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hêne, Sylvain Gravier 1Laboratoire Leibniz, ERT�e "Maths �a modeler"Grenoble, Fran
eAbstra
tIn 1905 Bouton gave the 
omplete theory of a two player 
ombinatorial game: thegame of Nim. Two years later, Wytho� de�nes his game as \a modi�
ation" of thegame of Nim. In this paper, we give the sets of the losing positions of geometri
alextensions of Wytho�'s game, where allowed moves are 
onsidered a

ording toa set of ve
tors (v1; : : : ; vn). When n = 3, we present algorithms and algebrai

hara
terizations to determine the losing positions of su
h games. In the last part,we investigate a bounded version of Wytho�'s game, and give a polynomial way tode
ide whether a game position is losing or not.Key words: Wytho�'s sequen
e, Nim, 
ombinatorial games, game graph
1 Introdu
tionIn a game of Nim with n heaps, two players alternately move from a 
on�gura-tion made up of n heaps of tokens. By turn, ea
h player removes any numberof tokens from a single heap. A player is not allowed to miss his turn. Thewinner is the player taking the last token, the other loses as he is unable tomove again (see [5℄).As de�ned in [15℄, Wytho�'s game is played with two heaps of tokens. Ea
hplayer 
an either remove any number of tokens from a single heap (the Nimrule), or remove the same number of tokens from both heaps (Wytho�'s rule).A position of Wytho�'s game is denoted by a pair (a; b), where a and b arethe number of tokens in ea
h heap.De�nition 1 A N -position is a position from whi
h there exists a winningmove for the �rst player. A P-position is a position from whi
h there existsno good move for the �rst player.1 E-mail address: eri
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Note that in the 
ontext of two-player games, a P-position is also winning forthe se
ond player.De�nition 2 Let U � Z�0. We de�ne the Minimum Ex
luded value of U bythe smallest nonnegative integer not in U . It will be denoted by Mex(U). Inparti
ular, Mex(;) = 0.The set of the P-positions of Wytho�'s game is des
ribed in e.g. [1,2,15℄. Thesymmetry of the game implies that ea
h pair (a; b) has its symmetri
al (b; a)of the same type, i.e., N - or P-position. The following algorithm 
omputesthe sequen
e (an; bn) (with an � bn) of the P-positions of Wytho�'s game:� (a0; b0) = (0; 0) is the �rst P-position.� Assume that (ai; bi) is known for all 0 � i < n. Then (an; bn) is de�ned asfollows: an =Mex(a0; : : : ; an�1; b0; : : : ; bn�1), and bn = an + n.Note that ea
h positive number appears exa
tly on
e in the sequen
e (an; bn).This is also true for the sequen
e of the di�eren
es (bn�an). In the literature,the sequen
e (an; bn) is often 
alled Wytho�'s sequen
e.Ea
h impartial 
ombinatorial game is asso
iated with a digraph G = (V;E),
alled the game graph. The set of the verti
es V are the positions of the game.Given two verti
es v1 and v2, there is an edge from v1 to v2 if there exists amove from the position v1 to the position v2.De�nition 3 Given a digraph G = (V;E), a set S � V is said stable if thereis no edge between any two verti
es of S. A set A � V is said absorbent if forany v 2 V n A, there exists a 2 A su
h that (v; a) 2 E.De�nition 4 Given a digraph G = (V;E), a kernel of G is both a stable andan absorbent set of G.The P-positions of a game 
onstitute a kernel of its game graph. If the gamegraph does not 
ontain any 
ir
uit, su
h a kernel exists and is unique (see [1℄for details).De�nition 5 For a game G = (V;E) and a position v 2 V , letOp(v) = fw 2 V=(v; w) 2 Eg be the set of the options of v. That is Op(v) isthe set of all the positions that 
an be rea
hed from v in one move.To ea
h game position v of an impartial game we asso
iate a nonnegativeinteger value G(v), 
alled the G-value of v. This fun
tion G is 
alled the Grundyfun
tion, and 
an be de�ned re
ursively as follows:G(v) = Mex(fG(u) : u 2 Op(v)g):2



If the game graph is a
y
li
, then this fun
tion exists and is unique. It is well-known that the zeros of the Grundy fun
tion are the P-positions of the game.See [1,6,13℄ for more information on the Grundy fun
tion.In [15℄, it is proved that the P-positions Wytho�'s game 
an be 
hara
terizedwith the golden ratio � = (1 + p5)=2. Ea
h P-position (an; bn) 
an also bewritten (bn�
; bn� 2
). With this 
hara
terization, one 
an de
ide in polyno-mial time whether a game position is P or N (
f. [12℄ for information aboutthe 
omplexity of a 
ombinatorial game). In [2℄, Blass et al. detail some otherproperties of the P-positions of Wytho�'s game, and investigate the 
ase ofthe other G-values.The P-positions of a game of Nim with n heaps satisfy a0�a1� : : :�an�1 = 0,where ai is the number of tokens in the ith heap, and � is the \Nim-sum"operator, i.e., the binary addition without 
arrying (the �rst proof was givenin [5℄). It is well known that (Z�0;�) de�nes an additive group, where theidentity element is 0 and where the inverse of an element is the element itself.2 A geometri
al extension of Wytho�'s gameIn their book (see [1℄), Berlekamp, Conway, and Guy des
ribe Wytho�'s gamewith a 
hessboard on whi
h a queen is pla
ed. Both players alternately movethe queen a

ording to 
hess rules. The queen must be 
loser to the (0; 0)position after ea
h move (otherwise the game 
ould never end). A player winswhen he moves the queen on the square (0; 0) (see Figure 1).

Figure 1. Wytho�'s game played on a 
hessboard3



In the literature, lots of variations of Wytho�'s game were investigated, interms of P-positions or Grundy fun
tion. The modi�
ations often 
on
ernWytho�'s rule: instead of removing k = l tokens in both heaps, new 
on-straints are 
onsidered for the pair (k; l). For example, in the generalizedWytho�'s game (see [11℄), one 
an remove k and l tokens in both heaps pro-vided jk � lj < a, where a is a �xed positive integer. In [10℄, the 
onditionk � l < 2k + 2 must be satis�ed.We now de�ne another extension of Wytho�'s game, 
alled the n ve
tors game.Let n and p be two positive integers. Let v1; : : : ; vn be n ve
tors of Rp , withnonnegative 
oordinates.A game position of the n ve
tors game is a ve
tor v = (a1v1+ : : :+anvn); withai 2 Z�0. A move 
onsists in 
hoosing a ve
tor vi and removing it k times fromv, provided the ve
tor (v�kvi) 
an also be written (a01v1+: : :+a0nvn); a0i 2 Z�0.In other words, we have:Op(a1v1 + : : :+ anvn)= fw = (a1v1 + : : :+ anvn � kvi) :1 � i � n; 0 < k;9(a01; : : : ; a0n) 2 Zn�0 =w = (a01v1 + : : :+ a0nvn)gThe �nal position is the null ve
tor. Note that the game has an end, sin
e then ve
tors are 
hosen with nonnegative 
oordinates.With this formalism, Wytho�'s game 
an be seen as the three ve
tors gamewith v1 = (1; 0), v2 = (0; 1), and v3 = (1; 1). However, the same position ofthe n ve
tors game may be des
ribed with two distin
t notations. For examplein Wytho�'s game with v1 = (1; 0), v2 = (0; 1), and v3 = (1; 1), the gamepositions (1:v1+1:v2+0:v3) and (0:v1+0:v2+1:v3) are identi
al, although the
oeÆ
ients ai are di�erent. To get through this diÆ
ulty and make the set ofthe options more a

essible, one key is to �nd a 
anoni
al representation of agame position.De�nition 6 v1; : : : ; vn are said Z-independent ve
tors if��1; : : : ; �n 2 Z; non all zero =�1v1 + : : :+ �nvn = 0Fa
t 7 In the n ve
tors game, if the n ve
tors are Z-independent, then thereexists a unique set of nonnegative integers (a1; : : : ; an) to de�ne ea
h gameposition. Suppose indeed that (a1v1+ : : :+anvn) and (a01v1+ : : :+a0nvn) de�nethe same ve
tor. Then we would have (a1�a01)v1+ : : :+(an�a0n)vn = 0, where8i; (ai � a0i) 2 Z. 4



Therefore, when the n ve
tors are Z-independent, we 
hoose the n-tuple(a1; : : : ; an) as the 
anoni
al representation of the game position (a1v1+ : : :+anvn). The following proposition is thus dedu
ed:Proposition 8 The n ve
tors game played with Z-independent ve
tors is equiv-alent to the game of Nim with n heaps.PROOF. With the above 
anoni
al representation, from a game position(a1; : : : ; an), a move 
onsists in de
reasing one of the n values a1; : : : ; an by apositive integer until rea
hing the (0; : : : ; 0) position. 2In the rest of this paper, we 
onsider instan
es of the n ve
tors game withnon Z-independent ve
tors. The sear
h of a 
anoni
al representation for thegame positions will be required. We will present a 
hara
terization of the P-positions in a parti
ular 
ase with an odd number of ve
tors (se
tion 3), ormore spe
i�
ally when n is equal to three (se
tion 4). Se
tion 5 details anothervariation of Wytho�'s game, when the number of tokens one 
an remove isbounded by a 
onstant.3 Odd number of Z-independent ve
torsWe 
onsider instan
es of the (2n + 2) ve
tors game su
h that v1; : : : ; v2n+1are Z-independent ve
tors, and v2n+2 = P2n+1i=1 vi. The following 
anoni
alrepresentation will be 
hosen: denote a game position (a1v1+: : :+a2n+1v2n+1+a2n+2v2n+2) by the (2n+ 1)-tuple (a1; : : : ; a2n+1). Then we have:Op(a1; a2; : : : ; a2n+1) = f(a1 � k; a2; : : : ; a2n+1) : 1 � k � a1g[f(a1; a2 � k; : : : ; a2n+1) : 1 � k � a2g[ : : :[f(a1; a2; : : : ; a2n+1 � k) : 1 � k � a2n+1g[f(a1 � k; a2 � k; : : : ; a2n+1 � k) : 1 � k � min(ai)g:This game 
an also be des
ribed on (2n+1) heaps of tokens. A move 
onsists inremoving any number of tokens from a single heap (the Nim rule), or removingthe same number of tokens from all the heaps, on 
ondition that ea
h of themis a non empty heap (extended Wytho�'s rule).Theorem 9 The P-positions of this game are identi
al to those of the gameof Nim with (2n+ 1) heaps. 5



PROOF. It suÆ
es to show that if (a1; a2; : : : ; a2n+1) is a P-position of Nim,then (a1 � x; a2 � x; : : : ; a2n+1 � x) with 1 � x � min(ai) is a N -position ofNim.Let (a1; a2; : : : ; a2n+1) be a P-position of Nim. It satis�es a1� a2� a2n+1 = 0.Now 
onsider the position (a1�x; a2�x; : : : ; a2n+1�x) with 1 � x � min(ai).Denote by x = xr : : : x1 (xr = 1) the binary writing of x. Let xk be the smallestnonzero bit of it, i.e. xk = 1 and 8 1 � xi < k; xi = 0.On Figure 2, 
onsider the Nim-sum of the ai's before the move.
a i

0

0

1

1

.

x

x

x x x

x x x

x x x

x x x

x x xxx

xx

x x

0 0 0 0000

a

a

a

a

1

2

3

2n+1

.....Figure 2. Nim-sumbefore the move
...

x

x

x x x

x x x

x x x

x x x

x x xxx

xx

x x

0 0 0

a

a

a

a

1

2

3

2n+1

1

0

1

0

xxx 1

...

(a i −x)Figure 3. Nim-sumafter the move
This sum is equal to 0 on ea
h bit. There is thus an even number of 10s andan odd number of 00s in ea
h 
olumn. This property is of 
ourse true for thekth 
olumn.Ea
h ai is de
reased by x after the move. By de�nition of xk, ai and (ai � x)have the same �rst (k � 1) bits of their binary writing. As xk = 1, the kth bitof ea
h ai will be 
hanged after the substra
tion of x (see Figure 3). Then theNim sum of the resulting position 
ontains an odd number of 10s in its kth
olumn, whi
h implies that it di�ers from 0. 2Remark 10 In [3℄, Blass et al. proved a more general result. They showed thatthis game and the game of Nim with (2n + 1) heaps have the same Grundyfun
tion. By adapting our proof, we obtain the same result. However, the pur-pose of Theorem 9 is not to present a new result, but to illustrate the n ve
torsgame with a large value for n.Now 
onsider the even 
ase: v1; : : : ; v2n are Z-independent ve
tors, and v2n+1 =P2ni=1 vi. For su
h games, it is proved in [3℄ that the P-positions are di�erentfrom those of the game of Nim. When the number of ve
tors is three, this isWytho�'s game. In the other 
ases, �nding a polynomial 
hara
terization ofthe P-positions remains a tri
ky problem. The following table 
ontains the�rst few P-positions of this game with �ve ve
tors.6



an bn 
n dn0 b 
 b� 
1 1 1 21 1 3 41 1 5 61 2 2 21 2 4 41 2 5 51 2 6 61 3 3 31 3 5 81 4 6 81 4 7 9Table 1. The �rst P-positions of the 5 ve
tors game with v5 =P4i=1 vi4 The three ve
tors gameIn this se
tion, we 
onsider instan
es of the 3 ve
tors game with non Z-independent ve
tors. Let v1, v2, and v3 be three ve
tors of Rp su
h that9 �; �; 
 2 Z =�v1 + �v2 + 
v3 = 0Sin
e v1, v2 and v3 have positive 
oordinates, �, �, and 
 
an not be of thesame sign. Withous loss of generality, assume we 
an write
v3 = �v1 + �v2,where �, �, and 
 are nonnegative integers. An instan
e of the three ve
torsgame will be denoted by a triplet [�; �; 
℄. In order to determine a 
anoni
alrespresentation for the game positions, we impose the 
ondition �; �; 
 > 0 inthe instan
es.4.1 P-positions of [�; �; 1℄ games, with � 6= �We 
onsider instan
es of the three ve
tors game with 
 = 1.Thus v3 = �v1 + �v2. A 
anoni
al form for a game position will be a pair(a; b) 2 Z2�0. Therefore, the options of a game position are the following:7



Op(a; b)= f(a� k; b) : 1 � k � ag[f(a; b� k) : 1 � k � bg[f(a� k�; b� k�) : 1 � k� � a; 1 � k� � b; 0 < kgAs for Wytho�'s game, this game 
an be des
ribed on a re
tangular grid. Apie
e is pla
ed on a square of the grid. Both players alternately move the pie
ea

ording to three allowed dire
tions : verti
ally (a

ording to v1), horizontally(a

ording to v2), or on squares 
orresponding to multiples of v3 (see Figure4).
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v1Figure 4. Allowed moves when v3 = 3v1 + v2 (the [3; 1; 1℄ game)Theorem 11 The P-positions of [�; �; 1℄ games with � 6= � are in the form(a; a) 8a � 0.They 
orrespond to the diagonal of the grid (
f. Figure 5).
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10Figure 6. P-positionswhen � = � = 2PROOF. It suÆ
es to show that the set of positions (a; a); a � 0 is stableand absorbent for the game graph.From a game position (a; b) with a < b, remove k = (b � a) tokens from thelarger heap, and thus land in a (a; a) position.From a game position (a; a), one 
an not rea
h another position in the form(k; k), sin
e none of the three ve
tors is dire
ted a

ording to the diagonaldire
tion (� 6= �). 2 8



4.2 P-positions of [�; �; 1℄ gamesThe 
ase � = � = 1 is Wytho�'s game. In this game, there is exa
tly oneP-position per diagonal. When � > 1, sin
e the diagonal moves are playeda

ording to multiples of �, there will be exa
tly � P-positions on ea
h diag-onal. We now give a re
ursive algorithm that 
omputes the sequen
e of theP-positions (an; bn) of a [�; �; 1℄ game, with an � bn. By symmetry of thegame, if (an; bn) is a P-position, then (bn; an) is also a P-position.De�nition 12 Given two integers a � 0 and b > 0, denote by r(ab ) the re-mainder of the eu
lidean division of a by b.Algorithm 
omputing the P-positions of [�; �; 1℄ games� (a0; b0) = (0; 0)� Assume that (ai; bi) is known for all 0 � i < n.Then an =Mex(a0; : : : ; an�1; b0; : : : ; bn�1). Choose bn as the smallest inte-ger not in fa0; : : : ; an�1; b0; : : : ; bn�1g su
h that there exists no other pre-vious pair (ai; bi)0�i<n for whi
h both 
onditions bi � ai = bn � an andr(ai� ) = r(an� ) are simultaneously satis�ed.Figure 6 illustrates the �rst P-positions of the 
ase � = � = 2.This algorithm means that for a given nonnegative di�eren
e d, all the P-positions f(ai1; bi1); : : : ; (ai�; bi�)g su
h that bik � aik = d for all 1 � k � �(i.e., the � P-positions on the dth diagonal) satisfyfr(ai1� ); : : : ; r(ai�� )g = f0; : : : ; �� 1g.Theorem 13 The algorithm above 
onstru
ts the set of the P-positions of the[�; �; 1℄ games.PROOF. Denote by S the set of positions built by the algorithm. In orderto show that S is the set of the P-positions of the [�; �; 1℄ game, it suÆ
es toshow that S is a stable and absorbent set of the game graph.S is a stable setLet (a; b) and (a0; b0) be two distin
t positions of S. We will prove that thereexists no move from (a; b) to (a0; b0).By 
onstru
tion, there is exa
tly one position of S in ea
h row and ea
h 
olumnof the 
hessboard. A move a

ording to v1 or v2 from (a; b) to (a0; b0) impliesa0 = a or b0 = b, 
ontradi
ting the previous remark.Playing a

ording to v3 implies (a0; b0) = (a � q�; b � q�) with q > 0. Thedi�eren
es (b � a) and (b0 � a0) are identi
al, and r( a�) = r(a�q�� ). A

ording9



to the algorithm, positions (a; b) and (a0; b0) 
annot be in S.S is an absorbent setOn the grid, mark ea
h position of S with the symbol "S". Mark "*" ea
hposition absorbed by S. We will prove that ea
h position of the 
hessboard ismarked.By de�nition, a S-marked position P generates a set of positions marked withstars (these are positions from whi
h there exists a move leading to P ). SeeFigure 7 for an example with � = 2.
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Figure 7. Absorbedpositions from aS-marked positionwhen � = 2
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Figure 8. Proof ofthe absorption when� = 2Suppose there exists a position C = (i; j) whi
h is not marked. Choose C asthe \smallest" one, i.e., there exists no other position C 0 = (i0; j 0) not markedsu
h that i0 � i and j 0 � j. By symmetry of the game and without loss ofgenerality, assume that i � j. The positions on the left of C, above C, andon the north-west diagonal at a distan
e multiple of � are ne
essarily markedwith stars (see Figure 8).Sin
e there is exa
tly one S-marked position by row, there exists a positionmarked S in the ith row. Sin
e C is not marked and positions on the left ofC are marked with stars, there exists p > j su
h that (i; p) belongs to S (seeFigure 8). Sin
e j < p, there are two possible reasons explaining why (i; p)was sele
ted by the algorithm instead of (i; j):� The integer j has already been sele
ted by the algorithm. Hen
e there wouldbe a S-marked position in the 
olumn above C, but it is not the 
ase.� There exists a S-marked position (k; l) with k < i, l < j, su
h that (l�k) =(j � i) and r( k�) = r( i�). This means that (k; l) is on the same diagonal as(i; j) and at a distan
e whi
h is multiple of �. But su
h a position is marked�, as mentioned above.Hen
e C should have been sele
ted by the algorithm instead of (i; p), leadingto a 
ontradi
tion. 2 10



The [2; 2; 1℄ gameIn the 
ase � = 2, we will detail another algorithm to 
ompute the P-positionsof the game. It looks like the algorithm of Wytho� de
ribed in the introdu
tionof this paper, but there is no algebrai
 
hara
terization known for it untiltoday.De�ne (Pn; Qn) as the sequen
e of integers su
h thatPn = Mex(P0; : : : ; Pn�1; Q0; : : : ; Qn�1), and Qn = Pn + 2bn=4
. Initialize itwith (P0; Q0) = (0; 0). Hen
e Pn and Qn are two sequen
es for whi
h ea
heven di�eren
e (Qn � Pn) appears exa
tly four times in an in
reasing order.Given two positive integers � and �, we 
an a
tually de�ne a set of integersequen
es (P �;�n ; Q�;�n ), where P �;�n is de�ned by the Mex rule, and the (n+1)thdi�eren
e (Q�;�n � P �;�n ) is equal to �bn=�
. This means that di�eren
es thatare multiples of � appear exa
tly � times in an in
reasing order. When � =� = 1, this de�nes Wytho�'s sequen
e. A

ording to the theorem detailed in[4℄, a 
hara
terization of Pn or Qn as a spe
trum sequen
e (i.e., in the formbn� + �
, �; � 2 R, as for Wytho�'s game) does not exist. Moreover, C.Kimberling has re
ently added one of these sequen
es (with � = 1 and � = 2)to Sloane's en
y
lopedia 2 . In agreement with him, it seems that there is noknown 
hara
terization for it.Consider now the integer sequen
e (pn; qn) su
h that pn = Pn, qn = Qn ifn � 0(4) or n � 1(4), qn = Qn+1 if n � 2(4), and qn = Qn�1 if n � 3(4).The array below des
ribes the �rst values of both sequen
es (Pn; Qn) and(pn; qn). To obtain qn from Qn, it suÆ
es to ex
hange values Q4k+2 and Q4k+3for ea
h positive integer k.

2 http://www.resear
h.att.
om/~njas/sequen
es/index.html11



Qn � Pn Pn Qn pn qn qn � pn r( pn� )0 0 0 0 0 0 00 1 1 1 1 0 10 2 2 2 3 1 00 3 3 3 2 �1 12 4 6 4 6 2 02 5 7 5 7 2 12 8 10 8 11 3 02 9 11 9 10 1 14 12 16 12 16 4 04 13 17 13 17 4 14 14 18 14 19 5 04 15 19 15 18 3 16 20 26 20 26 6 06 21 27 21 27 6 1Lemma 14 For ea
h nonnegative integer k, there exist two nonnegative inte-gers i and j su
h that ea
h blo
k of pairs (p4k+p; q4k+p)p=0:::3 
an be written inthe form: (p4k; q4k) = (2i; 2i+ 2k)(p4k+1; q4k+1) = (2i+ 1; 2i+ 1 + 2k)(p4k+2; q4k+2) = (2j; 2j + 2k + 1)(p4k+3; q4k+3) = (2j + 1; 2j + 2k)PROOF. By 
onstru
tion of (pn; qn) from (Pn; Qn), ea
h of the four pairssatis�es the right di�eren
e (q4k+p� p4k+p)p=0:::3. Therefore, it suÆ
es to showthat the values p4k+p are 
orre
t.A

ording to the table above, the lemma is true for k = 0 (
hoose i = 0 andj = 1). Assume it is true until a 
ertain rank k and 
onsider the (k + 1)thrank. As pn is a stri
tly in
reasing sequen
e, we have p4k+4 > p4k+3 = (2j+1).By de�nition of pn with the Mex rule, the unique reason for whi
h p4k+4
ould not be equal to (2j +2) is that this integer has already appeared in theqn sequen
e. By indu
tion hypothesis and sin
e (2j + 2) is even, this value
ould have appeared only as q4k0 or q4k0+3, with k0 � k. If it is the 
ase, the
onse
utive integer (2j + 3) would have also appeared before, respe
tively asq4k0+1 or q4k0+2. Hen
e we 
on
lude that if an even value already appearedbefore, the 
onse
utive odd value appeared too. Therefore, there exists l su
h12



that p4k+4 = 2l. Hen
e p4k+5 = 2l+1 (If not, (2l+1) would have appeared inthe qn sequen
e. By indu
tion hypothesis, its prede
essor 2l would have alsoappeared in qn, yielding a 
ontradi
tion).Sin
e p4k+6 > (2l + 1), and with the same argument as previously, we provethat p4k+6 is an even positive integer, and that p4k+7 is the 
onse
utive one. 2Proposition 15 The sequen
e (pn; qn) des
ribes the P-positions of the [2; 2; 1℄game.PROOF. Denote by (an; bn) the sequen
e of the P-positions of the [2; 2; 1℄game. This sequen
e is obtained from the algorithm of Theorem 13. De�nethe sequen
e (xn; yn) as follows:(xn; yn) = (an; bn) 8 0 � n � 2(x3; y3) = (y2; x2) = (3; 2)(xn; yn) = (an�1; bn�1) 8 n > 3Now, if we apply the algorithm of Theorem 13 from the rank n = 4 and initi-ated with the values (xi; yi)0�i�3, we 
onstru
t pre
isely the sequen
e (xn; yn).Indeed, sin
e the values x3 and y3 are the respe
tive repetitions of y2 and x2,and sin
e the di�eren
e (y3� x3) is negative, the insertion of the pair (x3; y3)does not a�e
t the result of the algorithm. Therefore, we will 
onsider that(xn; yn) is produ
ed by the algorithm of Theorem 13.De�ne (dn) = (yn � xn) as the sequen
e of the di�eren
es. First observe thatsin
e xn and pn are both de�ned with the Mex rule, the sequen
es (xn) and(pn) are in
reasing. Moreover, a

ording to Lemma 14 and the Mex rule, one
an show that qj > qi for all j > i+ 1.We will now show that (xn; yn) = (pn; qn). The proof works as follows: provingthat xn = pn is easy sin
e both values are 
omputed with the Mex rule appliedon the previous values (supposed equal by indu
tion hypothesis).In order to determine yn, we study the possible values d� for dn. We start withthe smallest possible value d� available for dn. This value is known by Lemma14 and by indu
tion hypothesis. If d� = yj � xj for some j < n and if xn hasthe same parity as xj, then we 
onsider the next available value d� allowed bythe algorithm and repeat the test. Otherwise, this means that d� is 
hosen bythe algorithm, and so yn = xn + d�. By Lemma 14, it only remains to 
he
kthat xn + d� = qn.We now give the proof in details: 13



One 
an easily 
he
k the equality of (xn; yn) and (pn; qn) for n < 4. Supposethis equality holds for the subsets (x4k+i; y4k+i) and (p4k+i; q4k+i)i=0:::3, for allk < t for some t > 0. This hypothesis ensures that x4t = p4t sin
e they are bothde�ned with the Mex rule on the previous values. Note that x4t is thus evenby Lemma 14. By de�nition of the sequen
e (x4t; y4t) and from Lemma 14,d4t � (2t� 1), sin
e all the smallest di�eren
es have already appeared twi
e.The di�eren
e (2t� 1) = d4t�2 has been used on
e, but sin
e x4t�2 = p4(t�1)+2(by indu
tion hypothesis) and x4t are both even, the algorithm does not al-low d4t = (2t � 1). The next di�eren
e 2t has not been used before and isgreater than all the previous di�eren
es. Therefore, sin
e (xn) is an in
reasingsequen
e, the value x4t + 2t is stri
tly greater than all the previous values. Itis 
hosen by the algorithm and thus y4t = x4t + 2t. By Lemma 14, one 
an
he
k that q4t = y4t.As previously, we have x4t+1 = p4t+1, sin
e the Mex rule is applied on thesame set of integers. Hen
e x4t+1 = x4t + 1 a

ording to Lemma 14. Sin
e(x4t+1+2t�1) = y4t, we have d4t+1 6= 2t�1, as an integer 
annot appear sev-eral times in the sequen
e (xn; yn). Then we get d4t+1 = 2t, sin
e x4t+1 and x4thave di�erent parities, and sin
e (x4t+1+2t) has not appeared before (greaterthan all other values). Therefore we have y4t+1 = x4t+1+2t = p4t+1+2t = q4t+1by Lemma 14.By de�nition of the sequen
es xn and pn with the Mex rule, we have x4t+2 =p4t+2. Lemma 14 ensures that x4t+2, as x4t�2, is even. Hen
e d4t+2 
an not beequal to (2t� 1) = d4t�2. Sin
e the di�eren
e 2t has been used twi
e, the nextsmallest available di�eren
e is (2t+1). We pro
eed as in the �rst 
ase (i = 0),whi
h leads to the equality y4t+2 = q4t+2.We have x4t+3 = p4t+3 for the same reasons as previously. By Lemma 14,this implies x4t+3 = x4t+2 + 1, whi
h is an odd number. Now 
onsider theinteger (x4t+3 + 2t � 1). A

ording to Lemma 14, it is equal to (y4t+2 � 1)and is stri
tly greater than yi for any i < (4t + 2) (
f. preliminary remarkabout the sequen
e (qn)). Sin
e x4t+3 and x4t�2 have di�erent parities, thealgorithm 
hooses d4t+3 = 2t � 1. One 
an �nally 
he
k that y4t+3 = q4t+3,whi
h 
on
ludes the proof. 2As explained in [12℄, most of 
ombinatorial games have an exponential strat-egy. Nim and Wytho�'s games have a polynomial 
omplexity thanks to theiralgebrai
 
hara
terizations. In the 
ase � = 2, Theorem 15 improves the read-ibility of the general algorithm and opens a door to a possible polynomialalgebrai
 
hara
terization (as a sum of spe
trum sequen
es for example). A14



short investigation made us suppose that instan
es [�; �; 1℄ have sets of P-positions that 
an be similarly dedu
ed from integer sequen
es. Su
h results
ombined with the obtention of formulas for these sequen
es would lead to ani
e 
hara
terization of the P-positions for the three ve
tors game.Remark 16 Although the sequen
e Pn 
annot be written as a spe
trum se-quen
e (
f. [4℄), it seems that it has the same progression as bn(3+p17)4 
. We
onje
ture that jPn�bn(3+p17)4 
j � 4. In [9℄, Fraenkel investigates this 
onje
-ture and introdu
es the notion of probabilisti
 winning strategy.4.3 P-positions of [�; �; 
℄ games, with 
 > 1We now 
onsider instan
es [�; �; 
℄ of the three ve
tors game, with 
 > 1.Note that one 
an assume that �, � and 
 are prime together. Indeed, theinstan
es [�; �; 
℄ and [k�; k�; k
℄ de�ne the same game.Given a game position (a1v1+a2v2+a3v3), one asso
iates the following 
anon-i
al triplet: (a1 + ba3
 
�; a2 + ba3
 
�; r(a3
 )):Therefore, any game position will be de�ned by a triplet (a; b; i), with 0 � a; band 0 � i < 
. It 
an be 
he
ked that this representation uniquely des
ribesthe game positions.Now, the options of a game position (a; b; i) 
an be de�ned as:Op(a; b; i) = f(a � k; b; i) : 1 � k � ag[f(a; b� k; i) : 1 � k � bg[f(a � bk
 
�; b� bk
 
�; (i� r(k
 ))[
℄) : 0 < k; 0 � bk
 
� � a; 0 � bk
 
� � bg:where [:℄ denotes the modulo operator.Lemma 17 Let (a; b; i) be a P-position of Nim. Then a� i � b � a+ i.PROOF. If (a; b; i) is a P-position of Nim, then it satis�es b = a � i. Asthe operator � de�nes the binary sum without 
arrying, it is 
lear thatb = a� i � a+ i. 15



The se
ond inequality is dedu
ed from the �rst one, using the fa
t thatif (a; b; i) is a P-position of Nim, then (b; a; i) is also a P-position of thisgame. 2Theorem 18 Let [�; �; 
℄ be an instan
e of the three ve
tors game, su
h that
 > 1 and � > �(2
� 1). Then a game position (a; b; i) is a P-position if andonly if a� b� i = 0.PROOF. First observe that the options of a (a; b; i) position 
ontain all theoptions of a game of Nim with three heaps of respe
tive sizes a, b, and i. Thisresult is straightforward for the options 
on
erning the heaps of sizes a and b.For the heap of size i, 
onsider the last option of the three ve
tors game withb k�
 = 0.Therefore, it suÆ
es to show that for a position (a; b; i) su
h that a�b� i = 0,ea
h position (a0; b0; i0) 2 Op(a; b; i) satis�es a0 � b0 � i0 6= 0.Let (a; b; i) be a game position satisfying a � b � i = 0. Let (a0; b0; i0) be anoption of (a; b; i). Let k > 0 be an integer.� Consider the options (a0; b0; i0) = (a� k; b; i) with 1 � k � a. Sin
e (Z�0;�)is a group, we have (a� k)� b� i 6= a� b� i.� The 
ase (a0; b0; i0) = (a; b�k; i) with 1 � k � b 
an be treated as previously.Hen
e a� (b� k)� i 6= 0.� Suppose that (a0; b0; i0) = ((a� bk
 
�; b� bk
 
�; (i� r(k
 ))[
℄) with 0 < k;0 � bk
 
� � a; 0 � bk
 
� � b. Let p = bk
 
. If p = 0, one 
an 
on
lude as inthe previous 
ases. Now assume that p > 0. With our notations, we have:i0 = (i� r(k
 ))[
℄a0 = a� p�b0 = b� p�One 
an noti
e that (a�a0)� = (b�b0)�. By way of 
ontradi
tion, assumethat a0 � b0 � i0 = 0. Then b0 = a0 � i0 and from Lemma 17,a0 � i0 � b0 � a0 + i0Similarly, sin
e a� b� i = 0, we havea� i � b � a+ iFrom these two inequalities we getb� b0 � a� a0 + i+ i016



Moreover, sin
e i + i0 � 2
 � 2 and b� b0 = (a� a0)�� , we obtain(a� a0)(�� � 1) � 2
 � 2Finally, sin
e a0 < a, we get� � (2
 � 1)� 2Remark 19 From Theorem 18, one 
an assert that for any values of � and
, there exists �� su
h that for all � � ��, the games [�; �; 
℄ and [1; 2
; 
℄have the same P-positions.Remark 20 One 
an wonder whether the [�; �; 
℄ games and the game ofNim on three heaps have the same Grundy fun
tion. With the a
tual bound(i.e., � > �(2
 � 1)), the [�; �; 
℄ games have a G fun
tion di�erent from theNim sum. However, this assumption might be true for some larger values of�.Therefore, a se
ond question 
onsists in 
omparing the G fun
tions of the[�; �; 
℄ games, for � > �(2
� 1). Even if � is �xed, there exists some gameswith di�erent G fun
tions (e.g. games [1; 4; 2℄ and [1; 5; 2℄).Remark 21 There exist [�; �; 
℄ games with � � �(2
 � 1) for whi
h theP-positions di�er from those of the game of Nim. This is for example the 
aseof the games [1; 3; 2℄, [1; 5; 3℄, or [2; 14; 7℄. However, it seems that for some� � �(2
 � 1), the P-positions of the 
orresponding [�; �; 
℄ games remainequal to those of Nim. This leads us to Conje
ture 22 and Problem 23 below.Conje
ture 22 Let � � 2
 + � � 1. Then a game position (a; b; i) is a P-position of the 
orresponding [�; �; 
℄ game if and only if a� b� i = 0.Problem 23 Find the smallest value �(�; 
) su
h that for all � � �(�; 
),all the games [�; �; 
℄ have a their P-positions identi
al to those of Nim.5 The R-radius gameIn Wytho�'s game, one moves the queen on the 
hessboard a

ording to one ofthe three dire
tions, no matter the number of squares jumped. In the R-radiusgame, the length of the moves is bounded by a 
onstant R. The dire
tions al-lowed do not 
hange. For example, playing the 1-radius game amounts tomoving a king on the 
hessboard. The example of the 3-radius game is givenby Figure 9. The original Wytho�'s game 
an be 
onsidered as the 1-radius17



game.
F

0

3

0
1

2
3

1
2

Figure 9. Al-lowed movesin the 3-radiusgame
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3Figure 10.P-positions ofthe 3-radiusgameIn this se
tion, we prove that the P-positions of Wytho�'s game are suÆ
ientto determine those of the R-radius game.Lemma 24 If (an; bn) is a P-position of Wytho�'s game with an � bn, thenbn � 2an.PROOF. Wytho� proved in [15℄ that (an; bn) 
an be written as the pair(bn�
; bn�
 + n). Sin
e � � 1, it is easy to 
he
k that n � bn�
. 2Theorem 25 For any R � 1, the P-positions of the R-radius game are de-s
ribed by : (a+ (R + 1) k; b + (R + 1) l) 8 k; l � 0for all the pairs (a; b) whi
h are P-positions of Wytho�'s game with a � Rand b � R.PROOF. Let R � 1 and (X; Y ) be a position of the R-radius game. Thenthere exist a unique a, b and k su
h thatX = a+ (R + 1)k; 0 � a � R; 0 � kY = b + (R + 1)l; 0 � b � R; 0 � l- If (a; b) is not a P-position of Wytho�'s game, then there exists a movefrom (a; b) to a P-position (a0; b0) of Wytho�'s game with a0 � a and b0 � b.Moreover, this move satis�es ja� a0j < R and jb� b0j < R. Thus there existsa move of the R-radius game from (X; Y ) to (a0 + (R + 1)k; b0 + (R + 1)l).18



- Now suppose that (a; b) is a P-position of Wytho�'s game. Let (X 0; Y 0) 6=(X; Y ) be a position of the R-radius game su
h thatX 0 = a0 + (R + 1)k0; 0 � a0 � R; 0 � k0Y 0 = b0 + (R + 1)l; 0 � b0 � R; 0 � l0and where (a0; b0) is a P-position of Wytho�'s game.We will prove that there is no move from (X; Y ) to (X 0; Y 0).By way of 
ontradi
tion, assume that with 0 < m � R, one of the threefollowing 
onditions holds:(1) X 0 = X �m and Y 0 = Y(2) X 0 = X and Y 0 = Y �m(3) X 0 = X �m and Y 0 = Y �m(1) The equality Y 0 = Y implies b = b0. And sin
e an integer 
annot appearmore than on
e in Wytho�'s sequen
e, we have also a0 = a. Sin
e X 0 6= Xwe have k > k0, whi
h implies that m � R + 1.(2) Similarly by ex
hanging the roles of X and Y we get the same 
on
lusionas in (1).(3) The 
ase X 0 = X �m and Y 0 = Y �m. Sin
e m < (R+ 1), we have oneof the four following 
ases:� k = k0 and l = l0. Then a = a0 +m and b = b0 +m. This implies (b �a) = (b0 � a0). Sin
e ea
h di�eren
e appears exa
tly on
e in Wytho�'ssequen
e, we must have b = b0 and a = a0, yielding a 
ontradi
tion.� k = k0+1 and l = l0+1. Then a = a0+m�R�1 and b = b0+m�R�1.We 
on
lude similarly as in the previous 
ase.� k = k0 and l = l0 + 1. Then a = a0 +m � R � 1 and b = b0 + m. Wededu
e the following equality:a� b+R + 1 = a0 � b0 (5A)If a0 � b0, then we have a + R + 1 � b from (5A). By Lemma 24, thisimplies a+R+ 1 � 2a and �nally R+ 1 � a, yielding a 
ontradi
tion.Hen
e a0 > b0. From (5A) and sin
e b < (R + 1), we obtaina0 � b0 > a (5B)Sin
e (b0; a0) is a P-position of Wytho�'s game and by Lemma 24, wehave a0 � 2b0. Thus a < a0� b0 � b0 by using (5B). Now, from (5A) andsin
e a0 < (R + 1), we geta0 � b0 > a� b+ a0 (5C)19



Moreover, sin
e a0� b0 � R, we have a < b from (5A). So by Lemma 24we have b � 2a. Now we havea0 � b0 < a0 � a � a0 + a� b;whi
h 
ontradi
ts (5C).� k = k0 + 1 and l = l0. By symmetry, we 
on
lude as in the previous
ase. 2One may suppose that this kind of result is true for the "bounded" threeve
tors game, but this is not the 
ase (this property is not satis�ed for theinstan
e [2; 2; 1℄ for example).Remark 26 Theorem 25 asserts that the P-positions of bounded Wytho�'sgame 
an be determined by translation of the P-positions of Wytho�'s gameon a bounded 
hessboard. It is easy to 
he
k that this property is also true forthe game of Nim with two heaps. Are there other games for whi
h this resultis true ?Problem 27 One 
an investigate the 
ase of Wytho�'s game whi
h is onlybounded in the diagonal dire
tion. Conversely, 
onsider the 
ase where the hor-izontal and verti
al distan
es are bounded, but the diagonal distan
e is in�nite.Problem 28 In [11℄, Fraenkel de�nes a generalized Wytho�'s game. If oneremoves k and l tokens in both heaps, then the 
ondition jk � lj < a must beful�lled, where a is a �xed positive integer. One 
an investigate the boundedversion of this game, and test whether some periodi
ity of the P-positionsappears.A
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