
New results about Solitaire Clobber 2Eri
 Du
hêne�, Sylvain Graviery, Julien Mon
elzERTé "Maths à modeler"Abstra
tSolitaire Clobber is a one-player game that was introdu
ed by Demaine et al. in 2002.In the variant Solitaire Clobber 2, the aim is to delete the maximum number of stones thatare initially pla
ed on the verti
es of a graph, a

ording to spe
i�ed rules. In this paper, wepresent new results when one play on multipartite graphs, and we then 
onsider extremalquestions about the maximum number of stones one 
an delete.1 Introdu
tion and de�nitionsWe 
onsider the game Solitaire Clobber 2 introdu
ed in [3℄. This game is a variant of SolitaireClobber de�ned by Demaine et al. in [1℄, whi
h is itself a solitaire variant of the two-playergame Clobber de�ned by Albert et al. in [2℄.Solitaire Clobber 2 (SC2, in its abbreviated form) is a one-player game de�ned by the followingrules: bla
k and white stones are pla
ed on the verti
es of a given graph G (one per vertex). Amove 
onsists in pi
king a stone and 
lobbering another one of the opposite 
olor lo
ated on anadja
ent vertex. The 
lobbered stone is removed from the graph and is repla
ed by the pi
kedone. The goal is to �nd a su

ession of moves that minimizes the number of remaining stones.A game 
on�guration of SC2 is said to be k-redu
ible if there exists a su

ession of moves thatleaves at most k stones on the graph. The redu
ibility value of a game 
on�guration C is thesmallest integer k for whi
h C is k-redu
ible.In [3, 4℄, Solitaire Clobber 2 was investigated on paths, 
y
les, and trees. The redu
ibility valueof any 
on�guration on a path or a 
y
le of size n 
an be 
omputed in linear time O(n). On atree, there exists an algorithm working in O(n9) operations. In [5℄, it was proved that any game
on�guration on a Hamming graph is 1-redu
ible, ex
ept for hyper
ubes whi
h are 2-redu
ible.For 
onvenien
e for the reader, we may often mix up a vertex with the stone it supports. Thelabel or 
olor of a vertex will de�ne the 
olor of the stone lo
ated on it. We may also say that"a vertex 
lobbers another one", instead of talking of the 
orresponding stones.�Post-Do
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Given a game 
on�guration C on a graph G, we say that a label/
olor 
 is rare on a subgraphS of G if there exists a unique vertex v 2 S su
h that v is labeled 
. On the 
ontrary, 
 is saidto be 
ommon if there exist at least two verti
es of this 
olor in S. A 
on�guration is said tobe mono
hromati
 if all the verti
es have the same 
olor. It is said proper otherwise. In all thispaper, only proper 
on�gurations will be 
onsidered.If 
 is a 
olor, denote by 
 the opposite 
olor. If v is a vertex of G, the 
olor of v will be denotedby 
(v).A

ording to a probabilisti
 result of Ruszinkó (
f. [6℄), almost all graphs are 1-redu
ible. Thismeans that the stru
ture of game 
on�gurations whi
h are not 1-redu
ible is an interestingproblem. In the next se
tion of this paper, we study the 
ase of 
omplete multipartite graphs,and we de
ide when a 
on�guration 
annot be 1-redu
ible. For these graphs, we give a gen-eral formula whi
h 
omputes the redu
ibility value of any game 
on�guration in linear time.In se
tion 3, we 
onsider extremal questions about SC2: given a graph G, we investigate theproper 
on�gurations that minimize and maximize the redu
ibility value on G. In [4℄, it wasshowed that the redu
ibility value of a 
y
le Cn is at most bn=3
. Moreover, for all n thereexists a 
on�guration for whi
h this bound is tight. In the present paper, we 
laim that on anygraph with n verti
es, the redu
ibility value is at most equal to n� Æ, where Æ is the minimumdegree of the graph. Therefore, for any �xed Æ, we �nd out the only 
on�gurations for whi
hthe redu
ibility value is equal to n� Æ.2 SC2 played on 
omplete multipartite graphs2.1 SC2 on 
omplete bipartite graphsLet G = (V;E) be a 
omplete bipartite graph. Therefore, G 
an be splitted into two stablesets, say S0 and S1. A game 
on�guration on a 
omplete bipartite graph will be representedby a "two rows" layout, ea
h row refering to a stable set Si with i 2 f0; 1g. Figure 1 shows anexample of a 
on�guration on a 
omplete bipartite graph. One 
an move any stone of a row toany stone of the other row having the opposite 
olor. Moves inside a row are not allowed.
0

S1

S

Figure 1: A game 
on�guration on a 
omplete bipartite graphIn [1℄, Demaine et al. de�ne an invariant Æ on bipartite graphs and available for both gamesSC and SC2. The de
ription of Æ follows.Let C be a game 
on�guration on a bipartite graph G. We allo
ate the 
olor white the to setS0, and the 
olor bla
k to S1. A stone of C is said to be 
lashing if its 
olor di�ers from the2




olor of the stable set to whi
h it belongs. Denote by Æ(C) the following quantity:Æ(C) = number of stones + number of 
lashing stonesIn their paper, Demaine et al. proved that (Æ(C) mod 3) never 
hanges during the game, wherea mod b is the remainder of the division of a by b. This implies that any 1-redu
ible 
on�gura-tion on a bipartite graph satis�es Æ(C) mod 3 6= 0.A 
omplete bipartite graph is said to be balan
ed if S0 and S1 have the same size. It is saidwell-
olored if S0 and S1 are both mono
hromati
. In a well-
olored 
on�guration, one do notlose generality by assuming that the stones of S0 (resp. S1) are white (resp. bla
k). Under thisassumption, there is no 
lashing stone in a well-
olored 
on�guration.2.1.1 The redu
ibility value of balan
ed 
omplete bipartite graphsWe now give a �rst result about the redu
iblity value of a well-
olored balan
ed 
ompletebipartite graph.Lemma 1. A well-
olored balan
ed 
omplete bipartite graph is 1-redu
ible if Æ mod 3 6= 0. Oth-erwise, the redu
ibility value is equal to 2.Proof. Let C be a game 
on�guration on a well-
olored balan
ed 
omplete bipartite graph. De-note by n the size of ea
h stable set. Then Æ(C) = 2n. A

ording to the result of Demaine et al.,a ne
essary 
ondition for C to be 1-redu
ible is that Æ(C) mod 3 6= 0, whi
h means n mod 3 6= 0.Let n � 4. Then C 
an be redu
ed to a well-
olored balan
ed 
omplete bipartite graph whereea
h stable set has a size equal to n� 3. The redu
tion is the following:ddddtttt! dtddt tt! tddd tt! dddtt! tddt! t dd! dtBy applying re
ursively this operation, and a

ording to the value (n mod 3), C 
an be redu
edto one of these three 
on�gurations:dt ddtt dddtttn mod 3 = 1 n mod 3 = 2 n mod 3 = 0One 
learly see that when n mod 3 6= 0, the above 
on�gurations are 1-redu
ible. When n mod3 = 0, the above 
on�guration is 2-redu
ible and we 
an not improve this redu
tion be
ause ofthe invariant.Remark 1. When n mod 3 6= 0, the value Æ(C) sets a 
orrelation between the 
olor and thelo
ation of the remaining stone. When n mod 3 = 1, the last stone will be 
lashing. It will notbe the 
ase when n mod 3 = 2.Lemma 2. A balan
ed 
omplete bipartite graph is 1-redu
ible if Æ mod 3 6= 0. Otherwise, theredu
ibility value is equal to 2. 3



Proof. For more 
onvenien
e, we arrange "graphi
ally" S0 and S1 as follows: on S0 the whitestones are pla
ed on the left, and the bla
k ones on the right. We pro
eed 
onversely on S1.This operation splits G into three 
omplete bipartite subgraphs, of respe
tive lengths L1, L2and L3, as shown on Figure 2.
S1

1 L3L2

So

LFigure 2: Splitting a balan
ed 
omplete bipartite graphThe values L1 and L3 are the lengths of both well-
olored balan
ed parts, whereas L2 is dedi-
ated to the mono
hromati
 part.A

ording to this notation, Æ(C) = 2L1 + 3L3 + 4L3. Hen
e Æ(C) mod 3 = 0 if and only ifL1 mod 3 = L3 mod 3. Without loss of generality, assume that the mono
hromati
 part L2 iswhite. Sin
e there exists a bla
k stone somewhere, we have it 
lobber the whole mono
hromati
part of size L2, as shown on Figure 3:
2L1 L3 L1 L3LFigure 3: Clobbering the mono
hromati
 part of length L2We now 
onsider the resulting graph as the union of two well-
olored balan
ed 
omplete bipartitegraphs, of respe
tive sizes L1 and L3. We distinguish two 
ases:* L1 mod 3 6= L3 mod 3.Now suppose that either L1 mod 3 or L3 mod 3 is equal to 1. Without loss of generality,assume that L1 mod 3 = 1. Then from Lemma 1 and Remark 1, we redu
e the left partto a single 
lashing stone. If L3 = 0, then it is done. Otherwise, we know that L3 is atleast equal to 2. By playing as shown on Figure 4, we redu
e the graph to a well-
oloredbalan
ed 
omplete bipartite of length L3 � 1. Sin
e L3 � 1 6= 0 mod 3 and from Lemma1, this resulting graph is 1-redu
ible.
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1 2

L3 L  −13Figure 4: Redu
tion in a spe
ial 
aseNow suppose that neither L1 mod 3 nor L3 mod 3 is equal to 1. Therefore and withoutloss of generality, we 
an assume L1 mod 3 = 2 and L3 mod 3 = 0. By lemma 1, weredu
e the left part to a single non 
lashing stone. If L3 = 0, then it is done. Otherwise,L3 � 3. We pro
eed as depi
ted by Figure 4 to redu
e the 
on�guration. This oper-ation yields a well-
olored balan
ed 
omplete bipartite graph of length (L3 � 1). Sin
e(L3 � 1) mod 3 = 2, we 
on
lude to the 1-redu
ibility thanks to Lemma 1.* L1 mod 3 = L3 mod 3.If L1 and L3 are not multiples of 3, then from Lemma 1, both parts are 1-redu
ible.Therefore, the whole 
on�guration is 2-redu
ible. If L1 mod 3 = L3 mod 3 = 0, we playas depi
ted by Figure 5.
L1 L3

12

L  −11 L  −13Figure 5: The 
ase L1 mod 3 = L3 mod 3 = 0The resulting 
on�guration is a balan
ed 
omplete bipartite graph withL1 mod 3 = L3 mod 3 = 2, whi
h is 2-redu
ible.2.1.2 The redu
ibiliy value of non-balan
ed 
omplete bipartite graphsWe now 
onsider the general 
ase on Kn;m with jS0j = n > jS1j = m > 0. Unlike balan
ed
omplete bipartite graphs, we will show that the redu
ibility value may no more be boundedby a 
onstant. For example, it su�
es to 
hoose jS1j = 1 and jS0j > jS1j, put a bla
k stone onS1 and only white stones on S0. In su
h a 
on�guration, only one move is available, leading toa redu
ibility value equal to jS0j.In order to des
ribe a game 
on�guration on Kn;m, we 
onsider the following set of parameters:5



The values nb and nw denote respe
tively the numbers of bla
k and white stones in S0. Obviouslywe have n = nb + nw. Similarily, mb and mw denote respe
tively the numbers of bla
k andwhite stones in S1.Without loss of generality, we 
onsider 
on�gurations satisfying nb � nw. Under this 
ondition,we de�ne a nonnegative integer q = n� 2nb.With these parameters, a game 
on�guration belongs to one of these two forms:(F1): Con�gurations for whi
h q �m �mb � 1.(F2): Con�gurations for whi
h q �m > mb � 1.Figure 6 illustrates the form (F1) through three examples, a

ording to the sign of (q�m) andthe parity of (n�m). We will understand why further.
b

b
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b

mb

2n
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< <

q q

and (n−m) is oddq−m < 0
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m
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m

q−m<0 and (n−m) is even

n

m

q

Example 1 Example 2 Example 3

0     q−m   m  −1 

2n

Figure 6: Three examples of 
on�gurations in the form (F1)Figure 7 illustrates the se
ond form. In that 
ase, the stable set S0 
an be partitionned intothree parts:L1 
ontains as many bla
k stones than white ones and satis�es jL1j = 2nb.L2 and L3 are mono
hromati
 parts, of respe
tive sizes (q �m) and m.
q

b

2n
b

n

m

L1 L2 L3

mFigure 7: A 
on�guration in the form (F2)We will prove that 
on�gurations in the form (F1) have a redu
ibility value equal to 1 or 2.The results will be similar to the "balan
ed 
ase". For the 
on�gurations in the form (F2),we will present a formula depending on the values q, m and mb. For su
h 
on�gurations, we6



introdu
e new results that will help us to 
on
lude.Let C2 be a game 
on�guration in the form (F2). We de�ne the integer fun
tion f as:f(C2) = q �m�mbBy de�nition of (F2), we have f(C2) � 0.The following lemma asserts that f never de
reases during the game. Moreover, it adds thatany move from a 
on�guration in (F2) yields a resulting 
on�guration also in (F2).Lemma 3. Let C2 be a game 
on�guration in (F2), and let R be the resulting 
on�gurationafter an arbitrary move from C2. If R is not a stable set, then R is also in (F2) and satis�esf(C2) � f(R).Proof. Denote by q0;m0 and m0b the values of q;m and mb after a move from C2 to R. Thesevalues are de�ned sin
e R is supposed to be a 
on�guration on a 
omplete bipartite graph.There are four moves to 
onsider:1. One play a bla
k stone from S0 to S1. Then m0b = mb+1, q0 = q+1 and m is un
hanged.This implies f(R) = f(C2).2. One play a white stone from S0 to S1. We get q0 = q � 1, m0b = mb � 1, and m isun
hanged. We still have f(R) = f(C2).3. One play a bla
k stone from S1 to S0. Then m0b = mb � 1, m0 = m� 1, and q0 = q � 2.Therefore f(R) = f(C2).4. One play a white stone from S1 to S0. Then m0 = m� 1, q0 = q+2 and mb is un
hanged.Therefore f(R) = f(C2) + 3.Moreover, sin
e f is monotoni
, we 
learly have q0�m0 > m0b� 1, whi
h means that R is in theform (F2).We now have 
olle
ted all the ne
essary results to prove our main theorem about the redu
ibilityof Kn;m.Theorem 4. Let C be a game 
on�guration on Kn;m with n > m > 0.If q �m � mb � 1, i.e., C is in (F1), then C is 1-redu
ible if Æ(C) mod 3 6= 0, and 2-redu
ibleotherwise.If q�m > mb� 1, i.e., C is in (F2), then C has a redu
ibility value equal to (q�m�mb+2).Proof. C is in the form (F1). We will prove that we 
an redu
e C to a non-mono
hromati
balan
ed 
omplete bipartite graph, so as to apply Lemma 2. We distinguish three 
ases (seeFigure 6). 7



* q �m < 0 and (n �m) is even. Let s be any stone of S1. Sin
e (n �m) is even, thismeans that we 
an play exa
tly (n �m) stones (pre
isely (n �m)=2 bla
k stones, and(n�m)=2 white ones) from S0 to s by alternating bla
k and white moves. The resulting
on�guration R is thus a balan
ed 
omplete bipartite graph. Note that S1 is un
hangedafter this set of operations. Sin
e q �m < 0, there exists at least a bla
k and a whitestone in the stable set S0 of R, whi
h is 
onsequently not mono
hromati
.* q�m < 0 and (n�m) is odd. As previously, we play exa
tly (n�m�1) stones (pre
isely(n �m � 1)=2 bla
k stones, and (n �m � 1)=2 white ones) from S0 to any vertex s ofS1 by alternating bla
k and white moves. In the resulting 
on�guration R, S0 
ontainsexa
tly (m+1) stones and is not mono
hromati
, whereas S1 is un
hanged. We now playany move from S0 to S1. This is possible sin
e S0 is not mono
hromati
. This operationyields a non-mono
hromati
 balan
ed Km;m.* q �m � 0. We �rst play 2nb stones (pre
isely nb stones of ea
h 
olor) from S0 to anyvertex s of S1 by alternating white and bla
k moves. We then play (q �m) white stonesfrom S0 to S1. This is possible sin
e mb � (q �m+ 1) for a 
on�guration in (F1). Theresulting 
on�guration R 
ontains at least a bla
k stone in S1, and at least a white onein S0. Moreover, R is balan
ed.In ea
h of these three 
ases, we yield a proper 
on�guration R whi
h is balan
ed. We thenapply Lemma 2 on R to 
on
lude.C is in the form (F2). We �rst prove that there exists a way of play that leaves exa
tly(q �m�mb + 2) stones on the graph.If mb > 0, we play the 2nb stones from L1 to any vertex s of S1 by alternating white and bla
kmoves. After this operation, S0 is mono
hromati
 (of 
olor white). We then play (mb�1) whitestones from L2 to S1. The single remaining bla
k stone (whi
h belongs to S1) then walks inzigzags to 
lobber all the white stones of L1 and S1. The resulting 
on�guration is a stable set
ontaining a bla
k stone and (q �m�mb + 1) white ones (
oming from L2).Ifmb = 0, then L1 is not empty, sin
e we do not 
onsider mono
hromati
 
on�gurations. There-fore, we play a bla
k stone from L1 to S1. We get a resulting 
on�guration C 0 in (F2) withparameters m0b = mb+1 and q0 = q+1. We now apply the same method as above, whi
h leaves(q0 �m�m0b + 2) = (q �m�mb + 2) stones.We now prove that any su

ession of moves leaves at least (q�m�mb+2) stones on the graph.We 
onsider an optimal su

ession of moves on a 
on�guration C in (F2), i.e., a su

ession ofmoves that leaves the minimum number of stones. Denote by C 0 the �nal 
on�guration aftersu
h a way of play. No move is playable from C 0.We �rst suppose that C 0 is not a stable set. A

ording to Lemma 3, C 0 belongs to (F2) andsatis�es f(C 0) � f(C). Denote by q0;m0;m0b; L01; L02; L03 the parameters previously de�ned andrelative to C 0.Sin
e m0 > 0, L03 is not empty, whi
h means that there exists a white stone on S0. Sin
e nomove is playable from C 0, the set S1 is mono
hromati
 of 
olor white, i.e., m0b = 0, and L01 is8



empty.Moreover, the monotoni
ity of the fun
tion f ensures thatq0 �m0 �m0b = q0 �m0 � q �m�mb (1)Sin
e there is at least a stone in L03 and another one in S1, the number of remaining stones onC 0 is at least jL02j+ 2. Then jL02j+ 2 = q0 �m0 + 2 � q �m�mb + 2 a

ording to (1).Now assume that C 0 is a stable set. This means that the last move of the optimal way ofplay was done from S1 to S0. It remains optimal if we 
onsider this last move in the oppositedire
tion (i.e., from S0 to S1). Now 
onsider this new optimal way of play where C 0 is not astable set and refer to the previous 
ase to 
on
lude.2.2 SC2 played on 
omplete multipartite graphs (with at least three parts)Let P > 2. Denote by S0; S1; : : : ; SP�1 the P stable sets of a 
omplete P -partite graph G.Among these P stable sets, denote by M0; : : : ;Mi�1 the i stable sets whose size is maximum,i.e., jMj j � jSlj for all j = 0 : : : i� 1 and l = 0 : : : P � 1. We 
all them the maximum stable setsof G.Denote by G0 the indu
ed subgraph GnfM0; : : : ;Mi�1g. For more 
onvenien
e, we graphi
allyde�ne "raws" of stones on G n G0: if t = jM0j = : : : = jMi�1j, then a raw Rj with 1 � j � tde�nes a set of i stones (one stone per maximum stable set) su
h that S1�j�tRj is the set ofall the stones belonging to G nG0. Of 
ourse, the number of partitions of this form is very large(ea
h new "graphi
al" arrangement of the stones in G nG0 de�nes a new set of raws).Finally, denote by skj (with 1 � j � t and 0 � k < i) the vertex that both belongs to Mk andRj.Figure 8 illustrates these notations.
R1

t
0

s
2
1

G’
M M M0 1 2

G \ G’

Rt

R2

s

Figure 8: An example of a 
on�guration on a P -partite graph (P = 6 and i = 3)The redu
ibility value of P -partite graphs depends on the number i of maximum stable sets.When i > 1, any game 
on�guration is 1-redu
ible. The redu
ibility value may be far largerwhen there is a unique maximum stable set. 9



Theorem 5. Let C be a game 
on�guration on a P -partite graph (with P > 2) having at leasttwo maximum stable sets. Then C is 1-redu
ible.Proof. Denote by t the value jM0j, i.e. the size of ea
h maximum stable set.If t = 1, then the graph is a 
lique, whi
h is 
learly 1-redu
ible (see [5℄ for more details).Now 
onsider t > 1 and assume that the result is true for all 1 � t0 < t. We 
onsider two 
ases:1. G nG0 is mono
hromati
 of 
olor 
. Sin
e G is not mono
hromati
, there exists a vertexx in G0 whose 
olor is 
. Now have x 
lobber the mono
hromati
 raw Rt, and then anystone of the raw Rt�1. In the resulting non-mono
hromati
 
on�guration, the size of themaximum stable sets is (t� 1), so that we 
an apply the indu
tion hypothesis.2. G n G0 is not mono
hromati
 and i � 3. We 
onsider a partition of G n G0 into t raws,su
h that Rt is not mono
hromati
. Su
h a partition is possible sin
e G n G0 is notmono
hromati
. Besides, sin
e i � 3, there exists a stone of Rt whose 
olor is not rarein Rt. Without loss of generality, assume that s0t satis�es this property. For the samereasons, either s1t�1 or s2t�1 has a 
ommon 
olor. Assume that 
(s1t�1) is not rare.The raw Rt is now seen as a 
lique. From [5℄, we know that 
liques are strongly 1-redu
ible,whi
h means that we 
an 
hoose the lo
ation and the 
olor of the unique remaining stone(provided some 
onditions are ful�lled, whi
h will be the 
ase here). Hen
e we redu
eRt to a single stone of 
olor 
(s1t�1) and lo
ated on s0t . We then play from s0t to s1t�1,the resulting 
on�guration is not mono
hromati
, so that we 
an apply the indu
tionhypothesis.3. G nG0 is not mono
hromati
 and i = 2. As previously, 
hoose a partition into t raws su
hthat Rt is not mono
hromati
. Sin
e P > 2, at least a 
olor, say bla
k, appears in G0.A

ording to the 
olors of Rt�1, we play as follows to get a non mono
hromati
 resultinggraph, whose size of the maximum stable sets is (t� 1). We 
on
lude to 1-redu
ibility byapplying the indu
tion hypothesis.
Rt

G’

Rt−1
Rt

G’

Rt−1
Rt

G’

Rt−1
Rt

G’

Rt−1

Figure 9: Playing when i = 2 and G nG0 is not mono
hromati
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When the graph admits an unique maximum stable set M0 of size t, we de�ne the values n = t,m as the number of stones in G0 and mb the number of bla
k stones in G0. The values nb andnw are respe
tively the numbers of bla
k and white stones in M0. Without loss of generality,assume that nb � nw. We thus de�ne q as the value n � 2nb. We denote by M 0 a stable setof G0 whose size is maximum (i.e, a "se
ond maximum" stable set in G). We 
all its size m0.Finally, denote by G00 the graph G0 nM 0. Figure 10 shows a P -partite graph with an uniquemaximum stable set.
n

0M’

G’’

G’

MFigure 10: An example of a P -partite graph with an unique maximum stable setWith the above notations, we extend the fun
tion f to a 
omplete P -partite graph having anunique maximum stable set (with P � 2). We de�ne f as f(C) = q �m �mb. Lemma 3 isthus extended to P -partite 
on�gurations:Lemma 6. Let C be a game 
on�guration on a 
omplete P -partite graph having an uniquemaximum stable set (with P > 2) satisfying q � m > mb � 1, and let R be the resulting
on�guration after an arbitrary move from C. Then R is also P -partite (with P � 2), has anunique maximum stable set and still satis�es f(C) � f(R).Proof. If is straightfoward to see that R is P -partite with P � 2.By hypothesis, the 
on�guration C satis�esq = n� 2nb � m+mb = mb + jM 0j+ jG00j � mb + jM 0j+ 1Hen
e we have n � mb + 2nb + jM 0j+ 1Sin
e C is a proper 
on�guration, the values mb and nb 
an not be simultaneously equal to 0.This implies that n � jM 0j+ 2. Therefore, any move from C leads to a 
on�guration R whereM0 remains the unique maximum stable set. This result ensures that the fun
tion f is de�nedon R.If we 
onsider any move between G0 and M0, then we refer to Lemma 3 to assert that f(C) �f(R). And if we 
onsider a move inside of G0, we remark that q is un
hanged and the values mand mb are not in
reased. This also implies f(C) � f(R).11



Theorem 7. Let G be a P -partite graph (with P > 2) having an unique maximum stable set.Any game 
on�guration on G su
h that q�m � mb� 1 is 1-redu
ible. Any game 
on�gurationon G su
h that q �m > mb � 1 has a redu
ibility value equal to q �m�mb + 2.Proof. Any game 
on�guration satisfying q < m is 1-redu
ible:A

ording to n, we 
hoose a "minimal" 
ounter-example C, i.e. C satis�es q < m, is not1-redu
ible, and there is no other 
on�guration of this type whose size of M0 is smaller than n.We �rst suppose that nb 6= 0 and we 
onsider three 
ases for C:* n �m0 = 1. We play any authorized move from M0 to M 0: this is possible sin
e nw �nb > 0. Therefore, the resulting 
on�guration is not mono
hromati
, and admits at leasttwo maximum stable sets of size n� 1 (M0 and M 0). From Theorem 5, it is 1-redu
ible,whi
h ensures the 
ontradi
tion.* n � m0 � 2 and nb � 2. We play su

essively a bla
k and a white stone from M0 toany stone of G0. The resulting 
on�guration is not mono
hromati
 sin
e there remains atleast a stone of ea
h 
olor in M0, and still satis�es q < m (both values are un
hanged).If jM0j = jM 0j after the operation, then it is 1-redu
ible from Theorem 5. If not, thismeans that M0 remains the unique maximum stable set, but its size is now smaller thann, whi
h yields a 
ontradi
tion by minimality of C.* n �m0 � 2 and nb = 1. If mb > 0, we play any white stone from M0 to any bla
k oneof G0. The resulting 
on�guration is not mono
hromati
, has an unique maximum stableset, still sati�es q < m (sin
e m is un
hanged and q is de
reased by 1), and is smallerthan C. It thus 
ontradi
ts the minimality of C. Hen
e we have mb = 0, whi
h meansthat G0 is mono
hromati
 white. With the unique bla
k stone of the 
on�guration, we
lobber alternately stones of M0 and G", until M 0 and M0 have the same size. This ispossible, sin
e the number of stones in G" is equal or greater than q + 1�m0. Note thatin the 
ase where jG"j exa
tly equals q+1�m0, the bla
k stone will delete the entire G"and then alternately 
lobber all the white stones between M 0 and M0. In any 
ase, weredu
e C to a single stone, whi
h 
ontradi
ts its existen
e.Therefore C satisi�es nb = 0. We 
onsider two 
ases:* G0 is mono
hromati
 bla
k. Then play any white stone from M0 to G0. The resulting
on�guration is not mono
hromati
 (sin
e there remains at least a bla
k stone in G0),and still satis�es q < m (m is un
hanged and q is de
reased by 1). In the resulting
on�guration, if M0 and M 0 have the same size, we 
on
lude to 1-redu
ibility thanksto Theorem 5. Otherwise, M0 is the unique maximum stable set and it 
ontradi
ts theminimality of C.* G0 is not mono
hromati
. Let s be any bla
k stone of G0. Then s 
lobers any white stoneof M0 and then any other white stone of G0. The parameters q and m are both de
reasedby one after these moves. On
e again, the minimality of C is 
ontradi
ted. Note that theresulting 
on�guration 
ontains is still P -partite with P � 3. Indeeed, if it was bipartite,this would mean that C 
ontains at least two maximum stable sets, sin
e q < m.12



Any game 
on�guration satisfying 0 � q �m � mb � 1 is 1-redu
ible:As previously, we 
hoose C as a minimal 
on�guration satisfying 0 � q �m � mb � 1, not 1-redu
ible, and su
h that there is no other 
on�guration of this type whose size of M0 is smallerthan n. Note that this implies mb > 0.We �rst suppose that nb 6= 0. As previously, if n�m0 = 1, we play an authorized move fromM0 to G0, so as to apply Theorem 5. If n�m0 > 1, we play su

essively a bla
k and a whitestone from M0 to any stone of G0: the resulting 
on�guration R has its parameters q;m and mbun
hanged, and is not mono
hromati
, sin
e mb � 1 and there are at least m > 0 white stonesin M0. As previously, we either 
onlude to the 1-redu
ibility with Theorem 5 (if jM0j = jM 0jin R), or to the non-minimality of C.Hen
e C satis�es nb = 0. This means that jM0j is mono
hromati
 white. We 
onsider two
ases:* G0 is not mono
hromati
 bla
k.If G0 
ontains at least three non empty stable sets, then play any bla
k stone s from G0to any white stone of M0 and then to any white stone of G0. The resulting 
on�gurationR is still P -partite with P � 3, and is not mono
hromati
 (there is at least a bla
k stonein G0 and a white one in M0). Besides, q and m are both de
reased by 1, and mb isun
hanged, whi
h implies that we still have 0 � q �m � mb � 1. We either 
onlude tothe 1-redu
ibility thanks to Theorem 5 (if jM0j = jM 0j in R), or to the non-minimality ofC.IfG0 
ontains exa
tly two stable sets and ifmb � 2, we apply the same method by 
hoosinga bla
k stone s su
h that s does not belong to a stable set of size one. It is always possibleto �nd su
h a stone, sin
e there are at least three stones in G0 (two bla
ks and a white)and only two stable sets. With this 
hoi
e, the resulting 
on�guration remains tripartite.If G0 
ontains exa
tly two stable sets and if mb = 1, this implies q = m. There are asmany stones in G0 than in M0. We use the only bla
k stone to 
lobber alternately thewhite stones of M0 and G0. This yields a unique stone on the graph in the end.* G0 is mono
hromati
 bla
k.If q > m, then play any white stone from M0 to G0. After this operation, q and mb arede
reased by 1 and m is un
hanged. Hen
e we still have 0 � q�m � mb�1. The resulting
on�guration R is not mono
hromati
, sin
e there are at least a bla
k and a white stonein G0. We either 
onlude to the 1-redu
ibility with Theorem 5 (if jM0j = jM 0j in R), orto the non-minimality of C.If q = m, we forget the edges inside G0 and see C = G0 [M0 as a well-
olored balan
ed
omplete bipartite graph. From Lemma 2, if Æ(C) mod 3 6= 0, then C is 1-redu
ible.And if Æ(C) mod 3 = 0, any white stone of M0 
lobbers su

essively two bla
k stones ofG0: this operation uses an inside edge of G0, and thus 
hanges the value of Æ(C) mod 3.Thanks to Lemma 2, we 
on
lude to the 1-redu
ibility of C.Any game 
on�guration satisfying q �m > mb � 1 has a redu
ibility value equal toq �m�mb + 2: 13



Let C be a game 
on�guration satisfying q�m > mb� 1. If we forget the edges inside of G0, C
an be seen as a bipartite graph G0 [M0, where M0 is the largest stable set. The parametersq;m and mb have been extended from bipartite to multipartite graphs. From Theorem 4 about
omplete bipartite graphs, we 
onlude that the redu
ibility value of C is at most q�m�mb+2.We now 
onsider C 0, a �nal 
on�guration after having played an optimal su

ession of movesfrom C. If C 0 is P -partite with P � 2, denote by m0; n0; n0b;m0b and q0 the parameters of C 0. Westudy two 
ases.If C 0 is P -partite with P � 3, then ne
essarily n0b = m0b = 0. The number of remainingstones on C 0 is at least jM0j + jG0j � q0 + 2. Sin
e f is monotoni
 from Lemma 6, we haveq0 + 2 � q �m�mb + 2.If C 0 is P -partite with P < 3, then there exists a 
on�guration C" on a 
omplete bipartitegraph in the optimal way of play from C to C 0. Sin
e C" satisifes q�m > mb�1 (a

ording toLemma 6), we 
an apply Theorem 4 to prove that the redu
ibility value of C 00 is greater thanq �m�mb + 2.3 Extremal questionsLet us denote by rv(G;C) the redu
ibility value of G with 
on�guration C, and denote bymaxrv(G) the maximum of these values taken over all proper 
on�gurations, and minrv(G) theminimum of these values taken over the same set.The purpose of this se
tion is to estimate the values of minrv(G) and maxrv(G) for all graphG.3.1 Value of minrv(G)We determine the exa
t value of minrv(G) for all graph G, and prove that it is simply equal tothe number of 
onne
ted 
omponents of G.Lemma 8. Let T be a tree. Then we haveminrv(T ) = 1:Proof. The proof works by indu
tion on the number of verti
es of T . If T has one vertex, thenthe statement is trivial. If T has at least two verti
es, then let u be a leaf of T . By indu
tion,the tree T 0 := T r fug admits a 
on�guration C 0 su
h that rv(T 0; C 0) = 1. Let v be the uniqueneighbour of u in T , and let C be the following 
on�guration on T :* C(w) = C 0(w) for all w 6= u; v,* C(u) = C 0(v),* C(v) = bla
k if C 0(v) = white, and C(v) = white otherwise.It is easy to 
he
k that rv(T;C) = 1 (hint: the �rst move is u 
lobbering v).14



Theorem 9. Let G be a 
onne
ted graph. Then we haveminrv(G) = 1:Proof. This is a straightforward 
onsequen
e of Lemma 8: sin
e G is 
onne
ted, then it admitsa spanning tree T , that is a tree whi
h is a subgraph of G having the same vertex set as G.Lemma 8 implies the existen
e of a 
on�guration C su
h that rv(T;C) = 1, whi
h impliesrv(G;C) = 1.3.2 Bounds on maxrv(G)3.2.1 Upper boundWe prove an upper bound related to the minimum degree of the graph, and we 
hara
terize thegraphs for whi
h this bound is tight.Theorem 10. Let G be a graph on n verti
es of minimum degree Æ, and let C be a proper
on�guration of G. Then we have rv(G;C) � n� Æ:Furthermore, one 
an make at least Æ moves by, step by step, greedily 
hoosing any move whi
hleaves at least one 
onne
ted 
omponent with a proper 
on�guration.Proof. The proof works by indu
tion on Æ. If Æ = 1, then there exists at least an edge uv su
hthat there are stones of di�erent 
olors on u and v, hen
e one 
an make at least one move.If Æ � 2, then there exists at least an edge uv su
h that there are stones of di�erent 
olorson u and v. Playing along this edge (either u 
lobbering v or v 
lobbering u) surely redu
esto a graph of minimum degree at least Æ � 1, but the graph may not be 
onne
ted, and the
on�gurations on the 
onne
ted 
omponents of this graph may not be proper. However, it isenough to get at least one 
onne
ted 
omponent whose 
on�guration is proper to apply theindu
tion hypothetis. Now two 
ases follow.If playing along the edge uv (either u 
lobbering v or v 
lobbering u) leads to a new graph forwhi
h at least one its 
onne
ted 
omponent C has a proper 
on�guration, then we 
an applythe indu
tion hypothesis on C. If not, then let us assume that the stone on u is bla
k (and thenthe stone on v is white). The fa
t that either u 
lobbering v or v 
lobbering u does not lead toa graph for whi
h at least one its 
onne
ted 
omponent has a proper 
on�guration implies thefollowing:* the edge uv is su
h that G r fuvg has two 
onne
ted 
omponents U and V , su
h thatu 2 U and v 2 V ,* all the stones on verti
es of U r fug are white,* all the stones on verti
es of V r fvg are bla
k.In this 
ase, one 
an still apply the indu
tion hypothesis by, for instan
e, 
lobbering a stone ofU with the stone pla
ed on u. 15



For any Æ � 1, let us de�ne GÆ, a set of 
onne
ted graphs of degree minimum Æ equipped withproper 
on�gurations, as follows:* the 
omplete graph on Æ + 1 verti
es equipped with any proper 
on�guration belongs toGÆ for all Æ � 1;* for any integer k � 2, let us de�ne Sk(KÆ+1) as the non-disjoint union of k 
opies ofKÆ+1, where one and only one vertex v belongs to all k 
opies of KÆ+1, and no othervertex belongs to more than one 
opy of KÆ+1 (one 
an think of Sk(KÆ+1) as a star K1;k,where ea
h of the k leaves has been expanded into a KÆ, see Figure 11). Then Sk(KÆ+1),equipped with a 
on�guration su
h that the 
olor of the vertex v is rare, belongs to GÆfor all k � 2;* for Æ = 2, the 
y
le on 4 verti
es equipped with any 
on�guration 
ontaining only twobla
k stones, whi
h are pla
ed on 
onse
utive verti
es of the 
y
le, belongs to G2;* no other graph belongs to GÆ.

Figure 11: The graph Sk(KÆ+1).Theorem 11. For all Æ � 1, the set of 
onne
ted graphs G having minimum degree Æ equippedwith a proper 
on�guration C su
h thatrv(G;C) = n� Æis exa
tly GÆ.Proof. The proof works by indu
tion on Æ. The 
ase Æ = 1 is easy to prove. Take an edgeuv su
h that a bla
k stone lies on u and a white stone lies on v. Assume that u has otherneighbours than v. Sin
e the redu
ibility value is n� 1, then all the other neighbours of u arewhite, and form a stable set. This implies that v has no other neighbours than u.16



Now let Æ � 2, and let G be a 
onne
ted graph on n verti
es having minimum degree Æ equippedwith a proper 
on�guration C su
h that rv(G;C) = n � Æ: Let uv be the edge along whi
hthe �rst move of a game ending after exa
tly Æ moves is made. We may assume that the stonelying on u is bla
k, and that this stone 
lobbers a white stone pla
ed on v. Let G0 be the graphobtained after this �rst move. We then 
laim the following:The graph G0 has minimum degree Æ � 1, and all the 
onne
ted 
om-ponents of G0 are of 
ardinality greater than or equal to Æ. Moreover,there is one and only one of these 
omponents whose 
on�guration isproper. (2)The �rst part of the 
laim is obvious sin
e G has minimum degree Æ. The se
ond part derivesfrom Theorem 10. Indeed, if G0 had at least two 
onne
ted 
omponents equipped with proper
on�gurations, then we 
ould make at least Æ � 1 moves on one, and Æ � 1 moves on the other,whi
h is a 
ontradi
tion with rv(G;C) = n � Æ sin
e Æ � 2. Hen
e 
laim (2) is true, and thisimplies the following:One and only one 
onne
ted 
omponent of G0 is a member of GÆ�1, andall the others are white mono
hromati
 
liques on Æ verti
es. (3)From 
laim (2), we know that G0 has a 
onne
ted 
omponent A equipped with a proper 
on�g-uration. This 
omponent has minimum degree Æ � 1, and sin
e rv(G;C) = n� Æ, then one 
anmake exa
tly Æ�1 more moves on A, hen
e A 2 GÆ�1. We know from (2) that all the other 
om-ponents are mono
hromati
, and that they have at least Æ verti
es. Let B be su
h a 
omponent.By de�nition, no vertex of B is adja
ent to v. This implies that B is white mono
hromati
.Indeed, if B were bla
k mono
hromati
, then v 
ould 
lobber u, and this would lead to a graphequipped with a proper 
on�guration of minimum degree Æ. By Theorem 10, one 
ould makeat least Æ more moves, a 
ontradi
tion with rv(G;C) = n� Æ. Now, let w be a neighbour of uin B. The se
ond part of Theorem 10 implies that u 
lobbering w 
an be the �rst of a sequen
eof exa
tly Æ moves, hen
e B is a member of GÆ�1. For all Æ � 2, it is easy to 
he
k that the onlyone possibility is that B is a 
omplete graph on Æ verti
es, whi
h proves the se
ond part of (3).To 
omplete the proof, it remains then to make a 
ase study by applying (3) and using theindu
tion hypothesis. The 
ases Æ = 2 and Æ = 3 have to be studied separately, be
ause of thesporadi
 event of the 
y
le on four verti
es belonging to G2. This (rather straightforward) 
asestudy is left to the reader.3.2.2 Lower boundTheorem 12. Let C0 be a 
utset of a simple, 
onne
ted graph G, and let C1; C2; : : : ; Ck be the
onne
ted 
omponents of GrC0. Let us assume that C0 is small enough, that is to say jC0j < k.Let C be the following 
on�guration of stones on G : a bla
k stone lies on all the verti
es of C0,and a white stone lies on all the verti
es of C1 [C2 [ : : :[Ck. Then the redu
ibility value of Gunder the 
on�guration C is su
h thatrv(G;C) � n�0�jC0jXi=0 jCij � 11A :17



Proof. The theorem is straightforward if C0 is a single point. Indeed, in this 
ase, we have a
utvertex v0, on whi
h lies the only bla
k stone of the 
on�guration. If this stone does not
lobber any white stone, then one may make only one move, 
onsisting in 
lobbering this stonewith a white stone, and the game ends after 1 round. If the bla
k stone 
lobbers some whitestones, then it 
an 
lobber only white stones of a 
ertain 
omponent Ci. Indeed, sin
e v0 is a
utvertex, then the bla
k stone 
an visit only one of the 
omponents of Gr C0.If C0 is a nontrivial 
utset, then the situation is a little bit more 
ompli
ated, sin
e a bla
kstone 
an visit more than one 
omponents of GrC0. The idea is the following. If a bla
k stonevisits more than one 
omponent, then it means that, at some points, this stone had to go ba
kthrough C0, hen
e 
lobbering a white stone. Sin
e C0 
ontains originally no white stones, itmeans that bla
k stones of C0 had to be 
lobbered without having visited any 
omponent ofGrC0. Thus a bla
k stone visiting p 
omponents implies that p� 1 bla
k stones did not visitany 
omponent, hen
e, on average, one bla
k stone 
an visit at most one 
omponent.More formally, given a vertex v 2 C0, let us de�ne s(v), the s
ore of the bla
k stone pla
edon v, as the number of 
omponents of Gr C0 that this bla
k stone will visit during the game.Clearly, we have Xv2C0 s(v) � jC0j: (4)Now, the desired inequality derives from (4). Indeed, in the most favorable 
ase, all the whitestones of the jC0j largest 
omponents and of jC0j, but for one, were 
lobbered, hen
e thejC0jXi=0 jCij � 1 in the formula.Remark 2. This bound is tight for the path on n verti
es, where the worst 
on�guration is theone where the 
entral vertex has a rare 
olor (see Figure 12).
Figure 12: The path on n verti
es has maximum redu
ibility value equal to �n2 �.Indeed, the bound of the previous theorem says that rv(G;C) � n � �1 + bn2 
 � 1� = dn2 e,and it is easy to see that maxrv(Pn) = dn2 e (where Pn denotes the path on n verti
es). Letus brie�y show this. Let fv1; : : : ; vng denotes the vertex set of Pn su
h that there is an edgebetween vi and vi+1 for all i = 1; : : : ; n� 1. Let us 
all 2-blo
k a non-mono
hromati
 intervalvi; : : : ; vj , 1 � i < j � n su
h that there exists i � k < j for whi
h verti
es vi; : : : ; vk are ofthe same 
olor, and verti
es vk+1; : : : ; vj are of the same 
olor. Similarly, let us 
all 3-blo
k anon-mono
hromati
 interval vi; : : : ; vj , 1 � i < j � n su
h that there exists i � k < l < j forwhi
h verti
es vi; : : : ; vk are of the same 
olor, verti
es vk+1; : : : ; vl are of the same 
olor, and18



verti
es vl+1; : : : ; vj are of the same 
olor. Now partition fv1; : : : ; vng into a 
ertain number of2-blo
ks and one 3-blo
k. Clearly, it is always possible to do this. Now, let us look at a 
ertain2-blo
k B, independently form the other blo
ks. It is 
lear that at least b jBj2 
 verti
es of B 
anbe 
lobbered by a vertex of B. Similarly, at least b jBj2 
 verti
es of B 
an be 
lobbered by avertex of a given 3-blo
k B. Hen
e, we 
an laways 
lobber at least bn2 
 verti
es of Pn, whi
hmeans maxrvPn � n� bn2 
 = dn2 e.Note that the previous theorem does not apply for the 
ase of 
y
les, be
ause any 
utset has atleast as many verti
es as the number of remaining 
omponents.Referen
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