
New results about Solitaire Clobber 2Eri Duhêne�, Sylvain Graviery, Julien MonelzERTé "Maths à modeler"AbstratSolitaire Clobber is a one-player game that was introdued by Demaine et al. in 2002.In the variant Solitaire Clobber 2, the aim is to delete the maximum number of stones thatare initially plaed on the verties of a graph, aording to spei�ed rules. In this paper, wepresent new results when one play on multipartite graphs, and we then onsider extremalquestions about the maximum number of stones one an delete.1 Introdution and de�nitionsWe onsider the game Solitaire Clobber 2 introdued in [3℄. This game is a variant of SolitaireClobber de�ned by Demaine et al. in [1℄, whih is itself a solitaire variant of the two-playergame Clobber de�ned by Albert et al. in [2℄.Solitaire Clobber 2 (SC2, in its abbreviated form) is a one-player game de�ned by the followingrules: blak and white stones are plaed on the verties of a given graph G (one per vertex). Amove onsists in piking a stone and lobbering another one of the opposite olor loated on anadjaent vertex. The lobbered stone is removed from the graph and is replaed by the pikedone. The goal is to �nd a suession of moves that minimizes the number of remaining stones.A game on�guration of SC2 is said to be k-reduible if there exists a suession of moves thatleaves at most k stones on the graph. The reduibility value of a game on�guration C is thesmallest integer k for whih C is k-reduible.In [3, 4℄, Solitaire Clobber 2 was investigated on paths, yles, and trees. The reduibility valueof any on�guration on a path or a yle of size n an be omputed in linear time O(n). On atree, there exists an algorithm working in O(n9) operations. In [5℄, it was proved that any gameon�guration on a Hamming graph is 1-reduible, exept for hyperubes whih are 2-reduible.For onveniene for the reader, we may often mix up a vertex with the stone it supports. Thelabel or olor of a vertex will de�ne the olor of the stone loated on it. We may also say that"a vertex lobbers another one", instead of talking of the orresponding stones.�Post-Do in the University of Liège, Belgium, email:eduhene1�yahoo.fryCNRS, email:sylvain.gravier�ujf-grenoble.frzINPG Professor, Grenoble, Frane email:julien.monel�g-sop.inpg.fr1



Given a game on�guration C on a graph G, we say that a label/olor  is rare on a subgraphS of G if there exists a unique vertex v 2 S suh that v is labeled . On the ontrary,  is saidto be ommon if there exist at least two verties of this olor in S. A on�guration is said tobe monohromati if all the verties have the same olor. It is said proper otherwise. In all thispaper, only proper on�gurations will be onsidered.If  is a olor, denote by  the opposite olor. If v is a vertex of G, the olor of v will be denotedby (v).Aording to a probabilisti result of Ruszinkó (f. [6℄), almost all graphs are 1-reduible. Thismeans that the struture of game on�gurations whih are not 1-reduible is an interestingproblem. In the next setion of this paper, we study the ase of omplete multipartite graphs,and we deide when a on�guration annot be 1-reduible. For these graphs, we give a gen-eral formula whih omputes the reduibility value of any game on�guration in linear time.In setion 3, we onsider extremal questions about SC2: given a graph G, we investigate theproper on�gurations that minimize and maximize the reduibility value on G. In [4℄, it wasshowed that the reduibility value of a yle Cn is at most bn=3. Moreover, for all n thereexists a on�guration for whih this bound is tight. In the present paper, we laim that on anygraph with n verties, the reduibility value is at most equal to n� Æ, where Æ is the minimumdegree of the graph. Therefore, for any �xed Æ, we �nd out the only on�gurations for whihthe reduibility value is equal to n� Æ.2 SC2 played on omplete multipartite graphs2.1 SC2 on omplete bipartite graphsLet G = (V;E) be a omplete bipartite graph. Therefore, G an be splitted into two stablesets, say S0 and S1. A game on�guration on a omplete bipartite graph will be representedby a "two rows" layout, eah row refering to a stable set Si with i 2 f0; 1g. Figure 1 shows anexample of a on�guration on a omplete bipartite graph. One an move any stone of a row toany stone of the other row having the opposite olor. Moves inside a row are not allowed.
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Figure 1: A game on�guration on a omplete bipartite graphIn [1℄, Demaine et al. de�ne an invariant Æ on bipartite graphs and available for both gamesSC and SC2. The deription of Æ follows.Let C be a game on�guration on a bipartite graph G. We alloate the olor white the to setS0, and the olor blak to S1. A stone of C is said to be lashing if its olor di�ers from the2



olor of the stable set to whih it belongs. Denote by Æ(C) the following quantity:Æ(C) = number of stones + number of lashing stonesIn their paper, Demaine et al. proved that (Æ(C) mod 3) never hanges during the game, wherea mod b is the remainder of the division of a by b. This implies that any 1-reduible on�gura-tion on a bipartite graph satis�es Æ(C) mod 3 6= 0.A omplete bipartite graph is said to be balaned if S0 and S1 have the same size. It is saidwell-olored if S0 and S1 are both monohromati. In a well-olored on�guration, one do notlose generality by assuming that the stones of S0 (resp. S1) are white (resp. blak). Under thisassumption, there is no lashing stone in a well-olored on�guration.2.1.1 The reduibility value of balaned omplete bipartite graphsWe now give a �rst result about the reduiblity value of a well-olored balaned ompletebipartite graph.Lemma 1. A well-olored balaned omplete bipartite graph is 1-reduible if Æ mod 3 6= 0. Oth-erwise, the reduibility value is equal to 2.Proof. Let C be a game on�guration on a well-olored balaned omplete bipartite graph. De-note by n the size of eah stable set. Then Æ(C) = 2n. Aording to the result of Demaine et al.,a neessary ondition for C to be 1-reduible is that Æ(C) mod 3 6= 0, whih means n mod 3 6= 0.Let n � 4. Then C an be redued to a well-olored balaned omplete bipartite graph whereeah stable set has a size equal to n� 3. The redution is the following:ddddtttt! dtddt tt! tddd tt! dddtt! tddt! t dd! dtBy applying reursively this operation, and aording to the value (n mod 3), C an be reduedto one of these three on�gurations:dt ddtt dddtttn mod 3 = 1 n mod 3 = 2 n mod 3 = 0One learly see that when n mod 3 6= 0, the above on�gurations are 1-reduible. When n mod3 = 0, the above on�guration is 2-reduible and we an not improve this redution beause ofthe invariant.Remark 1. When n mod 3 6= 0, the value Æ(C) sets a orrelation between the olor and theloation of the remaining stone. When n mod 3 = 1, the last stone will be lashing. It will notbe the ase when n mod 3 = 2.Lemma 2. A balaned omplete bipartite graph is 1-reduible if Æ mod 3 6= 0. Otherwise, thereduibility value is equal to 2. 3



Proof. For more onveniene, we arrange "graphially" S0 and S1 as follows: on S0 the whitestones are plaed on the left, and the blak ones on the right. We proeed onversely on S1.This operation splits G into three omplete bipartite subgraphs, of respetive lengths L1, L2and L3, as shown on Figure 2.
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LFigure 2: Splitting a balaned omplete bipartite graphThe values L1 and L3 are the lengths of both well-olored balaned parts, whereas L2 is dedi-ated to the monohromati part.Aording to this notation, Æ(C) = 2L1 + 3L3 + 4L3. Hene Æ(C) mod 3 = 0 if and only ifL1 mod 3 = L3 mod 3. Without loss of generality, assume that the monohromati part L2 iswhite. Sine there exists a blak stone somewhere, we have it lobber the whole monohromatipart of size L2, as shown on Figure 3:
2L1 L3 L1 L3LFigure 3: Clobbering the monohromati part of length L2We now onsider the resulting graph as the union of two well-olored balaned omplete bipartitegraphs, of respetive sizes L1 and L3. We distinguish two ases:* L1 mod 3 6= L3 mod 3.Now suppose that either L1 mod 3 or L3 mod 3 is equal to 1. Without loss of generality,assume that L1 mod 3 = 1. Then from Lemma 1 and Remark 1, we redue the left partto a single lashing stone. If L3 = 0, then it is done. Otherwise, we know that L3 is atleast equal to 2. By playing as shown on Figure 4, we redue the graph to a well-oloredbalaned omplete bipartite of length L3 � 1. Sine L3 � 1 6= 0 mod 3 and from Lemma1, this resulting graph is 1-reduible.
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1 2

L3 L  −13Figure 4: Redution in a speial aseNow suppose that neither L1 mod 3 nor L3 mod 3 is equal to 1. Therefore and withoutloss of generality, we an assume L1 mod 3 = 2 and L3 mod 3 = 0. By lemma 1, weredue the left part to a single non lashing stone. If L3 = 0, then it is done. Otherwise,L3 � 3. We proeed as depited by Figure 4 to redue the on�guration. This oper-ation yields a well-olored balaned omplete bipartite graph of length (L3 � 1). Sine(L3 � 1) mod 3 = 2, we onlude to the 1-reduibility thanks to Lemma 1.* L1 mod 3 = L3 mod 3.If L1 and L3 are not multiples of 3, then from Lemma 1, both parts are 1-reduible.Therefore, the whole on�guration is 2-reduible. If L1 mod 3 = L3 mod 3 = 0, we playas depited by Figure 5.
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L  −11 L  −13Figure 5: The ase L1 mod 3 = L3 mod 3 = 0The resulting on�guration is a balaned omplete bipartite graph withL1 mod 3 = L3 mod 3 = 2, whih is 2-reduible.2.1.2 The reduibiliy value of non-balaned omplete bipartite graphsWe now onsider the general ase on Kn;m with jS0j = n > jS1j = m > 0. Unlike balanedomplete bipartite graphs, we will show that the reduibility value may no more be boundedby a onstant. For example, it su�es to hoose jS1j = 1 and jS0j > jS1j, put a blak stone onS1 and only white stones on S0. In suh a on�guration, only one move is available, leading toa reduibility value equal to jS0j.In order to desribe a game on�guration on Kn;m, we onsider the following set of parameters:5



The values nb and nw denote respetively the numbers of blak and white stones in S0. Obviouslywe have n = nb + nw. Similarily, mb and mw denote respetively the numbers of blak andwhite stones in S1.Without loss of generality, we onsider on�gurations satisfying nb � nw. Under this ondition,we de�ne a nonnegative integer q = n� 2nb.With these parameters, a game on�guration belongs to one of these two forms:(F1): Con�gurations for whih q �m �mb � 1.(F2): Con�gurations for whih q �m > mb � 1.Figure 6 illustrates the form (F1) through three examples, aording to the sign of (q�m) andthe parity of (n�m). We will understand why further.
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Figure 6: Three examples of on�gurations in the form (F1)Figure 7 illustrates the seond form. In that ase, the stable set S0 an be partitionned intothree parts:L1 ontains as many blak stones than white ones and satis�es jL1j = 2nb.L2 and L3 are monohromati parts, of respetive sizes (q �m) and m.
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mFigure 7: A on�guration in the form (F2)We will prove that on�gurations in the form (F1) have a reduibility value equal to 1 or 2.The results will be similar to the "balaned ase". For the on�gurations in the form (F2),we will present a formula depending on the values q, m and mb. For suh on�gurations, we6



introdue new results that will help us to onlude.Let C2 be a game on�guration in the form (F2). We de�ne the integer funtion f as:f(C2) = q �m�mbBy de�nition of (F2), we have f(C2) � 0.The following lemma asserts that f never dereases during the game. Moreover, it adds thatany move from a on�guration in (F2) yields a resulting on�guration also in (F2).Lemma 3. Let C2 be a game on�guration in (F2), and let R be the resulting on�gurationafter an arbitrary move from C2. If R is not a stable set, then R is also in (F2) and satis�esf(C2) � f(R).Proof. Denote by q0;m0 and m0b the values of q;m and mb after a move from C2 to R. Thesevalues are de�ned sine R is supposed to be a on�guration on a omplete bipartite graph.There are four moves to onsider:1. One play a blak stone from S0 to S1. Then m0b = mb+1, q0 = q+1 and m is unhanged.This implies f(R) = f(C2).2. One play a white stone from S0 to S1. We get q0 = q � 1, m0b = mb � 1, and m isunhanged. We still have f(R) = f(C2).3. One play a blak stone from S1 to S0. Then m0b = mb � 1, m0 = m� 1, and q0 = q � 2.Therefore f(R) = f(C2).4. One play a white stone from S1 to S0. Then m0 = m� 1, q0 = q+2 and mb is unhanged.Therefore f(R) = f(C2) + 3.Moreover, sine f is monotoni, we learly have q0�m0 > m0b� 1, whih means that R is in theform (F2).We now have olleted all the neessary results to prove our main theorem about the reduibilityof Kn;m.Theorem 4. Let C be a game on�guration on Kn;m with n > m > 0.If q �m � mb � 1, i.e., C is in (F1), then C is 1-reduible if Æ(C) mod 3 6= 0, and 2-reduibleotherwise.If q�m > mb� 1, i.e., C is in (F2), then C has a reduibility value equal to (q�m�mb+2).Proof. C is in the form (F1). We will prove that we an redue C to a non-monohromatibalaned omplete bipartite graph, so as to apply Lemma 2. We distinguish three ases (seeFigure 6). 7



* q �m < 0 and (n �m) is even. Let s be any stone of S1. Sine (n �m) is even, thismeans that we an play exatly (n �m) stones (preisely (n �m)=2 blak stones, and(n�m)=2 white ones) from S0 to s by alternating blak and white moves. The resultingon�guration R is thus a balaned omplete bipartite graph. Note that S1 is unhangedafter this set of operations. Sine q �m < 0, there exists at least a blak and a whitestone in the stable set S0 of R, whih is onsequently not monohromati.* q�m < 0 and (n�m) is odd. As previously, we play exatly (n�m�1) stones (preisely(n �m � 1)=2 blak stones, and (n �m � 1)=2 white ones) from S0 to any vertex s ofS1 by alternating blak and white moves. In the resulting on�guration R, S0 ontainsexatly (m+1) stones and is not monohromati, whereas S1 is unhanged. We now playany move from S0 to S1. This is possible sine S0 is not monohromati. This operationyields a non-monohromati balaned Km;m.* q �m � 0. We �rst play 2nb stones (preisely nb stones of eah olor) from S0 to anyvertex s of S1 by alternating white and blak moves. We then play (q �m) white stonesfrom S0 to S1. This is possible sine mb � (q �m+ 1) for a on�guration in (F1). Theresulting on�guration R ontains at least a blak stone in S1, and at least a white onein S0. Moreover, R is balaned.In eah of these three ases, we yield a proper on�guration R whih is balaned. We thenapply Lemma 2 on R to onlude.C is in the form (F2). We �rst prove that there exists a way of play that leaves exatly(q �m�mb + 2) stones on the graph.If mb > 0, we play the 2nb stones from L1 to any vertex s of S1 by alternating white and blakmoves. After this operation, S0 is monohromati (of olor white). We then play (mb�1) whitestones from L2 to S1. The single remaining blak stone (whih belongs to S1) then walks inzigzags to lobber all the white stones of L1 and S1. The resulting on�guration is a stable setontaining a blak stone and (q �m�mb + 1) white ones (oming from L2).Ifmb = 0, then L1 is not empty, sine we do not onsider monohromati on�gurations. There-fore, we play a blak stone from L1 to S1. We get a resulting on�guration C 0 in (F2) withparameters m0b = mb+1 and q0 = q+1. We now apply the same method as above, whih leaves(q0 �m�m0b + 2) = (q �m�mb + 2) stones.We now prove that any suession of moves leaves at least (q�m�mb+2) stones on the graph.We onsider an optimal suession of moves on a on�guration C in (F2), i.e., a suession ofmoves that leaves the minimum number of stones. Denote by C 0 the �nal on�guration aftersuh a way of play. No move is playable from C 0.We �rst suppose that C 0 is not a stable set. Aording to Lemma 3, C 0 belongs to (F2) andsatis�es f(C 0) � f(C). Denote by q0;m0;m0b; L01; L02; L03 the parameters previously de�ned andrelative to C 0.Sine m0 > 0, L03 is not empty, whih means that there exists a white stone on S0. Sine nomove is playable from C 0, the set S1 is monohromati of olor white, i.e., m0b = 0, and L01 is8



empty.Moreover, the monotoniity of the funtion f ensures thatq0 �m0 �m0b = q0 �m0 � q �m�mb (1)Sine there is at least a stone in L03 and another one in S1, the number of remaining stones onC 0 is at least jL02j+ 2. Then jL02j+ 2 = q0 �m0 + 2 � q �m�mb + 2 aording to (1).Now assume that C 0 is a stable set. This means that the last move of the optimal way ofplay was done from S1 to S0. It remains optimal if we onsider this last move in the oppositediretion (i.e., from S0 to S1). Now onsider this new optimal way of play where C 0 is not astable set and refer to the previous ase to onlude.2.2 SC2 played on omplete multipartite graphs (with at least three parts)Let P > 2. Denote by S0; S1; : : : ; SP�1 the P stable sets of a omplete P -partite graph G.Among these P stable sets, denote by M0; : : : ;Mi�1 the i stable sets whose size is maximum,i.e., jMj j � jSlj for all j = 0 : : : i� 1 and l = 0 : : : P � 1. We all them the maximum stable setsof G.Denote by G0 the indued subgraph GnfM0; : : : ;Mi�1g. For more onveniene, we graphiallyde�ne "raws" of stones on G n G0: if t = jM0j = : : : = jMi�1j, then a raw Rj with 1 � j � tde�nes a set of i stones (one stone per maximum stable set) suh that S1�j�tRj is the set ofall the stones belonging to G nG0. Of ourse, the number of partitions of this form is very large(eah new "graphial" arrangement of the stones in G nG0 de�nes a new set of raws).Finally, denote by skj (with 1 � j � t and 0 � k < i) the vertex that both belongs to Mk andRj.Figure 8 illustrates these notations.
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Figure 8: An example of a on�guration on a P -partite graph (P = 6 and i = 3)The reduibility value of P -partite graphs depends on the number i of maximum stable sets.When i > 1, any game on�guration is 1-reduible. The reduibility value may be far largerwhen there is a unique maximum stable set. 9



Theorem 5. Let C be a game on�guration on a P -partite graph (with P > 2) having at leasttwo maximum stable sets. Then C is 1-reduible.Proof. Denote by t the value jM0j, i.e. the size of eah maximum stable set.If t = 1, then the graph is a lique, whih is learly 1-reduible (see [5℄ for more details).Now onsider t > 1 and assume that the result is true for all 1 � t0 < t. We onsider two ases:1. G nG0 is monohromati of olor . Sine G is not monohromati, there exists a vertexx in G0 whose olor is . Now have x lobber the monohromati raw Rt, and then anystone of the raw Rt�1. In the resulting non-monohromati on�guration, the size of themaximum stable sets is (t� 1), so that we an apply the indution hypothesis.2. G n G0 is not monohromati and i � 3. We onsider a partition of G n G0 into t raws,suh that Rt is not monohromati. Suh a partition is possible sine G n G0 is notmonohromati. Besides, sine i � 3, there exists a stone of Rt whose olor is not rarein Rt. Without loss of generality, assume that s0t satis�es this property. For the samereasons, either s1t�1 or s2t�1 has a ommon olor. Assume that (s1t�1) is not rare.The raw Rt is now seen as a lique. From [5℄, we know that liques are strongly 1-reduible,whih means that we an hoose the loation and the olor of the unique remaining stone(provided some onditions are ful�lled, whih will be the ase here). Hene we redueRt to a single stone of olor (s1t�1) and loated on s0t . We then play from s0t to s1t�1,the resulting on�guration is not monohromati, so that we an apply the indutionhypothesis.3. G nG0 is not monohromati and i = 2. As previously, hoose a partition into t raws suhthat Rt is not monohromati. Sine P > 2, at least a olor, say blak, appears in G0.Aording to the olors of Rt�1, we play as follows to get a non monohromati resultinggraph, whose size of the maximum stable sets is (t� 1). We onlude to 1-reduibility byapplying the indution hypothesis.
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Figure 9: Playing when i = 2 and G nG0 is not monohromati
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When the graph admits an unique maximum stable set M0 of size t, we de�ne the values n = t,m as the number of stones in G0 and mb the number of blak stones in G0. The values nb andnw are respetively the numbers of blak and white stones in M0. Without loss of generality,assume that nb � nw. We thus de�ne q as the value n � 2nb. We denote by M 0 a stable setof G0 whose size is maximum (i.e, a "seond maximum" stable set in G). We all its size m0.Finally, denote by G00 the graph G0 nM 0. Figure 10 shows a P -partite graph with an uniquemaximum stable set.
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MFigure 10: An example of a P -partite graph with an unique maximum stable setWith the above notations, we extend the funtion f to a omplete P -partite graph having anunique maximum stable set (with P � 2). We de�ne f as f(C) = q �m �mb. Lemma 3 isthus extended to P -partite on�gurations:Lemma 6. Let C be a game on�guration on a omplete P -partite graph having an uniquemaximum stable set (with P > 2) satisfying q � m > mb � 1, and let R be the resultingon�guration after an arbitrary move from C. Then R is also P -partite (with P � 2), has anunique maximum stable set and still satis�es f(C) � f(R).Proof. If is straightfoward to see that R is P -partite with P � 2.By hypothesis, the on�guration C satis�esq = n� 2nb � m+mb = mb + jM 0j+ jG00j � mb + jM 0j+ 1Hene we have n � mb + 2nb + jM 0j+ 1Sine C is a proper on�guration, the values mb and nb an not be simultaneously equal to 0.This implies that n � jM 0j+ 2. Therefore, any move from C leads to a on�guration R whereM0 remains the unique maximum stable set. This result ensures that the funtion f is de�nedon R.If we onsider any move between G0 and M0, then we refer to Lemma 3 to assert that f(C) �f(R). And if we onsider a move inside of G0, we remark that q is unhanged and the values mand mb are not inreased. This also implies f(C) � f(R).11



Theorem 7. Let G be a P -partite graph (with P > 2) having an unique maximum stable set.Any game on�guration on G suh that q�m � mb� 1 is 1-reduible. Any game on�gurationon G suh that q �m > mb � 1 has a reduibility value equal to q �m�mb + 2.Proof. Any game on�guration satisfying q < m is 1-reduible:Aording to n, we hoose a "minimal" ounter-example C, i.e. C satis�es q < m, is not1-reduible, and there is no other on�guration of this type whose size of M0 is smaller than n.We �rst suppose that nb 6= 0 and we onsider three ases for C:* n �m0 = 1. We play any authorized move from M0 to M 0: this is possible sine nw �nb > 0. Therefore, the resulting on�guration is not monohromati, and admits at leasttwo maximum stable sets of size n� 1 (M0 and M 0). From Theorem 5, it is 1-reduible,whih ensures the ontradition.* n � m0 � 2 and nb � 2. We play suessively a blak and a white stone from M0 toany stone of G0. The resulting on�guration is not monohromati sine there remains atleast a stone of eah olor in M0, and still satis�es q < m (both values are unhanged).If jM0j = jM 0j after the operation, then it is 1-reduible from Theorem 5. If not, thismeans that M0 remains the unique maximum stable set, but its size is now smaller thann, whih yields a ontradition by minimality of C.* n �m0 � 2 and nb = 1. If mb > 0, we play any white stone from M0 to any blak oneof G0. The resulting on�guration is not monohromati, has an unique maximum stableset, still sati�es q < m (sine m is unhanged and q is dereased by 1), and is smallerthan C. It thus ontradits the minimality of C. Hene we have mb = 0, whih meansthat G0 is monohromati white. With the unique blak stone of the on�guration, welobber alternately stones of M0 and G", until M 0 and M0 have the same size. This ispossible, sine the number of stones in G" is equal or greater than q + 1�m0. Note thatin the ase where jG"j exatly equals q+1�m0, the blak stone will delete the entire G"and then alternately lobber all the white stones between M 0 and M0. In any ase, weredue C to a single stone, whih ontradits its existene.Therefore C satisi�es nb = 0. We onsider two ases:* G0 is monohromati blak. Then play any white stone from M0 to G0. The resultingon�guration is not monohromati (sine there remains at least a blak stone in G0),and still satis�es q < m (m is unhanged and q is dereased by 1). In the resultingon�guration, if M0 and M 0 have the same size, we onlude to 1-reduibility thanksto Theorem 5. Otherwise, M0 is the unique maximum stable set and it ontradits theminimality of C.* G0 is not monohromati. Let s be any blak stone of G0. Then s lobers any white stoneof M0 and then any other white stone of G0. The parameters q and m are both dereasedby one after these moves. One again, the minimality of C is ontradited. Note that theresulting on�guration ontains is still P -partite with P � 3. Indeeed, if it was bipartite,this would mean that C ontains at least two maximum stable sets, sine q < m.12



Any game on�guration satisfying 0 � q �m � mb � 1 is 1-reduible:As previously, we hoose C as a minimal on�guration satisfying 0 � q �m � mb � 1, not 1-reduible, and suh that there is no other on�guration of this type whose size of M0 is smallerthan n. Note that this implies mb > 0.We �rst suppose that nb 6= 0. As previously, if n�m0 = 1, we play an authorized move fromM0 to G0, so as to apply Theorem 5. If n�m0 > 1, we play suessively a blak and a whitestone from M0 to any stone of G0: the resulting on�guration R has its parameters q;m and mbunhanged, and is not monohromati, sine mb � 1 and there are at least m > 0 white stonesin M0. As previously, we either onlude to the 1-reduibility with Theorem 5 (if jM0j = jM 0jin R), or to the non-minimality of C.Hene C satis�es nb = 0. This means that jM0j is monohromati white. We onsider twoases:* G0 is not monohromati blak.If G0 ontains at least three non empty stable sets, then play any blak stone s from G0to any white stone of M0 and then to any white stone of G0. The resulting on�gurationR is still P -partite with P � 3, and is not monohromati (there is at least a blak stonein G0 and a white one in M0). Besides, q and m are both dereased by 1, and mb isunhanged, whih implies that we still have 0 � q �m � mb � 1. We either onlude tothe 1-reduibility thanks to Theorem 5 (if jM0j = jM 0j in R), or to the non-minimality ofC.IfG0 ontains exatly two stable sets and ifmb � 2, we apply the same method by hoosinga blak stone s suh that s does not belong to a stable set of size one. It is always possibleto �nd suh a stone, sine there are at least three stones in G0 (two blaks and a white)and only two stable sets. With this hoie, the resulting on�guration remains tripartite.If G0 ontains exatly two stable sets and if mb = 1, this implies q = m. There are asmany stones in G0 than in M0. We use the only blak stone to lobber alternately thewhite stones of M0 and G0. This yields a unique stone on the graph in the end.* G0 is monohromati blak.If q > m, then play any white stone from M0 to G0. After this operation, q and mb aredereased by 1 and m is unhanged. Hene we still have 0 � q�m � mb�1. The resultingon�guration R is not monohromati, sine there are at least a blak and a white stonein G0. We either onlude to the 1-reduibility with Theorem 5 (if jM0j = jM 0j in R), orto the non-minimality of C.If q = m, we forget the edges inside G0 and see C = G0 [M0 as a well-olored balanedomplete bipartite graph. From Lemma 2, if Æ(C) mod 3 6= 0, then C is 1-reduible.And if Æ(C) mod 3 = 0, any white stone of M0 lobbers suessively two blak stones ofG0: this operation uses an inside edge of G0, and thus hanges the value of Æ(C) mod 3.Thanks to Lemma 2, we onlude to the 1-reduibility of C.Any game on�guration satisfying q �m > mb � 1 has a reduibility value equal toq �m�mb + 2: 13



Let C be a game on�guration satisfying q�m > mb� 1. If we forget the edges inside of G0, Can be seen as a bipartite graph G0 [M0, where M0 is the largest stable set. The parametersq;m and mb have been extended from bipartite to multipartite graphs. From Theorem 4 aboutomplete bipartite graphs, we onlude that the reduibility value of C is at most q�m�mb+2.We now onsider C 0, a �nal on�guration after having played an optimal suession of movesfrom C. If C 0 is P -partite with P � 2, denote by m0; n0; n0b;m0b and q0 the parameters of C 0. Westudy two ases.If C 0 is P -partite with P � 3, then neessarily n0b = m0b = 0. The number of remainingstones on C 0 is at least jM0j + jG0j � q0 + 2. Sine f is monotoni from Lemma 6, we haveq0 + 2 � q �m�mb + 2.If C 0 is P -partite with P < 3, then there exists a on�guration C" on a omplete bipartitegraph in the optimal way of play from C to C 0. Sine C" satisifes q�m > mb�1 (aording toLemma 6), we an apply Theorem 4 to prove that the reduibility value of C 00 is greater thanq �m�mb + 2.3 Extremal questionsLet us denote by rv(G;C) the reduibility value of G with on�guration C, and denote bymaxrv(G) the maximum of these values taken over all proper on�gurations, and minrv(G) theminimum of these values taken over the same set.The purpose of this setion is to estimate the values of minrv(G) and maxrv(G) for all graphG.3.1 Value of minrv(G)We determine the exat value of minrv(G) for all graph G, and prove that it is simply equal tothe number of onneted omponents of G.Lemma 8. Let T be a tree. Then we haveminrv(T ) = 1:Proof. The proof works by indution on the number of verties of T . If T has one vertex, thenthe statement is trivial. If T has at least two verties, then let u be a leaf of T . By indution,the tree T 0 := T r fug admits a on�guration C 0 suh that rv(T 0; C 0) = 1. Let v be the uniqueneighbour of u in T , and let C be the following on�guration on T :* C(w) = C 0(w) for all w 6= u; v,* C(u) = C 0(v),* C(v) = blak if C 0(v) = white, and C(v) = white otherwise.It is easy to hek that rv(T;C) = 1 (hint: the �rst move is u lobbering v).14



Theorem 9. Let G be a onneted graph. Then we haveminrv(G) = 1:Proof. This is a straightforward onsequene of Lemma 8: sine G is onneted, then it admitsa spanning tree T , that is a tree whih is a subgraph of G having the same vertex set as G.Lemma 8 implies the existene of a on�guration C suh that rv(T;C) = 1, whih impliesrv(G;C) = 1.3.2 Bounds on maxrv(G)3.2.1 Upper boundWe prove an upper bound related to the minimum degree of the graph, and we haraterize thegraphs for whih this bound is tight.Theorem 10. Let G be a graph on n verties of minimum degree Æ, and let C be a properon�guration of G. Then we have rv(G;C) � n� Æ:Furthermore, one an make at least Æ moves by, step by step, greedily hoosing any move whihleaves at least one onneted omponent with a proper on�guration.Proof. The proof works by indution on Æ. If Æ = 1, then there exists at least an edge uv suhthat there are stones of di�erent olors on u and v, hene one an make at least one move.If Æ � 2, then there exists at least an edge uv suh that there are stones of di�erent olorson u and v. Playing along this edge (either u lobbering v or v lobbering u) surely reduesto a graph of minimum degree at least Æ � 1, but the graph may not be onneted, and theon�gurations on the onneted omponents of this graph may not be proper. However, it isenough to get at least one onneted omponent whose on�guration is proper to apply theindution hypothetis. Now two ases follow.If playing along the edge uv (either u lobbering v or v lobbering u) leads to a new graph forwhih at least one its onneted omponent C has a proper on�guration, then we an applythe indution hypothesis on C. If not, then let us assume that the stone on u is blak (and thenthe stone on v is white). The fat that either u lobbering v or v lobbering u does not lead toa graph for whih at least one its onneted omponent has a proper on�guration implies thefollowing:* the edge uv is suh that G r fuvg has two onneted omponents U and V , suh thatu 2 U and v 2 V ,* all the stones on verties of U r fug are white,* all the stones on verties of V r fvg are blak.In this ase, one an still apply the indution hypothesis by, for instane, lobbering a stone ofU with the stone plaed on u. 15



For any Æ � 1, let us de�ne GÆ, a set of onneted graphs of degree minimum Æ equipped withproper on�gurations, as follows:* the omplete graph on Æ + 1 verties equipped with any proper on�guration belongs toGÆ for all Æ � 1;* for any integer k � 2, let us de�ne Sk(KÆ+1) as the non-disjoint union of k opies ofKÆ+1, where one and only one vertex v belongs to all k opies of KÆ+1, and no othervertex belongs to more than one opy of KÆ+1 (one an think of Sk(KÆ+1) as a star K1;k,where eah of the k leaves has been expanded into a KÆ, see Figure 11). Then Sk(KÆ+1),equipped with a on�guration suh that the olor of the vertex v is rare, belongs to GÆfor all k � 2;* for Æ = 2, the yle on 4 verties equipped with any on�guration ontaining only twoblak stones, whih are plaed on onseutive verties of the yle, belongs to G2;* no other graph belongs to GÆ.

Figure 11: The graph Sk(KÆ+1).Theorem 11. For all Æ � 1, the set of onneted graphs G having minimum degree Æ equippedwith a proper on�guration C suh thatrv(G;C) = n� Æis exatly GÆ.Proof. The proof works by indution on Æ. The ase Æ = 1 is easy to prove. Take an edgeuv suh that a blak stone lies on u and a white stone lies on v. Assume that u has otherneighbours than v. Sine the reduibility value is n� 1, then all the other neighbours of u arewhite, and form a stable set. This implies that v has no other neighbours than u.16



Now let Æ � 2, and let G be a onneted graph on n verties having minimum degree Æ equippedwith a proper on�guration C suh that rv(G;C) = n � Æ: Let uv be the edge along whihthe �rst move of a game ending after exatly Æ moves is made. We may assume that the stonelying on u is blak, and that this stone lobbers a white stone plaed on v. Let G0 be the graphobtained after this �rst move. We then laim the following:The graph G0 has minimum degree Æ � 1, and all the onneted om-ponents of G0 are of ardinality greater than or equal to Æ. Moreover,there is one and only one of these omponents whose on�guration isproper. (2)The �rst part of the laim is obvious sine G has minimum degree Æ. The seond part derivesfrom Theorem 10. Indeed, if G0 had at least two onneted omponents equipped with properon�gurations, then we ould make at least Æ � 1 moves on one, and Æ � 1 moves on the other,whih is a ontradition with rv(G;C) = n � Æ sine Æ � 2. Hene laim (2) is true, and thisimplies the following:One and only one onneted omponent of G0 is a member of GÆ�1, andall the others are white monohromati liques on Æ verties. (3)From laim (2), we know that G0 has a onneted omponent A equipped with a proper on�g-uration. This omponent has minimum degree Æ � 1, and sine rv(G;C) = n� Æ, then one anmake exatly Æ�1 more moves on A, hene A 2 GÆ�1. We know from (2) that all the other om-ponents are monohromati, and that they have at least Æ verties. Let B be suh a omponent.By de�nition, no vertex of B is adjaent to v. This implies that B is white monohromati.Indeed, if B were blak monohromati, then v ould lobber u, and this would lead to a graphequipped with a proper on�guration of minimum degree Æ. By Theorem 10, one ould makeat least Æ more moves, a ontradition with rv(G;C) = n� Æ. Now, let w be a neighbour of uin B. The seond part of Theorem 10 implies that u lobbering w an be the �rst of a sequeneof exatly Æ moves, hene B is a member of GÆ�1. For all Æ � 2, it is easy to hek that the onlyone possibility is that B is a omplete graph on Æ verties, whih proves the seond part of (3).To omplete the proof, it remains then to make a ase study by applying (3) and using theindution hypothesis. The ases Æ = 2 and Æ = 3 have to be studied separately, beause of thesporadi event of the yle on four verties belonging to G2. This (rather straightforward) asestudy is left to the reader.3.2.2 Lower boundTheorem 12. Let C0 be a utset of a simple, onneted graph G, and let C1; C2; : : : ; Ck be theonneted omponents of GrC0. Let us assume that C0 is small enough, that is to say jC0j < k.Let C be the following on�guration of stones on G : a blak stone lies on all the verties of C0,and a white stone lies on all the verties of C1 [C2 [ : : :[Ck. Then the reduibility value of Gunder the on�guration C is suh thatrv(G;C) � n�0�jC0jXi=0 jCij � 11A :17



Proof. The theorem is straightforward if C0 is a single point. Indeed, in this ase, we have autvertex v0, on whih lies the only blak stone of the on�guration. If this stone does notlobber any white stone, then one may make only one move, onsisting in lobbering this stonewith a white stone, and the game ends after 1 round. If the blak stone lobbers some whitestones, then it an lobber only white stones of a ertain omponent Ci. Indeed, sine v0 is autvertex, then the blak stone an visit only one of the omponents of Gr C0.If C0 is a nontrivial utset, then the situation is a little bit more ompliated, sine a blakstone an visit more than one omponents of GrC0. The idea is the following. If a blak stonevisits more than one omponent, then it means that, at some points, this stone had to go bakthrough C0, hene lobbering a white stone. Sine C0 ontains originally no white stones, itmeans that blak stones of C0 had to be lobbered without having visited any omponent ofGrC0. Thus a blak stone visiting p omponents implies that p� 1 blak stones did not visitany omponent, hene, on average, one blak stone an visit at most one omponent.More formally, given a vertex v 2 C0, let us de�ne s(v), the sore of the blak stone plaedon v, as the number of omponents of Gr C0 that this blak stone will visit during the game.Clearly, we have Xv2C0 s(v) � jC0j: (4)Now, the desired inequality derives from (4). Indeed, in the most favorable ase, all the whitestones of the jC0j largest omponents and of jC0j, but for one, were lobbered, hene thejC0jXi=0 jCij � 1 in the formula.Remark 2. This bound is tight for the path on n verties, where the worst on�guration is theone where the entral vertex has a rare olor (see Figure 12).
Figure 12: The path on n verties has maximum reduibility value equal to �n2 �.Indeed, the bound of the previous theorem says that rv(G;C) � n � �1 + bn2  � 1� = dn2 e,and it is easy to see that maxrv(Pn) = dn2 e (where Pn denotes the path on n verties). Letus brie�y show this. Let fv1; : : : ; vng denotes the vertex set of Pn suh that there is an edgebetween vi and vi+1 for all i = 1; : : : ; n� 1. Let us all 2-blok a non-monohromati intervalvi; : : : ; vj , 1 � i < j � n suh that there exists i � k < j for whih verties vi; : : : ; vk are ofthe same olor, and verties vk+1; : : : ; vj are of the same olor. Similarly, let us all 3-blok anon-monohromati interval vi; : : : ; vj , 1 � i < j � n suh that there exists i � k < l < j forwhih verties vi; : : : ; vk are of the same olor, verties vk+1; : : : ; vl are of the same olor, and18



verties vl+1; : : : ; vj are of the same olor. Now partition fv1; : : : ; vng into a ertain number of2-bloks and one 3-blok. Clearly, it is always possible to do this. Now, let us look at a ertain2-blok B, independently form the other bloks. It is lear that at least b jBj2  verties of B anbe lobbered by a vertex of B. Similarly, at least b jBj2  verties of B an be lobbered by avertex of a given 3-blok B. Hene, we an laways lobber at least bn2  verties of Pn, whihmeans maxrvPn � n� bn2  = dn2 e.Note that the previous theorem does not apply for the ase of yles, beause any utset has atleast as many verties as the number of remaining omponents.Referenes[1℄ Erik D. Demaine, Martin L. Demaine, and Rudolf Fleisher Solitaire Clobber. Theor. Com-put. Si. 313 (2004), 325-338.[2℄ Mihael H. Albert, J. P. Grossman, Rihard J. Nowakowski, and David Wolfe An introdu-tion to Clobber. Integers 5 (2005)[3℄ L. Beaudou, E. Duhêne, L. Faria and S. Gravier Solitaire Clobber 2 played on graphs.Submitted[4℄ Vinent D. Blondel, C. de Kerhove, Julien M. Hendrikx, and R. Jungers Linear timealgorithms for Clobber. Submitted.[5℄ P.Dorbe, E. Duhêne, and S. Gravier Solitaire Clobber 2 played on Hamming graphs. Sub-mitted[6℄ M. Ruszinkó, private ommuniation.[7℄ Ivars Peterson Getting Clobbered.Siene News 161 (2002), http://www.sienenews.org/artiles/20020427/mathtrek.asp
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