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Abstract

In 1905 Bouton gave the complete theory of a two player combinatorial game: the
game of Nim. Two years later, Wythoff defines his game as “a modification” of the
game of Nim. In this paper, we give the sets of the losing positions of geometrical
extensions of Wythoff’s game, where allowed moves are considered according to
a set of vectors (v1,...,v,). When n = 3, we present algorithms and algebraic
characterizations to determine the losing positions of such games. In the last part,
we investigate a bounded version of Wythoff’s game, and give a polynomial way to
decide whether a game position is losing or not.
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1 Introduction

In a game of Nim with n heaps, two players alternately move from a configura-
tion made up of n heaps of tokens. By turn, each player removes any number
of tokens from a single heap. A player is not allowed to miss his turn. The
winner is the player taking the last token, the other loses as he is unable to
move again (see [5]).

As defined in [15], Wythoff’s game is played with two heaps of tokens. Each
player can either remove any number of tokens from a single heap (the Nim
rule), or remove the same number of tokens from both heaps (Wythoft’s rule).
A position of Wythoff’s game is denoted by a pair (a,b), where a and b are
the number of tokens in each heap.

Definition 1 A N -position is a position from which there exists a winning
move for the first player. A P-position is a position from which there exists
no good mowe for the first player.
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Note that in the context of two-player games, a P-position is also winning for
the second player.

Definition 2 Let U C Zxo. We define the Minimum Excluded value of U by
the smallest nonnegative integer not in U. It will be denoted by Mex(U). In
particular, Mex(0) = 0.

The set of the P-positions of Wythoff’s game is described in e.g. [1,2,15]. The
symmetry of the game implies that each pair (a,b) has its symmetrical (b, a)
of the same type, i.e., N- or P-position. The following algorithm computes
the sequence (ay, b,) (with a,, < b,) of the P-positions of Wythoft’s game:

e (ag,bo) = (0,0) is the first P-position.
e Assume that (a;,b;) is known for all 0 < ¢ < n. Then (a,, b,) is defined as
follows: a,, = Mex(aq, ... ,an 1,b0,... ,bp 1), and b, = a, + n.

Note that each positive number appears exactly once in the sequence (ay, b,).
This is also true for the sequence of the differences (b, —a,). In the literature,
the sequence (ay, b,) is often called Wythoff’s sequence.

Each impartial combinatorial game is associated with a digraph G = (V, E),
called the game graph. The set of the vertices V' are the positions of the game.
Given two vertices v; and vy, there is an edge from v; to v, if there exists a
move from the position v; to the position vs.

Definition 3 Given a digraph G = (V, E), a set S C 'V is said stable if there
is no edge between any two vertices of S. A set A C 'V is said absorbent if for
any v € V'\ A, there exists a € A such that (v,a) € E.

Definition 4 Given a digraph G = (V, E), a kernel of G is both a stable and
an absorbent set of G.

The P-positions of a game constitute a kernel of its game graph. If the game
graph does not contain any circuit, such a kernel exists and is unique (see [1]
for details).

Definition 5 For a game G = (V, E) and a position v € V, let
Op(v) = {w € V/(v,w) € E} be the set of the options of v. That is Op(v) is
the set of all the positions that can be reached from v in one move.

To each game position v of an impartial game we associate a nonnegative
integer value G(v), called the G-value of v. This function G is called the Grundy
function, and can be defined recursively as follows:

G(v) = Mex({G(u) : u € Op(v)}).



If the game graph is acyclic, then this function exists and is unique. It is well-
known that the zeros of the Grundy function are the P-positions of the game.
See [1,6,13] for more information on the Grundy function.

In [15], it is proved that the P-positions Wythoff’s game can be characterized
with the golden ratio 7 = (1 + v/5)/2. Each P-position (an,b,) can also be
written (|n7|, |n7%]|). With this characterization, one can decide in polyno-
mial time whether a game position is P or N (cf. [12] for information about
the complexity of a combinatorial game). In [2], Blass et al. detail some other
properties of the P-positions of Wythoff’s game, and investigate the case of
the other G-values.

The P-positions of a game of Nim with n heaps satisfy ag®a; ®...Ba,—1 = 0,
where a; is the number of tokens in the i** heap, and @ is the “Nim-sum”
operator, i.e., the binary addition without carrying (the first proof was given
in [5]). It is well known that (Zs(, @) defines an additive group, where the
identity element is 0 and where the inverse of an element is the element itself.

2 A geometrical extension of Wythoff’s game

In their book (see [1]), Berlekamp, Conway, and Guy describe Wythoff’s game
with a chessboard on which a queen is placed. Both players alternately move
the queen according to chess rules. The queen must be closer to the (0,0)
position after each move (otherwise the game could never end). A player wins
when he moves the queen on the square (0,0) (see Figure 1).
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Figure 1. Wythoff’s game played on a chessboard



In the literature, lots of variations of Wythoff’s game were investigated, in
terms of P-positions or Grundy function. The modifications often concern
Wythoft’s rule: instead of removing & = [ tokens in both heaps, new con-
straints are considered for the pair (k,[l). For example, in the generalized
Wythoff’s game (see [11]), one can remove k and [ tokens in both heaps pro-
vided |k —I] < a, where a is a fixed positive integer. In [10], the condition
k <1 < 2k + 2 must be satisfied.

We now define another extension of Wythoff’s game, called the n vectors game.

Let n and p be two positive integers. Let v,... ,v, be n vectors of R, with
nonnegative coordinates.

A game position of the n vectors game is a vector v = (ayv1+. ..+ a,v,), with
a; € Z>o. A move consists in choosing a vector v; and removing it k times from
v, provided the vector (v—kv;) can also be written (ajv,+...+al,v,), a € Z>q.
In other words, we have:

Op(ayvy + ...+ apv,) ={w = (ayv1 + . .. + apv, — kv;) :
1<i<n, 0<Ek,
ay, ... ay) €Ly Jw = (ahvi + ...+ avn)}

The final position is the null vector. Note that the game has an end, since the
n vectors are chosen with nonnegative coordinates.

With this formalism, Wythoff’s game can be seen as the three vectors game
with v; = (1,0), v, = (0,1), and v3 = (1,1). However, the same position of
the n vectors game may be described with two distinct notations. For example
in Wythoff’s game with v; = (1,0), v, = (0,1), and vz = (1,1), the game
positions (1.v7 + 1.ve + 0.v3) and (0.v; + 0.v9 4 1.v3) are identical, although the
coefficients a; are different. To get through this difficulty and make the set of
the options more accessible, one key is to find a canonical representation of a
game position.

Definition 6 v,... v, are said Z-independent vectors if
Poi,... 0 €7, nonall zero [oqvy + ...+ apv, =0

Fact 7 In the n vectors game, if the n vectors are Z-independent, then there
exists a unique set of nonnegative integers (ay, ... ,a,) to define each game
position. Suppose indeed that (ajvy + ...+ ayv,) and (ajvy +...+a,v,) define
the same vector. Then we would have (ay —ay)vy +. ..+ (a, —al,)v, = 0, where
Vi, (a; — a}) € Z.



Therefore, when the n vectors are Z-independent, we choose the n-tuple
(ay,...,a,) as the canonical representation of the game position (ajv; + ...+
a,vy,). The following proposition is thus deduced:

Proposition 8 The n vectors game played with Z-independent vectors is equiv-
alent to the game of Nim with n heaps.

PROOF. With the above canonical representation, from a game position
(ay,...,a,), a move consists in decreasing one of the n values ay,... ,a, by a
positive integer until reaching the (0,...,0) position. O

In the rest of this paper, we consider instances of the n wvectors game with
non Z-independent vectors. The search of a canonical representation for the
game positions will be required. We will present a characterization of the P-
positions in a particular case with an odd number of vectors (section 3), or
more specifically when n is equal to three (section 4). Section 5 details another
variation of Wythoff’s game, when the number of tokens one can remove is
bounded by a constant.

3 0Odd number of Z-independent vectors

We consider instances of the (2n + 2) vectors game such that vy, ... va,4q
are Z-independent vectors, and wvo, 1o = Y21 v;. The following canonical
representation will be chosen: denote a game position (a1v1+. ..+ aop 112,41+
A9n12Van19) by the (2n + 1)-tuple (aq, ... ,as,11). Then we have:
Op(ay,az, ... ,a2,41) ={(a1 — k,az,... ;a2,41) : 1 <k <ayr}

U{(ar,a2 — k,... ,aop41) : 1 <k < as}

U...

U{(a1,a2,... ;a1 — k) 1 1 <k <agnir}

U{(a1 — k,as — k,... ;aopt1 — k) : 1 < k < min(a;)}.

This game can also be described on (2n+1) heaps of tokens. A move consists in
removing any number of tokens from a single heap (the Nim rule), or removing
the same number of tokens from all the heaps, on condition that each of them
is a non empty heap (extended Wythoff’s rule).

Theorem 9 The P-positions of this game are identical to those of the game
of Nim with (2n + 1) heaps.



PROOF. It suffices to show that if (aq, as,. .. ,as,11) is a P-position of Nim,
then (a; — z,a9 — x,... ,a9,41 — x) with 1 <z < min(a;) is a N-position of
Nim.

Let (a1, as,...,a2,+1) be a P-position of Nim. It satisfies a; @ as ® ag, 41 = 0.
Now consider the position (a1 —xz,as—x, ... ,aspy1 —x) with 1 < 2 < min(a;).
Denote by # = x, ...z (x, = 1) the binary writing of z. Let x be the smallest
nonzero bit of it, i.e. zy =land V1 < zx; < k, z; = 0.

On Figure 2, consider the Nim-sum of the a;’s before the move.
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Figure 2. Nim-sum Figure 3. Nim-sum
before the move after the move

This sum is equal to 0 on each bit. There is thus an even number of 1's and
an odd number of 0's in each column. This property is of course true for the
k™ column.

Each a; is decreased by x after the move. By definition of zy, a; and (a; — x)
have the same first (k — 1) bits of their binary writing. As z;, = 1, the k™ bit
of each a; will be changed after the substraction of 2 (see Figure 3). Then the
Nim sum of the resulting position contains an odd number of 1's in its k'
column, which implies that it differs from 0. O

Remark 10 In [3], Blass et al. proved a more general result. They showed that
this game and the game of Nim with (2n + 1) heaps have the same Grundy
function. By adapting our proof, we obtain the same result. However, the pur-
pose of Theorem 9 is not to present a new result, but to illustrate the n vectors
game with a large value for n.

Now consider the even case: vy, ... , vg, are Z-independent vectors, and vy, 1 =
2" ;. For such games, it is proved in [3] that the P-positions are different
from those of the game of Nim. When the number of vectors is three, this is
Wythoft’s game. In the other cases, finding a polynomial characterization of
the P-positions remains a tricky problem. The following table contains the
first few P-positions of this game with five vectors.



an bn Cn dn
0 b c bdc
1 1 1 2
1 1 3 4
1 1 5 6
1 2 2 2
1 2 4 4
1 2 5 5
1 2 6 6
1 3 3 3
1 3 5 8
1 4 6 8
1 4 7 9

Table 1. The first P-positions of the 5 vectors game with vs = 23:1 v;

4 The three vectors game

In this section, we consider instances of the 8 wvectors game with non Z-
independent vectors. Let vy, v9, and v3 be three vectors of RP such that

Ja,8,v €Z /avy+ fug+ yvz3 =0
Since vy, v, and w3 have positive coordinates, «, 3, and v can not be of the
same sign. Withous loss of generality, assume we can write
Yv3 = avy + By,

where a, 3, and ~ are nonnegative integers. An instance of the three vectors
game will be denoted by a triplet [a, 3,7]. In order to determine a canonical
respresentation for the game positions, we impose the condition a, 5,7 > 0 in
the instances.

4.1 P-positions of [«, 5,1] games, with o # 3
We consider instances of the three vectors game with v = 1.

Thus v3 = awvy + fvs. A canonical form for a game position will be a pair
(a,b) € Z2%,. Therefore, the options of a game position are the following;



Op(a,b)={(a —k,b) : 1 <k <a}
U{(a,b—k): 1<k <b}
U{(a —ka,b—kB): 1 <ka<a, 1<kf<b 0<k}

As for Wythoff’s game, this game can be described on a rectangular grid. A
piece is placed on a square of the grid. Both players alternately move the piece
according to three allowed directions : vertically (according to v;), horizontally
(according to vy), or on squares corresponding to multiples of v3 (see Figure
4).

Figure 4. Allowed moves when v3 = 3v; + vy (the [3,1,1] game)

Theorem 11 The P-positions of [a, B, 1] games with o # [ are in the form
(a,a) Ya > 0.

They correspond to the diagonal of the grid (cf. Figure 5).

01 2 3 01 2 345 6 7 8 9 1011
o 0 ]
1
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I 1
Figure 5. P-positions Figure 6. P-positions
when a # when a = =2

PROOF. It suffices to show that the set of positions (a,a), a > 0 is stable
and absorbent for the game graph.

From a game position (a,b) with a < b, remove k = (b — a) tokens from the
larger heap, and thus land in a (a, a) position.

From a game position (a,a), one can not reach another position in the form
(k, k), since none of the three vectors is directed according to the diagonal
direction (o # ). O



4.2 P-positions of [a, a, 1] games

The case @« = f = 1 is Wythoff’s game. In this game, there is exactly one
P-position per diagonal. When o > 1, since the diagonal moves are played
according to multiples of a, there will be exactly o P-positions on each diag-
onal. We now give a recursive algorithm that computes the sequence of the
P-positions (ay,b,) of a [a,a,1] game, with a, < b,. By symmetry of the
game, if (ay,, b,) is a P-position, then (b,, a,) is also a P-position.

Definition 12 Given two integers a > 0 and b > 0, denote by r(3) the re-
mainder of the euclidean division of a by b.

Algorithm computing the P-positions of [a, a, 1] games

e (ao, bo) = (0,0)

e Assume that (a;,b;) is known for all 0 < i < n.
Then a, = Mex(ag, ... ,a,_1,bg,... ,bp_1). Choose b, as the smallest inte-
ger not in {ag, ... ,a_1,bp,... ,by_1} such that there exists no other pre-
vious pair (a;,b;)o<i<n for which both conditions b, — a; = b, — a, and
r(%) = r(%) are simultaneously satisfied.

Figure 6 illustrates the first P-positions of the case a = § = 2.

This algorithm means that for a given nonnegative difference d, all the P-

positions {(a;1,bi1), ..., (Gia, bia)} such that by —a; = d for all 1 < k < «

(i.e., the a P-positions on the d"* diagonal) satisfy

{r(%),... r(%)} ={0,... ,a—1}.

Theorem 13 The algorithm above constructs the set of the P-positions of the
[, a, 1] games.

PROOF. Denote by S the set of positions built by the algorithm. In order
to show that S is the set of the P-positions of the [a, a, 1] game, it suffices to
show that S is a stable and absorbent set of the game graph.

S is a stable set
Let (a,b) and (a',0") be two distinct positions of S. We will prove that there
exists no move from (a,b) to (a’, ).

By construction, there is exactly one position of S in each row and each column
of the chessboard. A move according to vy or vy from (a,b) to (a',d") implies
a' = a or b/ = b, contradicting the previous remark.

Playing according to v implies (a',0') = (a — qa, b — qa) with ¢ > 0. The
differences (b — a) and (0" — a') are identical, and 7(%) = 7(*=%). According



to the algorithm, positions (a,b) and (a’,b') cannot be in S.

S is an absorbent set

On the grid, mark each position of S with the symbol ”S”. Mark ”*” each
position absorbed by S. We will prove that each position of the chessboard is
marked.

By definition, a S-marked position P generates a set of positions marked with
stars (these are positions from which there exists a move leading to P). See
Figure 7 for an example with oo = 2.

kel

Of* [* |[* [*

.

Figure 7. Absorbed
positions from a
S-marked  position
when a = 2

Figure 8. Proof of
the absorption when
a=2

Suppose there exists a position C' = (i, ) which is not marked. Choose C' as
the “smallest” one, i.e., there exists no other position C' = (¢, j') not marked
such that i < i and j' < j. By symmetry of the game and without loss of
generality, assume that ¢ < j. The positions on the left of C, above C, and
on the north-west diagonal at a distance multiple of o are necessarily marked
with stars (see Figure 8).

Since there is exactly one S-marked position by row, there exists a position
marked S in the i row. Since C is not marked and positions on the left of
C' are marked with stars, there exists p > j such that (i, p) belongs to S (see
Figure 8). Since j < p, there are two possible reasons explaining why (i, p)
was selected by the algorithm instead of (i, j):

e The integer j has already been selected by the algorithm. Hence there would
be a S-marked position in the column above C', but it is not the case.

e There exists a S-marked position (k, ) with k < i, [ < j, such that (I—k) =
(j — i) and r(£) = r(£). This means that (k,!) is on the same diagonal as
(1,7) and at a distance which is multiple of . But such a position is marked
*, as mentioned above.

Hence C should have been selected by the algorithm instead of (i, p), leading
to a contradiction. O
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The [2,2,1] game

In the case a = 2, we will detail another algorithm to compute the P-positions
of the game. It looks like the algorithm of Wythoff decribed in the introduction
of this paper, but there is no algebraic characterization known for it until
today.

Define (P,,@,) as the sequence of integers such that

P, = Mex(Py,...,P, 1,Q0,...,Qn 1), and Q, = P, + 2|n/4]. Initialize it
with (P, Qo) = (0,0). Hence P, and @, are two sequences for which each
even difference (Q, — P,) appears exactly four times in an increasing order.
Given two positive integers f and p, we can actually define a set of integer
sequences (P2* Q%"), where P%# is defined by the Mex rule, and the (n+1)%
difference (Q%* — P%*) is equal to §|n/u|. This means that differences that
are multiples of 6 appear exactly u times in an increasing order. When 6 =
i = 1, this defines Wythoft’s sequence. According to the theorem detailed in
[4], a characterization of P, or @), as a spectrum sequence (i.e., in the form
lna + B, a, B € R, as for Wythoff’s game) does not exist. Moreover, C.
Kimberling has recently added one of these sequences (with § = 1 and pu = 2)
to Sloane’s encyclopedia?. In agreement with him, it seems that there is no
known characterization for it.

Consider now the integer sequence (p,,¢,) such that p, = P,, ¢, = @, if
n=0(4)orn=1(4), ¢» = Qns1 if n =2(4), and ¢, = Q,_; if n = 3(4).

The array below describes the first values of both sequences (P,,@,) and
(Pn, qn)- To obtain ¢, from @, it suffices to exchange values Q42 and Qx4 3
for each positive integer k.

2 http://www.research.att.com/ njas/sequences/index.html
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0 0 0 0 0 0

0 1 1 1 1 0

0 2 2 2 3 1 0
0 3 3 3 2 —1 1
2 4 6 4 6 2 0
2 5 7 5 7 2 1
2 8 10 8 11 3 0
2 9 11 9 10 1 1
4 12 16 12 16 4 0
4 13 17 13 17 4 1
4 14 | 18 14 19 5 0
4 15 | 19 15 18 3 1
6 20 26 20 26 6 0
6 21 27 21 27 6 1

Lemma 14 For each nonnegative integer k, there exist two nonnegative inte-
gers i and j such that each block of pairs (Daktp, Qak+p)p=0..3 can be written in
the form:

(Pak, qu) = (24,20 + 2k)

2 +1,2i + 1 + 2k)
2j,2j + 2%k + 1)

2 + 1,2 + 2k)

(p4k+1, qak+1

(p4k+27 q4k+2

) =
) =
) =
) =

(p4k+37 q4k+3

PROOF. By construction of (p,,q,) from (P,,Q,), each of the four pairs
satisfies the right difference (quxtp — Pak+p)p=0...3. Therefore, it suffices to show
that the values psj, are correct.

According to the table above, the lemma is true for £ = 0 (choose i = 0 and
j = 1). Assume it is true until a certain rank k and consider the (k + 1)
rank. As p, is a strictly increasing sequence, we have py 4 > parys = (27 +1).
By definition of p, with the Mex rule, the unique reason for which pyx 4
could not be equal to (25 + 2) is that this integer has already appeared in the
¢n sequence. By induction hypothesis and since (25 + 2) is even, this value
could have appeared only as qu or qu 3, with &' < k. If it is the case, the
consecutive integer (25 + 3) would have also appeared before, respectively as
Qak'+1 OT Qupryo. Hence we conclude that if an even value already appeared
before, the consecutive odd value appeared too. Therefore, there exists [ such
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that psxrq4 = 20. Hence pyrr5 = 21+ 1 (If not, (20 + 1) would have appeared in
the ¢, sequence. By induction hypothesis, its predecessor 2/ would have also
appeared in ¢,, yielding a contradiction).

Since pyrre > (20 + 1), and with the same argument as previously, we prove
that pyr16 is an even positive integer, and that py;. 7 is the consecutive one. [

Proposition 15 The sequence (pn, gn) describes the P-positions of the [2,2,1]
game.

PROOF. Denote by (ay,b,) the sequence of the P-positions of the [2,2,1]
game. This sequence is obtained from the algorithm of Theorem 13. Define
the sequence (x,,y,) as follows:

(%1, Yn) = (@n, b)) VO <0 < 2

(z3,93) = (Y2, 22) = (3,2)
(Zn, Yn) = (An—1,bp—1) V0 >3

Now, if we apply the algorithm of Theorem 13 from the rank n = 4 and initi-
ated with the values (z;, y;)o<i<3, we construct precisely the sequence (z,, y,).
Indeed, since the values x3 and y3 are the respective repetitions of y, and x5,
and since the difference (y3 — x3) is negative, the insertion of the pair (z3,y3)
does not affect the result of the algorithm. Therefore, we will consider that
(%, yn) is produced by the algorithm of Theorem 13.

Define (d,,) = (y, — 2,,) as the sequence of the differences. First observe that
since x, and p, are both defined with the Mex rule, the sequences (z,) and
(pn) are increasing. Moreover, according to Lemma 14 and the Mex rule, one
can show that ¢; > ¢; for all j >4 4 1.

We will now show that (z,,yn) = (Pn, ¢n)- The proof works as follows: proving
that z,, = p, is easy since both values are computed with the Mex rule applied
on the previous values (supposed equal by induction hypothesis).

In order to determine ,,, we study the possible values d* for d,,. We start with
the smallest possible value d* available for d,,. This value is known by Lemma
14 and by induction hypothesis. If d* = y; — x; for some j < n and if z,, has
the same parity as x;, then we consider the next available value d* allowed by
the algorithm and repeat the test. Otherwise, this means that d* is chosen by
the algorithm, and so y, = x, + d*. By Lemma 14, it only remains to check
that =, + d* = q,.

We now give the proof in details:
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One can easily check the equality of (z,,y,) and (p,, ¢,) for n < 4. Suppose
this equality holds for the subsets (z4gii, Yarsi) and (Pagris Gagsi)i=o..3, for all
k < t for some ¢t > 0. This hypothesis ensures that x4, = p4; since they are both
defined with the Mex rule on the previous values. Note that x4 is thus even
by Lemma 14. By definition of the sequence (x4, ys) and from Lemma 14,
dy > (2t — 1), since all the smallest differences have already appeared twice.
The difference (2t — 1) = dy—o has been used once, but since T4 = Psy—1)42
(by induction hypothesis) and x4 are both even, the algorithm does not al-
low dy = (2¢ — 1). The next difference 2¢ has not been used before and is
greater than all the previous differences. Therefore, since (z,,) is an increasing
sequence, the value x4 + 2t is strictly greater than all the previous values. It
is chosen by the algorithm and thus ys = 74 + 2¢. By Lemma 14, one can
check that gy = yu.

As previously, we have 41 = ps11, since the Mex rule is applied on the
same set of integers. Hence 4,1 = x4 + 1 according to Lemma 14. Since
(X441 +2t —1) = yygy, we have dy 1 # 2t — 1, as an integer cannot appear sev-
eral times in the sequence (x,, y,). Then we get dyy 11 = 2¢, since x4y41 and 24
have different parities, and since (24,1 + 2t) has not appeared before (greater
than all other values). Therefore we have yy. 1 = T4p01+2t = a1 +2t = quuay
by Lemma 14.

By definition of the sequences z, and p, with the Mex rule, we have x4, =
Parr2- Lemma 14 ensures that x40, as x4 9, is even. Hence dy, o can not be
equal to (2t — 1) = dy;_o. Since the difference 2¢ has been used twice, the next
smallest available difference is (2¢ 4+ 1). We proceed as in the first case (i = 0),
which leads to the equality y410 = qs12-

We have 4135 = pari3 for the same reasons as previously. By Lemma 14,
this implies 24443 = @440 + 1, which is an odd number. Now consider the
integer (413 + 2t — 1). According to Lemma 14, it is equal to (yso — 1)
and is strictly greater than y; for any ¢ < (4t + 2) (cf. preliminary remark
about the sequence (g,)). Since x4.3 and x4 o have different parities, the
algorithm chooses dy;13 = 2t — 1. One can finally check that y4 13 = quus,
which concludes the proof. O

As explained in [12], most of combinatorial games have an exponential strat-
egy. Nim and Wythoff’s games have a polynomial complexity thanks to their
algebraic characterizations. In the case a = 2, Theorem 15 improves the read-
ibility of the general algorithm and opens a door to a possible polynomial
algebraic characterization (as a sum of spectrum sequences for example). A
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short investigation made us suppose that instances [a, «, 1] have sets of P-
positions that can be similarly deduced from integer sequences. Such results
combined with the obtention of formulas for these sequences would lead to a
nice characterization of the P-positions for the three vectors game.

Remark 16 Although the sequence P, cannot be written as a spectrum se-

quence (cf. [4]), it seems that it has the same progression as LMJ We

1
congecture that | P, — {“(3%\/1_7)“ < 4. In [9], Fraenkel investigates this conjec-

ture and introduces the notion of probabilistic winning strateqy.
4.8 P-positions of [a, B,7] games, with vy > 1

We now consider instances [, §,7] of the three vectors game, with v > 1.
Note that one can assume that a, § and ~ are prime together. Indeed, the
instances [a, 8,7] and [ka, kS, k7] define the same game.

Given a game position (a;v; + asvy +asvs), one associates the following canon-
ical triplet:

(4 [ e, ax+ [ 2B, r(27).

Therefore, any game position will be defined by a triplet (a,b,7), with 0 < a,b
and 0 < i < . It can be checked that this representation uniquely describes
the game positions.

Now, the options of a game position (a, b, ) can be defined as:

Op(a,b,i) = {(a — k,b,7) : 1 <k < a}

<1}

18,6 -5y o<k o< (Fla<a o< (Fla <.
Y Y Y

U{(a,b— k,i) 1<k
U{(a—5)a,p- |
Y Y

where [.] denotes the modulo operator.

Lemma 17 Let (a,b,i) be a P-position of Nim. Then a —i < b < a+ 1.

PROOF. If (a,b,i) is a P-position of Nim, then it satisfies b = a @ i. As
the operator @ defines the binary sum without carrying, it is clear that
b=a®i<a-+1.
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The second inequality is deduced from the first one, using the fact that
if (a,b,i) is a P-position of Nim, then (b, a,i) is also a P-position of this
game. U

Theorem 18 Let [, 3,7] be an instance of the three vectors game, such that
v>1and B> a(2y—1). Then a game position (a, b, i) is a P-position if and
only ifa®bdi=0.

PROOF. First observe that the options of a (a, b, i) position contain all the
options of a game of Nim with three heaps of respective sizes a, b, and 7. This
result is straightforward for the options concerning the heaps of sizes a and b.
For the heap of size i, consider the last option of the three vectors game with

] =0,

Therefore, it suffices to show that for a position (a, b,7) such that a®b®i = 0,
each position (a',0',7") € Op(a, b, i) satisfies ' ® b’ G ' # 0.

Let (a,b,i) be a game position satisfying a ® b @i = 0. Let (a’,b',7') be an
option of (a,b,7). Let k£ > 0 be an integer.

e Consider the options (a',b',i") = (a — k,b, ) with 1 < k < a. Since (Zxg, ®)
is a group, we have (a — k) @b P i #adbP 1.

e The case (a',V',i') = (a,b—k,i) with 1 < k < b can be treated as previously.
Hence a® (b— k) @i # 0.

e Suppose that (a',b',i") = ((a — L%Ja,b — L%JB, (i — r(%))[*y]) with 0 < k,
0< L%Ja <a,0< L%JB <b. Let p = L%J If p = 0, one can conclude as in
the previous cases. Now assume that p > 0. With our notations, we have:

i" = (i—r(2)h]

a =a— pa

bV =b-—pp

One can notice that (a—a')5 = (b—0')a. By way of contradiction, assume
that ' @' @i = 0. Then b’ = o' @ 4" and from Lemma 17,

ad—i7<b<d+7

Similarly, since a & b @ ¢ = 0, we have

a—1<b<a-+i

From these two inequalities we get
b—b <a—d +i+7
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Moreover, since i + i < 2y —2and b — ' = (a — a') <, we obtain

(@ —a)(C 1) <2y

Finally, since a’ < a, we get

f<(2y—1a O

Remark 19 From Theorem 18, one can assert that for any values of o and
v, there exists B, such that for all B > Ba, the games |a, B,7] and [1,27v,7]
have the same P-positions.

Remark 20 One can wonder whether the [«, 5,7] games and the game of
Nim on three heaps have the same Grundy function. With the actual bound
(i.e., B> a(2y —1)), the [a, B,7] games have a G function different from the
Nim sum. However, this assumption might be true for some larger values of

B.

Therefore, a second question consists in comparing the G functions of the
[, B,7] games, for B > «a(2v —1). Even if a is fized, there exists some games
with different G functions (e.g. games [1,4,2] and [1,5,2]).

Remark 21 There exist [a, 5,7] games with f < «(2y — 1) for which the
P-positions differ from those of the game of Nim. This is for example the case
of the games [1,3,2], [1,5,3], or [2,14,7|. However, it seems that for some
B < a2y — 1), the P-positions of the corresponding |, 5,v] games remain
equal to those of Nim. This leads us to Conjecture 22 and Problem 23 below.

Conjecture 22 Let > 2y 4+ « — 1. Then a game position (a,b,i) is a P-
position of the corresponding [a, B,7] game if and only if a ®b® i = 0.

Problem 23 Find the smallest value (o, 7y) such that for all 5 > B(a,),
all the games [, 8,v] have a their P-positions identical to those of Nim.

5 The R-radius game

In Wythoff’s game, one moves the queen on the chessboard according to one of
the three directions, no matter the number of squares jumped. In the R-radius
game, the length of the moves is bounded by a constant R. The directions al-
lowed do not change. For example, playing the 1-radius game amounts to
moving a king on the chessboard. The example of the 3-radius game is given
by Figure 9. The original Wythoff’s game can be considered as the oo-radius
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game.

wWNEFkO

Figure 9. Al- Figure 10.
lowed moves P-positions  of
in the 3-radius the 3-radius
game game

In this section, we prove that the P-positions of Wythoft’s game are sufficient
to determine those of the R-radius game.

Lemma 24 If (ay,b,) is a P-position of Wythoff’s game with a, < by, then
b, < 2a,,.

PROOF. Wythoff proved in [15] that (an,b,) can be written as the pair
([n7], |nT] + n). Since 7 > 1, it is easy to check that n < |n7|. O

Theorem 25 For any R > 1, the P-positions of the R-radius game are de-
scribed by :

(a+(R+1)k, b+ (R+1)l) YVE 1>0

for all the pairs (a,b) which are P-positions of Wythoff’s game with a < R
and b < R.

PROOF. Let R > 1 and (X,Y) be a position of the R-radius game. Then
there exist a unique a, b and k such that

X=a+(R+1)k 0<a<R, 0<k

V=b+(R+1,0<b<R,0<I

- If (a,b) is not a P-position of Wythoff’s game, then there exists a move
from (a,b) to a P-position (a’,b') of Wythoft’s game with o' < a and 0’ < b.
Moreover, this move satisfies |a — a/| < R and |b — /| < R. Thus there exists
a move of the R-radius game from (X,Y) to (¢’ + (R+ 1)k, 0’ + (R + 1)1).
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- Now suppose that (a,b) is a P-position of Wythoft’s game. Let (X', Y") #
(X,Y) be a position of the R-radius game such that

X'=d+R+1DK,0<d <R, 0<F¥

Y=+ (R+1I,0<V <R, 0/
and where (a’, V') is a P-position of Wythoff’s game.
We will prove that there is no move from (X,Y) to (X', Y").

By way of contradiction, assume that with 0 < m < R, one of the three
following conditions holds:

(1) X'=X—-—mandY' =Y
2) X'=XandY' =Y —m
B) X'=X-mandY' =Y —m

(1) The equality Y’ =Y implies b = b'. And since an integer cannot appear
more than once in Wythoff’s sequence, we have also a’ = a. Since X' # X
we have k > k', which implies that m > R + 1.
(2) Similarly by exchanging the roles of X and Y we get the same conclusion
as in (1).
(3) The case X' = X —m and Y' =Y — m. Since m < (R + 1), we have one
of the four following cases:
e kb =Fk and l =1 Then a = a’ + m and b = 0’ + m. This implies (b —
a) = (b — a'). Since each difference appears exactly once in Wythoff’s
sequence, we must have b = b’ and a = d/, yielding a contradiction.
e k=FK+1landl=0I'+1.Thena=d+m—-—R—1andb=0+m—R—1.
We conclude similarly as in the previous case.
ek=Fandl=0I+1Thena=d +m—-R—-1and b = +m. We
deduce the following equality:

a—b+R+1=d -1 (5A)

If " <V, then we have a + R+ 1 < b from (5A). By Lemma 24, this
implies a + R+ 1 < 2a and finally R + 1 < a, yielding a contradiction.
Hence o' > ¥'. From (5A) and since b < (R + 1), we obtain

d—b>a (5B)
Since (0, a’) is a P-position of Wythoff’s game and by Lemma 24, we
have a' < 20'. Thus a < @' — ¥ < b by using (5B). Now, from (5A) and
since o’ < (R+ 1), we get

a—b>a-b+d (50)

19



Moreover, since o' — ' < R, we have a < b from (5A). So by Lemma 24
we have b < 2a. Now we have

a—-b<d-a<a+a-0b,

which contradicts (5C).
e k =Fk +1 and [ = I'. By symmetry, we conclude as in the previous
case. 0O

One may suppose that this kind of result is true for the "bounded” three
vectors game, but this is not the case (this property is not satisfied for the
instance [2, 2, 1] for example).

Remark 26 Theorem 25 asserts that the P-positions of bounded Wythoff’s
game can be determined by translation of the P-positions of Wythoff’s game
on a bounded chessboard. It is easy to check that this property is also true for
the game of Nim with two heaps. Are there other games for which this result
is true ?

Problem 27 One can investigate the case of Wythoff’s game which is only
bounded in the diagonal direction. Conversely, consider the case where the hor-
izontal and vertical distances are bounded, but the diagonal distance is infinite.

Problem 28 In [11], Fraenkel defines a generalized Wythoff’s game. If one
removes k and | tokens in both heaps, then the condition |k — 1| < a must be
fulfilled, where a is a fixed positive integer. One can investigate the bounded
version of this game, and test whether some periodicity of the P-positions
appears.
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