
Query-based Linked Data Anonymization

Companion appendix

Remy Delanaux1, Angela Bonifati1, Marie-Christine Rousset2,3, and Romuald Thion1

1 Université Lyon 1, LIRIS CNRS, 69100 Villeurbanne, France
[name].[surname]@univ-lyon1.fr

2 Université Grenoble Alpes, CNRS, INRIA, Grenoble INP, 38000 Grenoble, France
[name].[surname]@imag.fr

3 Institut Universitaire de France, 75000 Paris, France

1 Example 5 complete results

This is the full list of operation sequences found using Algorithm 2, distributing operations in O1

and O2:

O = {{DELETE {(?u, vcard :hasAddress, ?ad)} WHERE GP
1 , DELETE {(?c, tcl :user, ?u)} WHERE GP

2 },
{DELETE {(?u, vcard :hasAddress, ?ad)} INSERT {(?u, vcard :hasAddress, [])} WHERE GP

1 ,

DELETE {(?c, tcl :user, ?u)} WHERE GP
2 },

{DELETE {(?u, vcard :hasAddress, ?ad)} INSERT {([], vcard :hasAddress, ?ad)} WHERE GP
1 ,

DELETE {(?c, tcl :user, ?u)} WHERE GP
2 },

{DELETE {(?u, vcard :hasAddress, ?ad)} WHERE GP
1 ,

DELETE {(?c, tcl :user, ?u)} INSERT {([], tcl :user, ?u)} WHERE GP
2 },

{DELETE {(?u, vcard :hasAddress, ?ad)} INSERT {(?u, vcard :hasAddress, [])} WHERE GP
1 ,

DELETE {(?c, tcl :user, ?u)} INSERT {([], tcl :user, ?u)} WHERE GP
2 },

{DELETE {(?u, vcard :hasAddress, ?ad)} INSERT {([], vcard :hasAddress, ?ad)} WHERE GP
1 ,

DELETE {(?c, tcl :user, ?u)} INSERT {([], tcl :user, ?u)} WHERE GP
2 },

{DELETE {(?u, vcard :hasAddress, ?ad)} WHERE GP
1 ,

DELETE {(?c, tcl :user, ?u)} INSERT {(?c, tcl :user, [])} WHERE GP
2 },

{DELETE {(?u, vcard :hasAddress, ?ad)} INSERT {(?u, vcard :hasAddress, [])} WHERE GP
1 ,

DELETE {(?c, tcl :user, ?u)} INSERT {(?c, tcl :user, [])} WHERE GP
2 },

{DELETE {(?u, vcard :hasAddress, ?ad)} INSERT {([], vcard :hasAddress, ?ad)} WHERE GP
1 ,

DELETE {(?c, tcl :user, ?u)} INSERT {(?c, tcl :user, [])} WHERE GP
2 }, }

2 Full proofs

For the sake of conciseness we write Q = 〈x̄, G〉 for the query SELECT x̄ WHERE G(x̄, ȳ). Similarly,
we write update(H, I,W) for the function to the update query DELETE H INSERT I WHERE W and
delete(H,W) for the function of the deletion query DELETE H WHEREW , that is:

update(H, I,W) = λDB.Result(DELETE H INSERT I WHEREW,DB))

delete(H,W) = λDB.Result(DELETE H WHEREW,DB))

2

Lemma 1 (BGP queries are monotonic). Let Q1 = 〈x̄, G1〉 and Q2 = 〈x̄, G2〉 be two queries
(with identical heads) and Q1 ⊆ Q2, then for all DB and DB′ such that DB ⊆ DB′, it is the case
that Ans(Q2, DB) ⊆ Ans(Q1, DB

′).

Proof. Writing ι : Q1 ↪→ Q2 and ι′ : DB ↪→ DB′ the inclusion morphisms, any morphism
µ : Q2 ↪→ DB can be extended to a morphism ι′ ◦ µ ◦ ι : Q1 ↪→ DB′ which is identical to µ on
Q1’s variables.

We now provide a slightly extended version of the main Algorithm where H is not a renaming
of GP but any of subset with a morphism η : GP ↪→ H. Indeed, there is no need to traverse all
GP but only an H such that Core(GP) ⊆ H ⊆ GP .

Algorithm 1: Find delete operations to satisfy a unitary privacy policy

Input : a unitary privacy policy P = {P} with P = 〈x̄P , GP 〉
Input : a utility policy U made of m queries Uj = 〈x̄Uj , GU

j 〉
Output: a set of operations O satisfying both P and U

1 function find-ops-unit(P,U):
2 Let H ⊆ G′P with an additional η : G′P ↪→ H where G′P is a renaming of GP ;
3 Let O := ∅;
4 forall (s, p, o) ∈ H do
5 Let c := true;

6 forall GU
j do

7 forall (s′, p′, o′) ∈ GU
j do

8 if ∃σ (σ(s′, p′, o′) = σ(s, p, o)) then
9 c := false;

10 if c then
11 O := O ∪ {DELETE {(s, p, o)} WHERE H};
12 if check-subject((s, p, o), H) ∨ s ∈ x̄P then
13 O := O ∪ {DELETE {(s, p, o)} INSERT {([], p, o)} WHERE H};
14 if o ∈ I ∧ (check-object((s, p, o), H) ∨ o ∈ x̄P) then
15 O := O ∪ {DELETE {(s, p, o)} INSERT {(s, p, [])} WHERE H};

16 return ops;

Lemma 2 (Boolean satisfiability). Let Q = 〈x̄, G〉 be a query, let DB ∈ BGP be a graph
and let H be a subset of G together with a morphism η : G ↪→ H, then Ans(〈x̄, G〉, DB) = ∅ if and
only if Ans(〈〈〉, H〉, DB) = ∅

Proof. Let us denote the inclusion H ⊆ G by its canonical inclusion morphism ι : H ↪→ G. We
prove the only if direction by contraposition. Assume that there is an answer in Ans(〈〈〉, H〉, DB).
By the definition of Ans, there is at least one morphism µ : H ↪→ DB. By composing µ and
η we obtain a morphism µ ◦ η : G ↪→ DB, thus Ans(〈x̄, G〉, DB) is not empty. We prove the
if direction by contraposition similarly. Assume that there is an answer in Ans(〈x̄, G〉, DB) and
call it ν : G ↪→ DB. By composing ν and ι we obtain a morphism from ν ◦ ι : H ↪→ DB, thus
Ans(〈〈〉, H〉, DB) is not empty.

Lemma 3 (Soundness for privacy). Let Q = 〈x̄, G〉 be a query, let H be G renamed with
fresh variables and (s, p, o) ∈ H. For all DB ∈ BGP, the following update queries satisfy privacy
policy P = {Q}:

DELETE {(s, p, o)} WHERE H,DB)

DELETE {(s, p, o)} INSERT {(xu, p, o)} WHERE H,DB)

3

DELETE {(s, p, o)} INSERT {(s, p, xu)} WHERE H,DB)

where xu ∈ B a fresh blank node (equivalent to the [] convention used in the main article).

Proof. Let’s consider the three possible cases.
First query: By Lemma 2 and by definition of query answers and privacy policy satisfi-

ability, it is equivalent to prove that Ans(〈〈〉, H〉, DB′) = ∅ that is, to prove that there is no
morphism ν : H ↪→ DB′. For the sake of contradiction, assume that such a ν exists. Let
DB′ = delete({(s, p, o)}, H)(DB) the graph obtained after deletion. Let’s consider the triple
ν(s, p, o) ∈ DB′. On the other hand, DB′ = DB \ {µ(s, p, o) | µ : H ↪→ DB} by the defini-
tion of delete, but picking µ = ν shows that ν(s, p, o) /∈ DB′, a contradiction.

Second query: Let DB′ = update({(s, p, o)}, {xu, p, o)}, H)(DB) the graph obtained after
subject update. Three possibles cases can trigger this operation.

– Case 1: ∃(s′, p′, s) ∈ H

Let a ∈ Ans(〈〈〉, H〉, DB′) an answer on DB′, so that ∃µ | µ(H) ⊆ DB′. In particular, this
applies to the subgraph H̄ = {(s, p, o), (s′, p′, s)}, and we have µ(H̄) ⊆ DB, which is equivalent to
{(µs, µp, µo), (µs′, µp′, µs)} ⊆ DB′.

But by the definition of update, DB′ = DB \ {ν(s, p, o)|ν : H ↪→ DB} ∪ {ν(xu, p, o)|ν : H ↪→
DB}, as we replace every subject of matching triples (s, p, o) by a fresh blank node. Therefore
with µ = ν, we have µs = b ∈ B, a fresh blank node.

We would then have µ(H̄) = {(b, µp, µo), (µs′, µp′, b)}, which is not possible since b is by
construction created as a fresh variable in each insertion and cannot be found in two differ-
ent triples: there is a contradiction and a cannot exist. With this operation and this condition
Ans(〈〈〉, H〉, DB′) = ∅ and the privacy is fulfilled.

– Case 2: ∃(s, p′, o′) ∈ H and @σ (σ(s, p′, o′) = σ(s, p, o))

We apply the same methodology as in Case 1: Let a ∈ Ans(〈〈〉, H〉, DB′) an answer, and let a
subgraph H̄ = {(s, p, o), (s, p′, o′)}, and we then have µ(H̄) = {(µs, µp, µo), (µs, µp′, µo′)} ⊆ DB′.
By construction of update, we have µs = b ∈ B, a fresh blank node. We would then have µ(H̄) =
{(b, µp, µo), (b, µp′, µo′). Plus, by hypothesis, (s, p, o) and (s, p′, o′) are not unifiable. Therefore,
such a case is not possible and Ans(〈〈〉, H〉, DB′) must be empty. The privacy condition is satisfied.

– Case 3: s ∈ x̄P

Let’s consider an answer Ans(〈x̄, H〉, DB′). By definition of update, DB′ = DB \ {µ(s, p, o)|µ :
H ↪→ DB} ∪ {µ(xu, p, o)|µ : H ↪→ DB}, as we replace every subject of matching triples (s, p, o)
by a fresh blank node xu. By hypothesis, s ∈ x̄P , therefore ∀a ∈ Ans(〈x̄, H〉, DB′),mus ∈ a, that
is ∃xu ∈ B | xu ⊆ a. Which entails that for any tuple full of constants c̄, c̄ /∈ Ans(〈x̄, H〉, DB′),
which means that the privacy is ensured.

Third equality: Let DB′ = update({(s, p, o)}, {s, p, xu)}, H)(DB) the graph obtained after
value update. Let’s consider the triple ν(s, p, o) ∈ DB′.

We consider the same 3 cases as the second equality and show using the same rules that:

– In the first case (∃(o, p′, o′) ∈ H), an answer to the query would mean that µ(H̄) = {(s, µp, b), (b, µp, o)}
with b ∈ B a fresh blank node, which is not possible.

– In the second case ((∃(s′, p′, o) ∈ H and @σ (σ(s′, p′, o) = σ(s, p, o)), an answer would imply
µ(H̄) = {(µs, µp, b), (µs′, µp′, b) with b ∈ B a fresh blank node, which is not possible.

– In the third case (o ∈ x̄P), we have ∀a ∈ Ans(〈x̄, H〉, DB′), µo ∈ a, that is ∃b ∈ B ∈ a.

Theorem 1 (Correction of Algorithm find-ops-unit). Let P = 〈x̄P , GP 〉 be a query and
let U = {Uj} be a set of m queries Uj = 〈x̄Uj , GU

j 〉. Let O =find-ops-unit(P,U). For all
ok ∈ O, for all DB ∈ BGP, it is the case that ∀t, t ∈ Ans(P, ok(DB)) ⇒ hasBlank(t) and
Ans(Uj , ok(DB) = Ans(Uj , DB) for all Uj ∈ U, in other words, both P and U are satisfied by each
operation ok.

4

Proof. The privacy query P is satisfied because each operation created at Lines 11,13 and 15 of
Algorithm 1 is of a form covered by Lemma 3 for all choice of (s, p, o) ∈ H made in the main loop
at Line 4.

Next, we check that all Uj are satisfied, i.e., that Ans(GU
j , ok(DB) = Ans(GU

j , DB) for all
Uj ∈ U.

Let j ∈ [1..m] and a ∈ Ans(GU
j , DB) an answer of GU

j on DB. By definition of Ans, a = µ(x̄Uj)

for some µ : GU
j ↪→ DB, we show that µ is a morphism into ok(DB) as well so a ∈ Ans(GU

j , ok(DB))
and the proof is complete.

We now have to show that Ans(GU
j , ok(DB)) ⊆ Ans(GU

j , DB) We explore the three possibilities
given by Lines 11,13 and 15 of the algorithm to be applied as ok.

Line 11: Let consider t′ = (s′, p′, o′) ∈ GU
j , for the sake of contradiction, assume that µ(t′) /∈

ok(DB), that is µ(t′) ∈ DB \ ok(DB). By construction in Algorithm 1 and by the definition of
the delete operation DB \ ok(DB) = DB \ delete({(s, p, o)}, H)(DB) = DB \DB \ (

⋃
{ν(s, p, o) |

ν : H ↪→ DB}) = (
⋃
{ν(s, p, o) | ν : H ↪→ DB}). Thus µ(t′) ∈ DB \ ok(DB) implies that

µ(t′) = ν(t) for some t = (s, p, o) ∈ H and ν : H ↪→ DB. As µ and ν have distinct domains
thanks to the renaming of GP , they can be combined into the morphism σ such that σ(t′) = σ(t)
defined by σ(v) = µ(v) when v ∈ dom(µ), σ(v) = ν(v) when v ∈ dom(ν) and σ(v) = v otherwise.
But this is precisely the condition at Line 8 so ok /∈ O. We obtained the desired contradiction so
a ∈ Ans(UU

j , ok(DB)) and the proof is complete.
Line 13:
Let j ∈ [1..m] and a ∈ Ans(GU

j , ok(DB)) an answer of GU
j on ok(DB). By definition of

Ans, a = µ(x̄Uj) for some µ : GU
j ↪→ DB and by definition of update, we have µ(GU

j) ⊆ DB \
update({(s, p, o)}, {(xu, p, o)}, H)(DB). We can write this as µ(GU

j) ⊆ DB \d(DB)∪ i(DB) where
d is the d(DB) and i(DB) are two graphs, respectively consisting in triples deleted from DB and
added to DB by the update operation. a ∈ Ans(GU

j , DB) would imply that µ(GU
j) ∩ i(DB) = ∅.

Let t a triple (s, p, o) such that t ∈ µ(GU
j) and t ∈ i(DB). The first criteria gives: ∃tU ∈ GU |

t = µ(tU). Additionally, t ∈ i(DB) implies ∃tP ∈ H,∃µP ,∃s | µP (tP) = t = (s, p, o). We write tU

as (sU , pU , oU) and tP as (sP , pP , oP). Therefore, the following equalities must hold:

µ(sU) = xu, µ(pU) = p, µ(oU) = o

µP (sP) = s, µP (pP) = p, µP (oP) = o

We have a contradiction, since µ(tU) 6= µP (tP) while by hypothesis, µ(tU) = µP (tP) = t.
Therefore this indeed proves that µ(GU

j)∩ i(DB) = ∅, and by deduction that Ans(GU
j , ok(DB)) ⊆

Ans(GU
j , DB).

Line 15:
We apply the same reasoning as the Line 13 proof, showing that in this case we would obtain

µ(tU) = (s, p, xu) by definition of the update operation used at this line, while µP (tP) = (s, p, o).
This proves again that µ(GU

j)∩i(DB) = ∅, and therefore that Ans(GU
j , ok(DB)) ⊆ Ans(GU

j , DB).

Algorithm 2: Find delete operations to satisfy policies

Input : a privacy policy P made of n queries Pi = 〈x̄Pi , GP
i 〉

Input : a utility policy U made of m queries Uj = 〈x̄Uj , GU
j 〉

Output: a set of sets of operations Ops such that each sequence obtained from ordering
any O ∈ Ops satisfies both P and U

1 function find-ops(P,U):
2 Let Ops = {∅};
3 for Pi ∈ P do
4 Let opsi :=find-ops-unit(Pi,U);
5 Ops := {O ∪ {o′} | O ∈ Ops ∧ o′ ∈ opsi};
6 return Ops;

5

Theorem 2 (Correction of Algorithm find-ops). Let P be a privacy policy made of n
queries Pi = 〈x̄Pi , GP

i 〉 and let U be a utility policy made of m queries Uj = 〈x̄Uj , GU
j 〉 Let O =

find-ops(P,U) and DB an RDF graph. For any set of operations Ok ∈ O, and for any ordering
Sk of Ok, ∀Pi ∈ P,Ans(Pi, Sk(G)) = ∅ and ∀Uj ∈ U ,Ans(Uj , G) = Ans(Uj , Sk(G)), that is both P
and U are satisfied by each sequence Sk.

Proof. First of all let us note that Ok is either ∅ when some opsi is empty or it is of the form
Ok = {o1, . . . , on} with n = |P|. Indeed, the loop at Line 3 is executed once for each Pi, so at
line 5, either one opsi is empty and thus Ops = ∅ because {O ∪ {o′} | O ∈ Ops ∧ o′ ∈ ∅} = ∅, or
all opsi 6= ∅ an each Ok ∈ Ops contains exactly one operation for each Pi.

By construction of Algorithm 2 and by Theorem 1 each o ∈ Ok satisfies at least one of the Pi

and all Uj and each Pi is satisfied by at least one o ∈ Ok. Thus any choice of an ordering Sk of
Ok is such that all Pi are satisfied.

	Query-based Linked Data Anonymization

