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Abstract

Solitaire Clobber is a one-player game that was introduced by Demaine et al. in 2002.
In the variant Solitaire Clobber 2, the aim is to delete the maximum number of stones that
are initially placed on the vertices of a graph, according to specified rules. In this paper, we
present new results when one play on multipartite graphs, and we then consider extremal
questions about the maximum number of stones one can delete.

1 Introduction and definitions

We consider the game Solitaire Clobber 2 introduced in [3]. This game is a variant of Solitaire
Clobber defined by Demaine et al. in [1|, which is itself a solitaire variant of the two-player
game Clobber defined by Albert et al. in [2].

Solitaire Clobber 2 (SC2, in its abbreviated form) is a one-player game defined by the following
rules: black and white stones are placed on the vertices of a given graph G (one per vertex). A
move consists in picking a stone and clobbering another one of the opposite color located on an
adjacent vertex. The clobbered stone is removed from the graph and is replaced by the picked
one. The goal is to find a succession of moves that minimizes the number of remaining stones.
A game configuration of SC2 is said to be k-reducible if there exists a succession of moves that
leaves at most k stones on the graph. The reducibility value of a game configuration C' is the
smallest integer k& for which C is k-reducible.

In [3, 4], Solitaire Clobber 2 was investigated on paths, cycles, and trees. The reducibility value
of any configuration on a path or a cycle of size n can be computed in linear time O(n). On a
tree, there exists an algorithm working in O(n?) operations. In [5], it was proved that any game
configuration on a Hamming graph is 1-reducible, except for hypercubes which are 2-reducible.

For convenience for the reader, we may often mix up a vertex with the stone it supports. The
label or color of a vertex will define the color of the stone located on it. We may also say that
"a vertex clobbers another one", instead of talking of the corresponding stones.
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Given a game configuration C' on a graph G, we say that a label/color ¢ is rare on a subgraph
S of G if there exists a unique vertex v € S such that v is labeled ¢. On the contrary, c is said
to be common if there exist at least two vertices of this color in S. A configuration is said to
be monochromatic if all the vertices have the same color. It is said proper otherwise. In all this
paper, only proper configurations will be considered.

If ¢ is a color, denote by ¢ the opposite color. If v is a vertex of G, the color of v will be denoted

by ¢(v).

According to a probabilistic result of Ruszinko (cf. [6]), almost all graphs are 1-reducible. This
means that the structure of game configurations which are not 1-reducible is an interesting
problem. In the next section of this paper, we study the case of complete multipartite graphs,
and we decide when a configuration cannot be 1-reducible. For these graphs, we give a gen-
eral formula which computes the reducibility value of any game configuration in linear time.
In section 3, we consider extremal questions about SC2: given a graph G, we investigate the
proper configurations that minimize and maximize the reducibility value on G. In [4], it was
showed that the reducibility value of a cycle C), is at most [n/3]. Moreover, for all n there
exists a configuration for which this bound is tight. In the present paper, we claim that on any
graph with n vertices, the reducibility value is at most equal to n — d, where ¢ is the minimum
degree of the graph. Therefore, for any fixed §, we find out the only configurations for which
the reducibility value is equal to n — 4.

2 SC2 played on complete multipartite graphs

2.1 SC2 on complete bipartite graphs

Let G = (V, E) be a complete bipartite graph. Therefore, G can be splitted into two stable
sets, say Sy and S;. A game configuration on a complete bipartite graph will be represented
by a "two rows" layout, each row refering to a stable set S; with ¢ € {0,1}. Figure 1 shows an
example of a configuration on a complete bipartite graph. One can move any stone of a row to
any stone of the other row having the opposite color. Moves inside a row are not allowed.
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Figure 1: A game configuration on a complete bipartite graph

In [1], Demaine et al. define an invariant § on bipartite graphs and available for both games
SCand SC2. The decription of § follows.

Let C be a game configuration on a bipartite graph G. We allocate the color white the to set
Sp, and the color black to S1. A stone of C is said to be clashing if its color differs from the



color of the stable set to which it belongs. Denote by §(C') the following quantity:
d(C) = number of stones + number of clashing stones

In their paper, Demaine et al. proved that (6(C') mod 3) never changes during the game, where
a mod b is the remainder of the division of @ by b. This implies that any 1-reducible configura-
tion on a bipartite graph satisfies §(C) mod 3 # 0.

A complete bipartite graph is said to be balanced if Sy and S have the same size. It is said
well-colored if Sy and Sy are both monochromatic. In a well-colored configuration, one do not
lose generality by assuming that the stones of Sy (resp. S1) are white (resp. black). Under this
assumption, there is no clashing stone in a well-colored configuration.

2.1.1 The reducibility value of balanced complete bipartite graphs

We now give a first result about the reduciblity value of a well-colored balanced complete
bipartite graph.

Lemma 1. A well-colored balanced complete bipartite graph is 1-reducible if d mod 3 # 0. Oth-
erwise, the reducibility value is equal to 2.

Proof. Let C' be a game configuration on a well-colored balanced complete bipartite graph. De-
note by n the size of each stable set. Then §(C') = 2n. According to the result of Demaine et al.,
a necessary condition for C' to be 1-reducible is that 6(C') mod 3 # 0, which means n mod 3 # 0.

Let n > 4. Then C can be reduced to a well-colored balanced complete bipartite graph where
each stable set has a size equal to n — 3. The reduction is the following:
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By applying recursively this operation, and according to the value (n mod 3), C can be reduced
to one of these three configurations:
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One clearly see that when n mod 3 # 0, the above configurations are 1-reducible. When n mod
3 = 0, the above configuration is 2-reducible and we can not improve this reduction because of
the invariant. O

Remark 1. When n mod 3 # 0, the value §(C) sets a correlation between the color and the
location of the remaining stone. When n mod 3 = 1, the last stone will be clashing. It will not
be the case when n mod 3 = 2.

Lemma 2. A balanced complete bipartite graph is 1-reducible if § mod 3 # 0. Otherwise, the
reductbility value is equal to 2.



Proof. For more convenience, we arrange "graphically" Sy and S; as follows: on Sy the white
stones are placed on the left, and the black ones on the right. We proceed conversely on Sj.
This operation splits G into three complete bipartite subgraphs, of respective lengths L, Lo
and Ls, as shown on Figure 2.
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Figure 2: Splitting a balanced complete bipartite graph

The values Ly and L3 are the lengths of both well-colored balanced parts, whereas Lo is dedi-
cated to the monochromatic part.

According to this notation, 6(C') = 2Ly + 3L3 + 4L3. Hence §(C) mod 3 = 0 if and only if
Li mod 3 = Ls mod 3. Without loss of generality, assume that the monochromatic part Lo is
white. Since there exists a black stone somewhere, we have it clobber the whole monochromatic
part of size Lo, as shown on Figure 3:
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Figure 3: Clobbering the monochromatic part of length Lo

We now consider the resulting graph as the union of two well-colored balanced complete bipartite
graphs, of respective sizes L and L3. We distinguish two cases:

* L1 mod 3 #Lg mod 3.

Now suppose that either L; mod 3 or L3 mod 3 is equal to 1. Without loss of generality,
assume that L; mod 3 = 1. Then from Lemma 1 and Remark 1, we reduce the left part
to a single clashing stone. If L3 = 0, then it is done. Otherwise, we know that L3 is at
least equal to 2. By playing as shown on Figure 4, we reduce the graph to a well-colored
balanced complete bipartite of length L3 — 1. Since L3 — 1 # 0 mod 3 and from Lemma
1, this resulting graph is 1-reducible.
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Figure 4: Reduction in a special case

Now suppose that neither L1 mod 3 nor L3 mod 3 is equal to 1. Therefore and without
loss of generality, we can assume L; mod 3 = 2 and Ls mod 3 = 0. By lemma 1, we
reduce the left part to a single non clashing stone. If L3 = 0, then it is done. Otherwise,
Ls > 3. We proceed as depicted by Figure 4 to reduce the configuration. This oper-
ation yields a well-colored balanced complete bipartite graph of length (Ls — 1). Since
(L3 — 1) mod 3 = 2, we conclude to the 1-reducibility thanks to Lemma 1.

* L1 mod 3 :L3 mod 3.

If Ly and L3 are not multiples of 3, then from Lemma 1, both parts are l-reducible.
Therefore, the whole configuration is 2-reducible. If L; mod 3 = L3 mod 3 = 0, we play
as depicted by Figure 5.
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Figure 5: The case L1 mod 3 = L3 mod 3 =0

The resulting configuration is a balanced complete bipartite graph with
L1 mod 3 = L mod 3 = 2, which is 2-reducible.

2.1.2 The reducibiliy value of non-balanced complete bipartite graphs

We now consider the general case on K, , with |So| = n > |Si| = m > 0. Unlike balanced
complete bipartite graphs, we will show that the reducibility value may no more be bounded
by a constant. For example, it suffices to choose |S1| =1 and |Sp| > |Si|, put a black stone on
S1 and only white stones on Sy. In such a configuration, only one move is available, leading to
a reducibility value equal to |Sp|.

In order to describe a game configuration on K, ,,,, we consider the following set of parameters:



The values ny and n,, denote respectively the numbers of black and white stones in Sy. Obviously
we have n = ny + ny,. Similarily, m; and m,, denote respectively the numbers of black and
white stones in Sj.

Without loss of generality, we consider configurations satisfying nj, < n,,. Under this condition,
we define a nonnegative integer ¢ = n — 2ny,.

With these parameters, a game configuration belongs to one of these two forms:
(F1): Configurations for which ¢ —m < my — 1.
(F2): Configurations for which ¢ —m > m; — 1.

Figure 6 illustrates the form (F'1) through three examples, according to the sign of (¢ —m) and
the parity of (n —m). We will understand why further.
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Figure 6: Three examples of configurations in the form (F'1)

Figure 7 illustrates the second form. In that case, the stable set Sy can be partitionned into
three parts:

L, contains as many black stones than white ones and satisfies |Li| = 2ny,.

Ly and L3 are monochromatic parts, of respective sizes (¢ —m) and m.

Figure 7: A configuration in the form (F'2)

We will prove that configurations in the form (F'1) have a reducibility value equal to 1 or 2.
The results will be similar to the "balanced case". For the configurations in the form (F2),
we will present a formula depending on the values ¢, m and my. For such configurations, we



introduce new results that will help us to conclude.
Let Cs be a game configuration in the form (F2). We define the integer function f as:
f(C2) =q—m—my

By definition of (F'2), we have f(Cs) > 0.

The following lemma, asserts that f never decreases during the game. Moreover, it adds that
any move from a configuration in (F2) yields a resulting configuration also in (F'2).

Lemma 3. Let Cy be a game configuration in (F2), and let R be the resulting configuration
after an arbitrary move from Cy. If R is not a stable set, then R is also in (F2) and satisfies

f(C2) < f(R).

Proof. Denote by ¢',m’ and mj, the values of g, m and m; after a move from Cs to R. These
values are defined since R is supposed to be a configuration on a complete bipartite graph.

There are four moves to consider:

1. One play a black stone from Sy to Sy. Then mj = my+1, ¢' = g+ 1 and m is unchanged.
This implies f(R) = f(Ca).

2. One play a white stone from Sy to S;. We get ¢ = ¢ — 1, my = my — 1, and m is
unchanged. We still have f(R) = f(Cy).

3. One play a black stone from S; to So. Then mj =my —1, m’ =m —1, and ¢’ = ¢ — 2.
Therefore f(R) = f(Cb).

4. One play a white stone from Sy to Sg. Then m' = m —1, ¢’ = ¢+ 2 and m;, is unchanged.
Therefore f(R) = f(C3) + 3.

Moreover, since f is monotonic, we clearly have ¢' —m' > mj — 1, which means that R is in the
form (F2). O

We now have collected all the necessary results to prove our main theorem about the reducibility
of Ky m.

Theorem 4. Let C' be a game configuration on K, ., with n > m > 0.

Ifg—m <my—1, i.e., Cisin (F1), then C is 1-reducible if 6(C') mod 3 # 0, and 2-reducible
otherwise.

Ifg—m >my—1, ie., Cisin (F2), then C has a reducibility value equal to (g —m —my+2).

Proof. C is in the form (F1). We will prove that we can reduce C' to a non-monochromatic
balanced complete bipartite graph, so as to apply Lemma 2. We distinguish three cases (see
Figure 6).



* g—m < 0 and (n —m) is even. Let s be any stone of S;. Since (n — m) is even, this
means that we can play exactly (n — m) stones (precisely (n — m)/2 black stones, and
(n —m)/2 white ones) from Sy to s by alternating black and white moves. The resulting
configuration R is thus a balanced complete bipartite graph. Note that Sy is unchanged
after this set of operations. Since ¢ —m < 0, there exists at least a black and a white
stone in the stable set Sy of R, which is consequently not monochromatic.

g—m < 0 and (n—m) is odd. As previously, we play exactly (n —m — 1) stones (precisely
(n —m — 1)/2 black stones, and (n —m — 1)/2 white ones) from Sy to any vertex s of
S1 by alternating black and white moves. In the resulting configuration R, Sy contains
exactly (m+ 1) stones and is not monochromatic, whereas Sy is unchanged. We now play
any move from Sy to Sy. This is possible since Sy is not monochromatic. This operation
yields a non-monochromatic balanced Ky, y,.

g —m > 0. We first play 2n;, stones (precisely n; stones of each color) from Sy to any
vertex s of Sy by alternating white and black moves. We then play (¢ —m) white stones
from Sy to Si. This is possible since my > (¢ — m + 1) for a configuration in (F'1). The
resulting configuration R contains at least a black stone in S7, and at least a white one
in Sp. Moreover, R is balanced.

In each of these three cases, we yield a proper configuration R which is balanced. We then
apply Lemma 2 on R to conclude.

C is in the form (F2). We first prove that there exists a way of play that leaves exactly
(g — m — my + 2) stones on the graph.

If mp > 0, we play the 2n; stones from Ly to any vertex s of Sy by alternating white and black
moves. After this operation, Sy is monochromatic (of color white). We then play (mp — 1) white
stones from Ly to Sj. The single remaining black stone (which belongs to S;) then walks in
zigzags to clobber all the white stones of Ly and Si. The resulting configuration is a stable set
containing a black stone and (¢ — m — my + 1) white ones (coming from Ls).

If my, = 0, then Ly is not empty, since we do not consider monochromatic configurations. There-
fore, we play a black stone from L; to S;. We get a resulting configuration C' in (F2) with
parameters my = mp+ 1 and ¢’ = ¢+ 1. We now apply the same method as above, which leaves
(¢ —m —mj +2) = (¢ — m — my + 2) stones.

We now prove that any succession of moves leaves at least (¢ —m —my +2) stones on the graph.
We consider an optimal succession of moves on a configuration C in (F2), i.e., a succession of
moves that leaves the minimum number of stones. Denote by C’ the final configuration after
such a way of play. No move is playable from C'.

We first suppose that C” is not a stable set. According to Lemma 3, C’ belongs to (F2) and
satisfies f(C') > f(C). Denote by ¢',m',my, L}, L}, L; the parameters previously defined and
relative to C'.

Since m’ > 0, Lf is not empty, which means that there exists a white stone on Sp. Since no
move is playable from C’, the set S; is monochromatic of color white, i.e., m; = 0, and L} is



empty.
Moreover, the monotonicity of the function f ensures that

g —m' —my=q —m'>qg—m—my (1)

Since there is at least a stone in L and another one in Sj, the number of remaining stones on
C' is at least |L,| +2. Then |Ly|+2=¢ —m'+2 > q¢— m — my + 2 according to (1).

Now assume that C’ is a stable set. This means that the last move of the optimal way of
play was done from S to Sp. It remains optimal if we consider this last move in the opposite
direction (i.e., from Sy to S1). Now consider this new optimal way of play where C’ is not a
stable set and refer to the previous case to conclude. O

2.2 SC2 played on complete multipartite graphs (with at least three parts)

Let P > 2. Denote by Sp,St,...,Sp_1 the P stable sets of a complete P-partite graph G.
Among these P stable sets, denote by My, ... , M; 1 the 7 stable sets whose size is maximum,
ie., |M;|>|S|forallj=0...i—1and!=0...P—1. We call them the mazimum stable sets
of G.

Denote by G’ the induced subgraph G\ {My, ..., M;_1}. For more convenience, we graphically
define "raws" of stones on G\ G': if t = |My| = ... = |M;_1|, then araw R; with 1 < j <
defines a set of 7 stones (one stone per maximum stable set) such that |J,. j<t Btj is the set of
all the stones belonging to G'\ G’. Of course, the number of partitions of this form is very large
(each new "graphical" arrangement of the stones in G \ G’ defines a new set of raws).

Finally, denote by sf (with 1 < j <t and 0 < k < i) the vertex that both belongs to M}, and
R;.

Figure 8 illustrates these notations.

N

— (@] [O] |O])Rt

o (o O @

O |e@ (@ O

® O O e

O | @ |0 | 8—_

o| (o] [oFIo])Rr2 %
E ol (e [@ [O])RL

Mo Mg M
G
G\G

Figure 8: An example of a configuration on a P-partite graph (P =6 and i = 3)

The reducibility value of P-partite graphs depends on the number ¢ of maximum stable sets.
When ¢ > 1, any game configuration is 1-reducible. The reducibility value may be far larger
when there is a unique maximum stable set.



Theorem 5. Let C be a game configuration on a P-partite graph (with P > 2) having at least
two mazimum stable sets. Then C' is 1-reducible.

Proof. Denote by t the value |Mjy|, i.e. the size of each maximum stable set.
If ¢ = 1, then the graph is a clique, which is clearly 1-reducible (see [5] for more details).
Now consider t > 1 and assume that the result is true for all 1 < # < ¢t. We consider two cases:

1. G\ G' is monochromatic of color c¢. Since G is not monochromatic, there exists a vertex
z in G’ whose color is €. Now have z clobber the monochromatic raw R;, and then any
stone of the raw R;_1. In the resulting non-monochromatic configuration, the size of the
maximum stable sets is (t — 1), so that we can apply the induction hypothesis.

2. G\ G’ is not monochromatic and 7 > 3. We consider a partition of G \ G’ into ¢ raws,
such that R; is not monochromatic. Such a partition is possible since G \ G’ is not
monochromatic. Besides, since ¢ > 3, there exists a stone of R; whose color is not rare
in R;. Without loss of generality, assume that sY satisfies this property. For the same
reasons, either s/ ; or s? ; has a common color. Assume that c(s} ;) is not rare.

The raw R, is now seen as a clique. From [5], we know that cliques are strongly 1-reducible,
which means that we can choose the location and the color of the unique remaining stone
(provided some conditions are fulfilled, which will be the case here). Hence we reduce
Ry to a single stone of color (s} ;) and located on s). We then play from s! to s;_;,
the resulting configuration is not monochromatic, so that we can apply the induction

hypothesis.

3. G\ G’ is not monochromatic and i = 2. As previously, choose a partition into ¢ raws such
that R; is not monochromatic. Since P > 2, at least a color, say black, appears in G'.
According to the colors of R;_1, we play as follows to get a non monochromatic resulting
graph, whose size of the maximum stable sets is (t — 1). We conclude to 1-reducibility by
applying the induction hypothesis.

(Joxte |) Rt (Jo+=e]) Rt

(lo o] rt-1 (|lof @) Rt
G G

((olJe D rt ((oLie ) rt

(jo7]e|) rt-1 (lef|o]) rt-

G’ G’

Figure 9: Playing when 7 = 2 and G\ G’ is not monochromatic
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When the graph admits an unique maximum stable set My of size ¢, we define the values n =t,
m as the number of stones in G’ and m;, the number of black stones in G’. The values n; and
n,, are respectively the numbers of black and white stones in My. Without loss of generality,
assume that n, < n,. We thus define ¢ as the value n — 2n,. We denote by M’ a stable set
of G' whose size is maximum (i.e, a "second maximum" stable set in G). We call its size m/.
Finally, denote by G" the graph G'\ M'. Figure 10 shows a P-partite graph with an unique
maximum stable set.
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Figure 10: An example of a P-partite graph with an unique maximum stable set

With the above notations, we extend the function f to a complete P-partite graph having an
unique maximum stable set (with P > 2). We define f as f(C) = ¢ — m — m;. Lemma 3 is
thus extended to P-partite configurations:

Lemma 6. Let C be a game configuration on a complete P-partite graph having an unique
mazimum stable set (with P > 2) satisfying ¢ — m > my — 1, and let R be the resulting
configuration after an arbitrary move from C. Then R is also P-partite (with P > 2), has an
unique mazimum stable set and still satisfies f(C) < f(R).

Proof. 1f is straightfoward to see that R is P-partite with P > 2.
By hypothesis, the configuration C satisfies

q=n—2n, >m+mp=my+|M|+|G" >my+ |M|+1
Hence we have
n > my+2n, + |M'| +1

Since C' is a proper configuration, the values m; and m can not be simultaneously equal to 0.
This implies that n > |M'| + 2. Therefore, any move from C' leads to a configuration R where
My remains the unique maximum stable set. This result ensures that the function f is defined
on R.

If we consider any move between G’ and My, then we refer to Lemma 3 to assert that f(C) <
f(R). And if we consider a move inside of G', we remark that ¢ is unchanged and the values m
and my are not increased. This also implies f(C) < f(R). O
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Theorem 7. Let G be a P-partite graph (with P > 2) having an unique mazimum stable set.
Any game configuration on G such that ¢ —m < my — 1 is 1-reducible. Any game configuration
on G such that g — m > my — 1 has a reducibility value equal to ¢ — m — my + 2.

Proof. Any game configuration satisfying g < m is 1-reducible:

According to n, we choose a "minimal" counter-example C, i.e. C satisfies ¢ < m, is not
1-reducible, and there is no other configuration of this type whose size of M is smaller than n.
We first suppose that ny # 0 and we consider three cases for C:

*

n —m' = 1. We play any authorized move from M, to M’: this is possible since n,, >
ny > 0. Therefore, the resulting configuration is not monochromatic, and admits at least
two maximum stable sets of size n — 1 (M and M'). From Theorem 5, it is 1-reducible,
which ensures the contradiction.

n—m' > 2 and n, > 2. We play successively a black and a white stone from Mj to
any stone of G'. The resulting configuration is not monochromatic since there remains at
least a stone of each color in My, and still satisfies ¢ < m (both values are unchanged).
If |[My| = |M'| after the operation, then it is 1-reducible from Theorem 5. If not, this
means that My remains the unique maximum stable set, but its size is now smaller than
n, which yields a contradiction by minimality of C'.

n—m' >2and n, = 1. If my > 0, we play any white stone from My to any black one
of G'. The resulting configuration is not monochromatic, has an unique maximum stable
set, still satifies ¢ < m (since m is unchanged and ¢ is decreased by 1), and is smaller
than C. It thus contradicts the minimality of C'. Hence we have mj = 0, which means
that G’ is monochromatic white. With the unique black stone of the configuration, we
clobber alternately stones of My and G”, until M’ and My have the same size. This is
possible, since the number of stones in G” is equal or greater than g + 1 — m’. Note that
in the case where |G”| exactly equals ¢4+ 1 —m/, the black stone will delete the entire G”
and then alternately clobber all the white stones between M’ and M,. In any case, we
reduce C' to a single stone, which contradicts its existence.

Therefore C' satisifies ny, = 0. We consider two cases:

*

G’ is monochromatic black. Then play any white stone from My to G'. The resulting
configuration is not monochromatic (since there remains at least a black stone in G'),
and still satisfies ¢ < m (m is unchanged and ¢ is decreased by 1). In the resulting
configuration, if My and M’ have the same size, we conclude to 1-reducibility thanks
to Theorem 5. Otherwise, My is the unique maximum stable set and it contradicts the
minimality of C.

G’ is not monochromatic. Let s be any black stone of G’. Then s clobers any white stone
of My and then any other white stone of G’. The parameters g and m are both decreased
by one after these moves. Once again, the minimality of C' is contradicted. Note that the
resulting configuration contains is still P-partite with P > 3. Indeeed, if it was bipartite,
this would mean that C' contains at least two maximum stable sets, since g < m.
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Any game configuration satisfying 0 < ¢ —m <m; — 1 is 1-reducible:

As previously, we choose C' as a minimal configuration satisfying 0 < ¢ —m < my — 1, not 1-
reducible, and such that there is no other configuration of this type whose size of M is smaller
than n. Note that this implies my > 0.

We first suppose that nj, # 0. As previously, if n —m/ = 1, we play an authorized move from
My to G’, so as to apply Theorem 5. If n —m’ > 1, we play successively a black and a white
stone from Mj to any stone of G': the resulting configuration R has its parameters g, m and my,
unchanged, and is not monochromatic, since my > 1 and there are at least m > 0 white stones
in My. As previously, we either conlude to the 1-reducibility with Theorem 5 (if |My| = |M'|
in R), or to the non-minimality of C'.

Hence C satisfies n, = 0. This means that |Mj| is monochromatic white. We consider two
cases:

* @' is not monochromatic black.

If G’ contains at least three non empty stable sets, then play any black stone s from G’
to any white stone of My and then to any white stone of G'. The resulting configuration
R is still P-partite with P > 3, and is not monochromatic (there is at least a black stone
in G’ and a white one in Mj). Besides, ¢ and m are both decreased by 1, and my, is
unchanged, which implies that we still have 0 < ¢ — m < my — 1. We either conlude to
the 1-reducibility thanks to Theorem 5 (if |[My| = |M'| in R), or to the non-minimality of
C.

If G’ contains exactly two stable sets and if m;, > 2, we apply the same method by choosing
a black stone s such that s does not belong to a stable set of size one. It is always possible
to find such a stone, since there are at least three stones in G’ (two blacks and a white)
and only two stable sets. With this choice, the resulting configuration remains tripartite.

If G’ contains exactly two stable sets and if m; = 1, this implies ¢ = m. There are as
many stones in G’ than in My. We use the only black stone to clobber alternately the
white stones of My and G'. This yields a unique stone on the graph in the end.

@' is monochromatic black.

If ¢ > m, then play any white stone from My to G’. After this operation, g and my, are
decreased by 1 and m is unchanged. Hence we still have 0 < g—m < my—1. The resulting
configuration R is not monochromatic, since there are at least a black and a white stone
in G'. We either conlude to the 1-reducibility with Theorem 5 (if |My| = |M'| in R), or
to the non-minimality of C.

If ¢ = m, we forget the edges inside G’ and see C = G’ U M as a well-colored balanced
complete bipartite graph. From Lemma 2, if 6(C') mod 3 # 0, then C is l-reducible.
And if §(C) mod 3 = 0, any white stone of My clobbers successively two black stones of
G': this operation uses an inside edge of G’, and thus changes the value of §(C') mod 3.
Thanks to Lemma 2, we conclude to the 1-reducibility of C.

Any game configuration satisfying ¢ — m > mj, — 1 has a reducibility value equal to
qg—m—my+2:
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Let C be a game configuration satisfying ¢ —m > my, — 1. If we forget the edges inside of G’, C'
can be seen as a bipartite graph G’ U My, where My is the largest stable set. The parameters
g, m and my have been extended from bipartite to multipartite graphs. From Theorem 4 about
complete bipartite graphs, we conlude that the reducibility value of C is at most ¢ —m —my+ 2.

We now consider C’, a final configuration after having played an optimal succession of moves
from C. If C' is P-partite with P > 2, denote by m/,n’,nj, m; and ¢’ the parameters of C’. We
study two cases.

If C'is P-partite with P > 3, then necessarily nj = mj = 0. The number of remaining
stones on C' is at least |[Mp| + |G'| > ¢’ + 2. Since f is monotonic from Lemma 6, we have
qg+2>qg—m—my+2.

If C" is P-partite with P < 3, then there exists a configuration C” on a complete bipartite
graph in the optimal way of play from C to C’. Since C” satisifes ¢ —m > my — 1 (according to
Lemma 6), we can apply Theorem 4 to prove that the reducibility value of C" is greater than
q—m —my + 2. [l

3 Extremal questions

Let us denote by rv(G,C) the reducibility value of G with configuration C, and denote by
maxrv(G) the maximum of these values taken over all proper configurations, and minrv(G) the
minimum of these values taken over the same set.

The purpose of this section is to estimate the values of minrv(G) and maxrv(G) for all graph

G.

3.1 Value of minrv(G)

We determine the exact value of minrv(G) for all graph G, and prove that it is simply equal to
the number of connected components of G.

Lemma 8. Let T be a tree. Then we have
minrv(7T) = 1.

Proof. The proof works by induction on the number of vertices of T'. If T" has one vertex, then
the statement is trivial. If T has at least two vertices, then let u be a leaf of T'. By induction,
the tree T" := T'\ {u} admits a configuration C’ such that rv(7T",C") = 1. Let v be the unique
neighbour of w in T', and let C be the following configuration on T :

* CO(w) = C'(w) for all w # u,v,
* Clu) = C'(v),
* C(v) = black if C'(v) = white, and C(v) = white otherwise.

It is easy to check that rv(7,C) =1 (hint: the first move is u clobbering v). O
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Theorem 9. Let G be a connected graph. Then we have
minrv(G) = 1.

Proof. This is a straightforward consequence of Lemma, 8: since G is connected, then it admits
a spanning tree T', that is a tree which is a subgraph of G' having the same vertex set as G.
Lemma 8 implies the existence of a configuration C' such that rv(7,C) = 1, which implies
rv(G,C) = 1. O

3.2 Bounds on maxrv(G)
3.2.1 TUpper bound

We prove an upper bound related to the minimum degree of the graph, and we characterize the
graphs for which this bound is tight.

Theorem 10. Let G be a graph on n vertices of minimum degree &, and let C' be a proper
configuration of G. Then we have

rv(G,C) <n—.

Furthermore, one can make at least § moves by, step by step, greedily choosing any move which
leaves at least one connected component with a proper configuration.

Proof. The proof works by induction on 4. If § = 1, then there exists at least an edge uv such
that there are stones of different colors on # and v, hence one can make at least one move.
If § > 2, then there exists at least an edge uv such that there are stones of different colors
on u and v. Playing along this edge (either u clobbering v or v clobbering u) surely reduces
to a graph of minimum degree at least 4 — 1, but the graph may not be connected, and the
configurations on the connected components of this graph may not be proper. However, it is
enough to get at least one connected component whose configuration is proper to apply the
induction hypothetis. Now two cases follow.

If playing along the edge uv (either u clobbering v or v clobbering u) leads to a new graph for
which at least one its connected component C' has a proper configuration, then we can apply
the induction hypothesis on C'. If not, then let us assume that the stone on u is black (and then
the stone on v is white). The fact that either u clobbering v or v clobbering u does not lead to
a graph for which at least one its connected component has a proper configuration implies the
following:

* the edge wv is such that G ~\ {uv} has two connected components U and V, such that
u€eUandv eV,

* all the stones on vertices of U \ {u} are white,

* all the stones on vertices of V'~ {v} are black.

In this case, one can still apply the induction hypothesis by, for instance, clobbering a stone of
U with the stone placed on . O
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For any § > 1, let us define Gy, a set of connected graphs of degree minimum ¢ equipped with
proper configurations, as follows:

* the complete graph on 0 + 1 vertices equipped with any proper configuration belongs to
Gs for all 6 > 1;

* for any integer k > 2, let us define Si(Ks11) as the non-disjoint union of k copies of
K51, where one and only one vertex v belongs to all k£ copies of Ksy1, and no other
vertex belongs to more than one copy of K1 (one can think of Si(Kjsy1) as a star K ,
where each of the k leaves has been expanded into a Ky, see Figure 11). Then Sg(Ks41),
equipped with a configuration such that the color of the vertex v is rare, belongs to Gs
for all k£ > 2;

* for § = 2, the cycle on 4 vertices equipped with any configuration containing only two
black stones, which are placed on consecutive vertices of the cycle, belongs to Gs;

* no other graph belongs to Gj.

Figure 11: The graph Si(Ks41)-

Theorem 11. For all § > 1, the set of connected graphs G having minimum degree ¢ equipped
with a proper configuration C such that

v(G,C)=n—9¢
s exactly Gs.

Proof. The proof works by induction on §. The case § = 1 is easy to prove. Take an edge
uv such that a black stone lies on u and a white stone lies on v. Assume that u has other
neighbours than v. Since the reducibility value is n — 1, then all the other neighbours of u are
white, and form a stable set. This implies that v has no other neighbours than w.
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Now let § > 2, and let G be a connected graph on n vertices having minimum degree § equipped
with a proper configuration C such that rv(G,C) = n — §. Let uv be the edge along which
the first move of a game ending after exactly ¢ moves is made. We may assume that the stone
lying on u is black, and that this stone clobbers a white stone placed on v. Let G’ be the graph
obtained after this first move. We then claim the following:

The graph G’ has minimum degree § — 1, and all the connected com- (2)
ponents of G’ are of cardinality greater than or equal to 6. Moreover,
there is one and only one of these components whose configuration is
proper.

The first part of the claim is obvious since G has minimum degree §. The second part derives
from Theorem 10. Indeed, if G’ had at least two connected components equipped with proper
configurations, then we could make at least 6 — 1 moves on one, and § — 1 moves on the other,
which is a contradiction with rv(G,C) = n — 4 since § > 2. Hence claim (2) is true, and this
implies the following:

One and only one connected component of G’ is a member of G5 1, and  (3)
all the others are white monochromatic cliques on § vertices.

From claim (2), we know that G’ has a connected component A equipped with a proper config-
uration. This component has minimum degree § — 1, and since rv(G, C) = n — §, then one can
make exactly § —1 more moves on A, hence A € G5 1. We know from (2) that all the other com-
ponents are monochromatic, and that they have at least ¢ vertices. Let B be such a component.
By definition, no vertex of B is adjacent to v. This implies that B is white monochromatic.
Indeed, if B were black monochromatic, then v could clobber u, and this would lead to a graph
equipped with a proper configuration of minimum degree 6. By Theorem 10, one could make
at least § more moves, a contradiction with rv(G,C) = n — §. Now, let w be a neighbour of u
in B. The second part of Theorem 10 implies that u clobbering w can be the first of a sequence
of exactly d moves, hence B is a member of Gs_1. For all § > 2, it is easy to check that the only
one possibility is that B is a complete graph on § vertices, which proves the second part of (3).
To complete the proof, it remains then to make a case study by applying (3) and using the
induction hypothesis. The cases § = 2 and § = 3 have to be studied separately, because of the
sporadic event of the cycle on four vertices belonging to Gs. This (rather straightforward) case
study is left to the reader. O

3.2.2 Lower bound

Theorem 12. Let Cy be a cutset of a simple, connected graph G, and let C1,Cs, ... ,Cy be the
connected components of G\ Cy. Let us assume that Cy is small enough, that is to say |Cy| < k.
Let C' be the following configuration of stones on G : a black stone lies on all the vertices of Cy,
and a white stone lies on all the vertices of C1 UCyU...UCy. Then the reducibility value of G
under the configuration C' is such that

|Col
v(G,C) > n— Y |Ci| -1
=0
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Proof. The theorem is straightforward if Cj is a single point. Indeed, in this case, we have a
cutvertex vg, on which lies the only black stone of the configuration. If this stone does not
clobber any white stone, then one may make only one move, consisting in clobbering this stone
with a white stone, and the game ends after 1 round. If the black stone clobbers some white
stones, then it can clobber only white stones of a certain component C;. Indeed, since vg is a
cutvertex, then the black stone can visit only one of the components of G . Cj.

If Cp is a nontrivial cutset, then the situation is a little bit more complicated, since a black
stone can visit more than one components of G\ Cy. The idea is the following. If a black stone
visits more than one component, then it means that, at some points, this stone had to go back
through Cj, hence clobbering a white stone. Since Cj contains originally no white stones, it
means that black stones of Cy had to be clobbered without having visited any component of
G ~\ Cy. Thus a black stone visiting p components implies that p — 1 black stones did not visit
any component, hence, on average, one black stone can visit at most one component.

More formally, given a vertex v € Cy, let us define s(v), the score of the black stone placed
on v, as the number of components of G . Cy that this black stone will visit during the game.
Clearly, we have

Y s(v) < |Col. (4)

veCh

Now, the desired inequality derives from (4). Indeed, in the most favorable case, all the white

stones of the |Cy| largest components and of |Cy|, but for one, were clobbered, hence the
|Col

Z |C;| — 1 in the formula. O
1=0

Remark 2. This bound is tight for the path on m vertices, where the worst configuration is the
one where the central vertex has a rare color (see Figure 12).

—»
0020010207020 0 020 0)
N J
'
[n/ﬂ

Figure 12: The path on n vertices has maximum reducibility value equal to [2].

Indeed, the bound of the previous theorem says that rv(G,C) > n— (14 (2] -1) = [%],
and it is easy to see that maxrv(P,) = [§] (where P, denotes the path on n vertices). Let
us briefly show this. Let {vi,...,v,} denotes the vertex set of P, such that there is an edge
between v; and v;41 for all 2 =1,... ,n — 1. Let us call 2-block a non-monochromatic interval
Viy ... ,05, 1 <4 < j < msuch that there exists ¢ < k < j for which vertices v;,... ,v; are of
the same color, and vertices v41,...,v; are of the same color. Similarly, let us call 3-block a
non-monochromatic interval v;,... ,v;, 1 < i < j < n such that there exists 1 < k <[ < j for

which vertices v;, ... , v are of the same color, vertices vgi1,... ,v; are of the same color, and
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vertices vjy1,... ,v; are of the same color. Now partition {vi,... ,v,} into a certain number of
2-blocks and one 3-block. Clearly, it is always possible to do this. Now, let us look at a certain

2-block B, independently form the other blocks. It is clear that at least L@J vertices of B can

be clobbered by a vertex of B. Similarly, at least L‘—g‘] vertices of B can be clobbered by a
vertex of a given 3-block B. Hence, we can laways clobber at least |5 | vertices of P,, which
means maxrv P, <n — 5| =[5].

Note that the previous theorem does not apply for the case of cycles, because any cutset has at

least as many vertices as the number of remaining components.
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