable in each insertion and cannot be found in two different triples: there is a contradiction and a cannot exist. With this operation and this condition $\operatorname{Ans}\left(\left\langle\rangle, H\rangle, D B^{\prime}\right)=\emptyset\right.$ and the privacy is fulfilled.

- Case 2: $\exists\left(s, p^{\prime}, o^{\prime}\right) \in H$ and $\nexists \sigma\left(\sigma\left(s, p^{\prime}, o^{\prime}\right)=\sigma(s, p, o)\right)$

We apply the same methodology as in Case 1: Let $a \in \operatorname{Ans}\left(\left\langle\rangle, H\rangle, D B^{\prime}\right)\right.$ an answer, and let a subgraph $\bar{H}=\left\{(s, p, o),\left(s, p^{\prime}, o^{\prime}\right)\right\}$, and we then have $\mu(\bar{H})=\left\{(\mu s, \mu p, \mu o),\left(\mu s, \mu p^{\prime}, \mu o^{\prime}\right)\right\} \subseteq D B^{\prime}$. By construction of update, we have $\mu s=b \in \mathbf{B}$, a fresh blank node. We would then have $\mu(\bar{H})=$ $\left\{(b, \mu p, \mu o),\left(b, \mu p^{\prime}, \mu o^{\prime}\right)\right.$. Plus, by hypothesis, (s, p, o) and $\left(s, p^{\prime}, o^{\prime}\right)$ are not unifiable. Therefore, such a case is not possible and $\operatorname{Ans}\left(\left\langle\rangle, H\rangle, D B^{\prime}\right)\right.$ must be empty. The privacy condition is satisfied.

- Case 3: $s \in \bar{x}^{P}$

Let's consider an answer $\operatorname{Ans}\left(\langle\bar{x}, H\rangle, D B^{\prime}\right)$. By definition of update, $D B^{\prime}=D B \backslash\{\mu(s, p, o) \mid \mu$: $H \hookrightarrow D B\} \cup\left\{\mu\left(x_{u}, p, o\right) \mid \mu: H \hookrightarrow D B\right\}$, as we replace every subject of matching triples (s, p, o) by a fresh blank node x_{u}. By hypothesis, $s \in \bar{x}^{P}$, therefore $\forall a \in \operatorname{Ans}\left(\langle\bar{x}, H\rangle, D B^{\prime}\right)$, mus $\in a$, that is $\exists x_{u} \in \mathbf{B} \mid x_{u} \subseteq a$. Which entails that for any tuple full of constants $\bar{c}, \bar{c} \notin \operatorname{Ans}\left(\langle\bar{x}, H\rangle, D B^{\prime}\right)$, which means that the privacy is ensured.

Third equality: Let $D B^{\prime}=$ update $\left.\left(\{(s, p, o)\},\left\{s, p, x_{u}\right)\right\}, H\right)(D B)$ the graph obtained after value update. Let's consider the triple $\nu(s, p, o) \in D B^{\prime}$.

We consider the same 3 cases as the second equality and show using the same rules that:

- In the first case $\left(\exists\left(o, p^{\prime}, o^{\prime}\right) \in H\right)$, an answer to the query would mean that $\mu(\bar{H})=\{(s, \mu p, b),(b, \mu p, o)\}$ with $b \in \mathbf{B}$ a fresh blank node, which is not possible.
- In the second case $\left(\left(\exists\left(s^{\prime}, p^{\prime}, o\right) \in H\right.\right.$ and $\nexists \sigma\left(\sigma\left(s^{\prime}, p^{\prime}, o\right)=\sigma(s, p, o)\right)$, an answer would imply $\mu(\bar{H})=\left\{(\mu s, \mu p, b),\left(\mu s^{\prime}, \mu p^{\prime}, b\right)\right.$ with $b \in \mathbf{B}$ a fresh blank node, which is not possible.
- In the third case $\left(o \in \bar{x}^{P}\right)$, we have $\forall a \in \operatorname{Ans}\left(\langle\bar{x}, H\rangle, D B^{\prime}\right), \mu o \in a$, that is $\exists b \in \mathbf{B} \in a$.

Theorem 1 (Correction of Algorithm find-ops-unit). Let $P=\left\langle\bar{x}^{P}, G^{P}\right\rangle$ be a query and let $\mathcal{U}=\left\{U_{j}\right\}$ be a set of m queries $U_{j}=\left\langle\bar{x}_{j}^{U}, G_{j}^{U}\right\rangle$. Let $O=$ find-ops-unit (P, \mathcal{U}). For all $o_{k} \in O$, for all $D B \in \mathbf{B G P}$, it is the case that $\forall t, t \in \operatorname{Ans}\left(P, o_{k}(D B)\right) \Rightarrow h a s B l a n k(t)$ and $\operatorname{Ans}\left(U_{j}, o_{k}(D B)=\operatorname{Ans}\left(U_{j}, D B\right)\right.$ for all $U_{j} \in \mathbf{U}$, in other words, both P and \mathcal{U} are satisfied by each operation o_{k}.

Proof. The privacy query P is satisfied because each operation created at Lines 1113 and 15 of Algorithm 1 is of a form covered by Lemma 3 for all choice of $(s, p, o) \in H$ made in the main loop at Line 4

Next, we check that all U_{j} are satisfied, i.e., that $\operatorname{Ans}\left(G_{j}^{U}, o_{k}(D B)=\operatorname{Ans}\left(G_{j}^{U}, D B\right)\right.$ for all $U_{j} \in \mathbf{U}$.

Let $j \in[1 . . m]$ and $a \in \operatorname{Ans}\left(G_{j}^{U}, D B\right)$ an answer of G_{j}^{U} on $D B$. By definition of Ans, $a=\mu\left(\bar{x}_{j}^{U}\right)$ for some $\mu: G_{j}^{U} \hookrightarrow D B$, we show that μ is a morphism into $o_{k}(D B)$ as well so $a \in \operatorname{Ans}\left(G_{j}^{U}, o_{k}(D B)\right)$ and the proof is complete.

We now have to show that $\operatorname{Ans}\left(G_{j}^{U}, o_{k}(D B)\right) \subseteq \operatorname{Ans}\left(G_{j}^{U}, D B\right)$ We explore the three possibilities given by Lines 1113 and 15 of the algorithm to be applied as o_{k}.

Line 11: Let consider $t^{\prime}=\left(s^{\prime}, p^{\prime}, o^{\prime}\right) \in G_{j}^{U}$, for the sake of contradiction, assume that $\mu\left(t^{\prime}\right) \notin$ $o_{k}(D B)$, that is $\mu\left(t^{\prime}\right) \in D B \backslash o_{k}(D B)$. By construction in Algorithm 1 and by the definition of the delete operation $D B \backslash o_{k}(D B)=D B \backslash \operatorname{delete}(\{(s, p, o)\}, H)(D B)=D B \backslash D B \backslash(\bigcup\{\nu(s, p, o) \mid$ $\nu: H \hookrightarrow D B\})=(\bigcup\{\nu(s, p, o) \mid \nu: H \hookrightarrow D B\})$. Thus $\mu\left(t^{\prime}\right) \in D B \backslash o_{k}(D B)$ implies that $\mu\left(t^{\prime}\right)=\nu(t)$ for some $t=(s, p, o) \in H$ and $\nu: H \hookrightarrow D B$. As μ and ν have distinct domains thanks to the renaming of G^{P}, they can be combined into the morphism σ such that $\sigma\left(t^{\prime}\right)=\sigma(t)$ defined by $\sigma(v)=\mu(v)$ when $v \in \operatorname{dom}(\mu), \sigma(v)=\nu(v)$ when $v \in \operatorname{dom}(\nu)$ and $\sigma(v)=v$ otherwise. But this is precisely the condition at Line 8 so $o_{k} \notin O$. We obtained the desired contradiction so $a \in \operatorname{Ans}\left(U_{j}^{U}, o_{k}(D B)\right)$ and the proof is complete.

Line 13:

Let $j \in[1 . . m]$ and $a \in \operatorname{Ans}\left(G_{j}^{U}, o_{k}(D B)\right)$ an answer of G_{j}^{U} on $o_{k}(D B)$. By definition of Ans, $a=\mu\left(\bar{x}_{j}^{U}\right)$ for some $\mu: G_{j}^{U} \hookrightarrow D B$ and by definition of update, we have $\mu\left(G_{j}^{U}\right) \subseteq D B \backslash$ update $\left(\{(s, p, o)\},\left\{\left(x_{u}, p, o\right)\right\}, H\right)(D B)$. We can write this as $\mu\left(G_{j}^{U}\right) \subseteq D B \backslash d(D B) \cup i(D B)$ where d is the $d(D B)$ and $i(D B)$ are two graphs, respectively consisting in triples deleted from $D B$ and added to $D B$ by the update operation. $a \in \operatorname{Ans}\left(G_{j}^{U}, D B\right)$ would imply that $\mu\left(G_{j}^{U}\right) \cap i(D B)=\emptyset$.

Let t a triple (s, p, o) such that $t \in \mu\left(G_{j}^{U}\right)$ and $t \in i(D B)$. The first criteria gives: $\exists t^{U} \in G^{U} \mid$ $t=\mu\left(t^{U}\right)$. Additionally, $t \in i(D B)$ implies $\exists t^{P} \in H, \exists \mu^{P}, \exists s \mid \mu^{P}\left(t^{P}\right)=t=(s, p, o)$. We write t^{U} as $\left(s^{U}, p^{U}, o^{U}\right)$ and t^{P} as $\left(s^{P}, p^{P}, o^{P}\right)$. Therefore, the following equalities must hold:

$$
\begin{gathered}
\mu\left(s^{U}\right)=x_{u}, \mu\left(p^{U}\right)=p, \mu\left(o^{U}\right)=o \\
\mu^{P}\left(s^{P}\right)=s, \mu^{P}\left(p^{P}\right)=p, \mu^{P}\left(o^{P}\right)=o
\end{gathered}
$$

We have a contradiction, since $\mu\left(t^{U}\right) \neq \mu^{P}\left(t^{P}\right)$ while by hypothesis, $\mu\left(t^{U}\right)=\mu^{P}\left(t^{P}\right)=t$. Therefore this indeed proves that $\mu\left(G_{j}^{U}\right) \cap i(D B)=\emptyset$, and by deduction that $\operatorname{Ans}\left(G_{j}^{U}, o_{k}(D B)\right) \subseteq$ $\operatorname{Ans}\left(G_{j}^{U}, D B\right)$.

Line 15:

We apply the same reasoning as the Line 13 proof, showing that in this case we would obtain $\mu\left(t^{U}\right)=\left(s, p, x_{u}\right)$ by definition of the update operation used at this line, while $\mu^{P}\left(t^{P}\right)=(s, p, o)$.

This proves again that $\mu\left(G_{j}^{U}\right) \cap i(D B)=\emptyset$, and therefore that $\operatorname{Ans}\left(G_{j}^{U}, o_{k}(D B)\right) \subseteq \operatorname{Ans}\left(G_{j}^{U}, D B\right)$.

```
Algorithm 2: Find delete operations to satisfy policies
    Input : a privacy policy \(\mathcal{P}\) made of \(n\) queries \(P_{i}=\left\langle\bar{x}_{i}^{P}, G_{i}^{P}\right\rangle\)
    Input : a utility policy \(\mathcal{U}\) made of \(m\) queries \(U_{j}=\left\langle\bar{x}_{j}^{U}, G_{j}^{U}\right\rangle\)
    Output: a set of sets of operations \(O p s\) such that each sequence obtained from ordering
                any \(O \in O\) ps satisfies both \(\mathcal{P}\) and \(\mathcal{U}\)
    function find-ops \((\mathcal{P}, \mathcal{U})\) :
        Let \(O p s=\{\emptyset\}\);
        for \(P_{i} \in \mathcal{P}\) do
            Let \(o p s_{i}:=\) find-ops-unit \(\left(P_{i}, \mathcal{U}\right)\);
            \(O p s:=\left\{O \cup\left\{o^{\prime}\right\} \mid O \in O p s \wedge o^{\prime} \in o p s_{i}\right\} ;\)
        return \(O p s\);
```

Theorem 2 (Correction of Algorithm find-ops). Let \mathcal{P} be a privacy policy made of n queries $P_{i}=\left\langle\bar{x}_{i}^{P}, G_{i}^{P}\right\rangle$ and let \mathcal{U} be a utility policy made of m queries $U_{j}=\left\langle\bar{x}_{j}^{U}, G_{j}^{U}\right\rangle$ Let $\mathcal{O}=$ find-ops $(\mathcal{P}, \mathcal{U})$ and $D B$ an RDF graph. For any set of operations $O_{k} \in \mathcal{O}$, and for any ordering S_{k} of $O_{k}, \forall P_{i} \in \mathcal{P}, \operatorname{Ans}\left(P_{i}, S_{k}(G)\right)=\emptyset$ and $\forall U_{j} \in \mathcal{U}, \operatorname{Ans}\left(U_{j}, G\right)=\operatorname{Ans}\left(U_{j}, S_{k}(G)\right)$, that is both \mathcal{P} and \mathcal{U} are satisfied by each sequence S_{k}.

Proof. First of all let us note that O_{k} is either \emptyset when some $o p s_{i}$ is empty or it is of the form $O_{k}=\left\{o_{1}, \ldots, o_{n}\right\}$ with $n=|\mathbf{P}|$. Indeed, the loop at Line 3 is executed once for each P_{i}, so at line5, either one $o p s_{i}$ is empty and thus $O p s=\emptyset$ because $\left\{O \cup\left\{o^{\prime}\right\} \mid O \in O p s \wedge o^{\prime} \in \emptyset\right\}=\emptyset$, or all $o p s_{i} \neq \emptyset$ an each $O_{k} \in O p s$ contains exactly one operation for each P_{i}.

By construction of Algorithm 2 and by Theorem 1 each $o \in O_{k}$ satisfies at least one of the P_{i} and all U_{j} and each P_{i} is satisfied by at least one $o \in O_{k}$. Thus any choice of an ordering S_{k} of O_{k} is such that all P_{i} are satisfied.

