
Geometrial extensions of Wytho�'s gameEri Duhêne, Sylvain Gravier 1Laboratoire Leibniz, ERT�e "Maths �a modeler"Grenoble, FraneAbstratIn 1905 Bouton gave the omplete theory of a two player ombinatorial game: thegame of Nim. Two years later, Wytho� de�nes his game as \a modi�ation" of thegame of Nim. In this paper, we give the sets of the losing positions of geometrialextensions of Wytho�'s game, where allowed moves are onsidered aording toa set of vetors (v1; : : : ; vn). When n = 3, we present algorithms and algebraiharaterizations to determine the losing positions of suh games. In the last part,we investigate a bounded version of Wytho�'s game, and give a polynomial way todeide whether a game position is losing or not.Key words: Wytho�'s sequene, Nim, ombinatorial games, game graph
1 IntrodutionIn a game of Nim with n heaps, two players alternately move from a on�gura-tion made up of n heaps of tokens. By turn, eah player removes any numberof tokens from a single heap. A player is not allowed to miss his turn. Thewinner is the player taking the last token, the other loses as he is unable tomove again (see [5℄).As de�ned in [15℄, Wytho�'s game is played with two heaps of tokens. Eahplayer an either remove any number of tokens from a single heap (the Nimrule), or remove the same number of tokens from both heaps (Wytho�'s rule).A position of Wytho�'s game is denoted by a pair (a; b), where a and b arethe number of tokens in eah heap.De�nition 1 A N -position is a position from whih there exists a winningmove for the �rst player. A P-position is a position from whih there existsno good move for the �rst player.1 E-mail address: eri.duhene�ulg.a.be, sylvain.gravier�ujf-grenoble.frPreprint submitted to Elsevier Siene 30th Marh 2007



Note that in the ontext of two-player games, a P-position is also winning forthe seond player.De�nition 2 Let U � Z�0. We de�ne the Minimum Exluded value of U bythe smallest nonnegative integer not in U . It will be denoted by Mex(U). Inpartiular, Mex(;) = 0.The set of the P-positions of Wytho�'s game is desribed in e.g. [1,2,15℄. Thesymmetry of the game implies that eah pair (a; b) has its symmetrial (b; a)of the same type, i.e., N - or P-position. The following algorithm omputesthe sequene (an; bn) (with an � bn) of the P-positions of Wytho�'s game:� (a0; b0) = (0; 0) is the �rst P-position.� Assume that (ai; bi) is known for all 0 � i < n. Then (an; bn) is de�ned asfollows: an =Mex(a0; : : : ; an�1; b0; : : : ; bn�1), and bn = an + n.Note that eah positive number appears exatly one in the sequene (an; bn).This is also true for the sequene of the di�erenes (bn�an). In the literature,the sequene (an; bn) is often alled Wytho�'s sequene.Eah impartial ombinatorial game is assoiated with a digraph G = (V;E),alled the game graph. The set of the verties V are the positions of the game.Given two verties v1 and v2, there is an edge from v1 to v2 if there exists amove from the position v1 to the position v2.De�nition 3 Given a digraph G = (V;E), a set S � V is said stable if thereis no edge between any two verties of S. A set A � V is said absorbent if forany v 2 V n A, there exists a 2 A suh that (v; a) 2 E.De�nition 4 Given a digraph G = (V;E), a kernel of G is both a stable andan absorbent set of G.The P-positions of a game onstitute a kernel of its game graph. If the gamegraph does not ontain any iruit, suh a kernel exists and is unique (see [1℄for details).De�nition 5 For a game G = (V;E) and a position v 2 V , letOp(v) = fw 2 V=(v; w) 2 Eg be the set of the options of v. That is Op(v) isthe set of all the positions that an be reahed from v in one move.To eah game position v of an impartial game we assoiate a nonnegativeinteger value G(v), alled the G-value of v. This funtion G is alled the Grundyfuntion, and an be de�ned reursively as follows:G(v) = Mex(fG(u) : u 2 Op(v)g):2



If the game graph is ayli, then this funtion exists and is unique. It is well-known that the zeros of the Grundy funtion are the P-positions of the game.See [1,6,13℄ for more information on the Grundy funtion.In [15℄, it is proved that the P-positions Wytho�'s game an be haraterizedwith the golden ratio � = (1 + p5)=2. Eah P-position (an; bn) an also bewritten (bn�; bn� 2). With this haraterization, one an deide in polyno-mial time whether a game position is P or N (f. [12℄ for information aboutthe omplexity of a ombinatorial game). In [2℄, Blass et al. detail some otherproperties of the P-positions of Wytho�'s game, and investigate the ase ofthe other G-values.The P-positions of a game of Nim with n heaps satisfy a0�a1� : : :�an�1 = 0,where ai is the number of tokens in the ith heap, and � is the \Nim-sum"operator, i.e., the binary addition without arrying (the �rst proof was givenin [5℄). It is well known that (Z�0;�) de�nes an additive group, where theidentity element is 0 and where the inverse of an element is the element itself.2 A geometrial extension of Wytho�'s gameIn their book (see [1℄), Berlekamp, Conway, and Guy desribe Wytho�'s gamewith a hessboard on whih a queen is plaed. Both players alternately movethe queen aording to hess rules. The queen must be loser to the (0; 0)position after eah move (otherwise the game ould never end). A player winswhen he moves the queen on the square (0; 0) (see Figure 1).

Figure 1. Wytho�'s game played on a hessboard3



In the literature, lots of variations of Wytho�'s game were investigated, interms of P-positions or Grundy funtion. The modi�ations often onernWytho�'s rule: instead of removing k = l tokens in both heaps, new on-straints are onsidered for the pair (k; l). For example, in the generalizedWytho�'s game (see [11℄), one an remove k and l tokens in both heaps pro-vided jk � lj < a, where a is a �xed positive integer. In [10℄, the onditionk � l < 2k + 2 must be satis�ed.We now de�ne another extension of Wytho�'s game, alled the n vetors game.Let n and p be two positive integers. Let v1; : : : ; vn be n vetors of Rp , withnonnegative oordinates.A game position of the n vetors game is a vetor v = (a1v1+ : : :+anvn); withai 2 Z�0. A move onsists in hoosing a vetor vi and removing it k times fromv, provided the vetor (v�kvi) an also be written (a01v1+: : :+a0nvn); a0i 2 Z�0.In other words, we have:Op(a1v1 + : : :+ anvn)= fw = (a1v1 + : : :+ anvn � kvi) :1 � i � n; 0 < k;9(a01; : : : ; a0n) 2 Zn�0 =w = (a01v1 + : : :+ a0nvn)gThe �nal position is the null vetor. Note that the game has an end, sine then vetors are hosen with nonnegative oordinates.With this formalism, Wytho�'s game an be seen as the three vetors gamewith v1 = (1; 0), v2 = (0; 1), and v3 = (1; 1). However, the same position ofthe n vetors game may be desribed with two distint notations. For examplein Wytho�'s game with v1 = (1; 0), v2 = (0; 1), and v3 = (1; 1), the gamepositions (1:v1+1:v2+0:v3) and (0:v1+0:v2+1:v3) are idential, although theoeÆients ai are di�erent. To get through this diÆulty and make the set ofthe options more aessible, one key is to �nd a anonial representation of agame position.De�nition 6 v1; : : : ; vn are said Z-independent vetors if��1; : : : ; �n 2 Z; non all zero =�1v1 + : : :+ �nvn = 0Fat 7 In the n vetors game, if the n vetors are Z-independent, then thereexists a unique set of nonnegative integers (a1; : : : ; an) to de�ne eah gameposition. Suppose indeed that (a1v1+ : : :+anvn) and (a01v1+ : : :+a0nvn) de�nethe same vetor. Then we would have (a1�a01)v1+ : : :+(an�a0n)vn = 0, where8i; (ai � a0i) 2 Z. 4



Therefore, when the n vetors are Z-independent, we hoose the n-tuple(a1; : : : ; an) as the anonial representation of the game position (a1v1+ : : :+anvn). The following proposition is thus dedued:Proposition 8 The n vetors game played with Z-independent vetors is equiv-alent to the game of Nim with n heaps.PROOF. With the above anonial representation, from a game position(a1; : : : ; an), a move onsists in dereasing one of the n values a1; : : : ; an by apositive integer until reahing the (0; : : : ; 0) position. 2In the rest of this paper, we onsider instanes of the n vetors game withnon Z-independent vetors. The searh of a anonial representation for thegame positions will be required. We will present a haraterization of the P-positions in a partiular ase with an odd number of vetors (setion 3), ormore spei�ally when n is equal to three (setion 4). Setion 5 details anothervariation of Wytho�'s game, when the number of tokens one an remove isbounded by a onstant.3 Odd number of Z-independent vetorsWe onsider instanes of the (2n + 2) vetors game suh that v1; : : : ; v2n+1are Z-independent vetors, and v2n+2 = P2n+1i=1 vi. The following anonialrepresentation will be hosen: denote a game position (a1v1+: : :+a2n+1v2n+1+a2n+2v2n+2) by the (2n+ 1)-tuple (a1; : : : ; a2n+1). Then we have:Op(a1; a2; : : : ; a2n+1) = f(a1 � k; a2; : : : ; a2n+1) : 1 � k � a1g[f(a1; a2 � k; : : : ; a2n+1) : 1 � k � a2g[ : : :[f(a1; a2; : : : ; a2n+1 � k) : 1 � k � a2n+1g[f(a1 � k; a2 � k; : : : ; a2n+1 � k) : 1 � k � min(ai)g:This game an also be desribed on (2n+1) heaps of tokens. A move onsists inremoving any number of tokens from a single heap (the Nim rule), or removingthe same number of tokens from all the heaps, on ondition that eah of themis a non empty heap (extended Wytho�'s rule).Theorem 9 The P-positions of this game are idential to those of the gameof Nim with (2n+ 1) heaps. 5



PROOF. It suÆes to show that if (a1; a2; : : : ; a2n+1) is a P-position of Nim,then (a1 � x; a2 � x; : : : ; a2n+1 � x) with 1 � x � min(ai) is a N -position ofNim.Let (a1; a2; : : : ; a2n+1) be a P-position of Nim. It satis�es a1� a2� a2n+1 = 0.Now onsider the position (a1�x; a2�x; : : : ; a2n+1�x) with 1 � x � min(ai).Denote by x = xr : : : x1 (xr = 1) the binary writing of x. Let xk be the smallestnonzero bit of it, i.e. xk = 1 and 8 1 � xi < k; xi = 0.On Figure 2, onsider the Nim-sum of the ai's before the move.
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This sum is equal to 0 on eah bit. There is thus an even number of 10s andan odd number of 00s in eah olumn. This property is of ourse true for thekth olumn.Eah ai is dereased by x after the move. By de�nition of xk, ai and (ai � x)have the same �rst (k � 1) bits of their binary writing. As xk = 1, the kth bitof eah ai will be hanged after the substration of x (see Figure 3). Then theNim sum of the resulting position ontains an odd number of 10s in its ktholumn, whih implies that it di�ers from 0. 2Remark 10 In [3℄, Blass et al. proved a more general result. They showed thatthis game and the game of Nim with (2n + 1) heaps have the same Grundyfuntion. By adapting our proof, we obtain the same result. However, the pur-pose of Theorem 9 is not to present a new result, but to illustrate the n vetorsgame with a large value for n.Now onsider the even ase: v1; : : : ; v2n are Z-independent vetors, and v2n+1 =P2ni=1 vi. For suh games, it is proved in [3℄ that the P-positions are di�erentfrom those of the game of Nim. When the number of vetors is three, this isWytho�'s game. In the other ases, �nding a polynomial haraterization ofthe P-positions remains a triky problem. The following table ontains the�rst few P-positions of this game with �ve vetors.6



an bn n dn0 b  b� 1 1 1 21 1 3 41 1 5 61 2 2 21 2 4 41 2 5 51 2 6 61 3 3 31 3 5 81 4 6 81 4 7 9Table 1. The �rst P-positions of the 5 vetors game with v5 =P4i=1 vi4 The three vetors gameIn this setion, we onsider instanes of the 3 vetors game with non Z-independent vetors. Let v1, v2, and v3 be three vetors of Rp suh that9 �; �;  2 Z =�v1 + �v2 + v3 = 0Sine v1, v2 and v3 have positive oordinates, �, �, and  an not be of thesame sign. Withous loss of generality, assume we an writev3 = �v1 + �v2,where �, �, and  are nonnegative integers. An instane of the three vetorsgame will be denoted by a triplet [�; �; ℄. In order to determine a anonialrespresentation for the game positions, we impose the ondition �; �;  > 0 inthe instanes.4.1 P-positions of [�; �; 1℄ games, with � 6= �We onsider instanes of the three vetors game with  = 1.Thus v3 = �v1 + �v2. A anonial form for a game position will be a pair(a; b) 2 Z2�0. Therefore, the options of a game position are the following:7



Op(a; b)= f(a� k; b) : 1 � k � ag[f(a; b� k) : 1 � k � bg[f(a� k�; b� k�) : 1 � k� � a; 1 � k� � b; 0 < kgAs for Wytho�'s game, this game an be desribed on a retangular grid. Apiee is plaed on a square of the grid. Both players alternately move the pieeaording to three allowed diretions : vertially (aording to v1), horizontally(aording to v2), or on squares orresponding to multiples of v3 (see Figure4).
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10Figure 6. P-positionswhen � = � = 2PROOF. It suÆes to show that the set of positions (a; a); a � 0 is stableand absorbent for the game graph.From a game position (a; b) with a < b, remove k = (b � a) tokens from thelarger heap, and thus land in a (a; a) position.From a game position (a; a), one an not reah another position in the form(k; k), sine none of the three vetors is direted aording to the diagonaldiretion (� 6= �). 2 8



4.2 P-positions of [�; �; 1℄ gamesThe ase � = � = 1 is Wytho�'s game. In this game, there is exatly oneP-position per diagonal. When � > 1, sine the diagonal moves are playedaording to multiples of �, there will be exatly � P-positions on eah diag-onal. We now give a reursive algorithm that omputes the sequene of theP-positions (an; bn) of a [�; �; 1℄ game, with an � bn. By symmetry of thegame, if (an; bn) is a P-position, then (bn; an) is also a P-position.De�nition 12 Given two integers a � 0 and b > 0, denote by r(ab ) the re-mainder of the eulidean division of a by b.Algorithm omputing the P-positions of [�; �; 1℄ games� (a0; b0) = (0; 0)� Assume that (ai; bi) is known for all 0 � i < n.Then an =Mex(a0; : : : ; an�1; b0; : : : ; bn�1). Choose bn as the smallest inte-ger not in fa0; : : : ; an�1; b0; : : : ; bn�1g suh that there exists no other pre-vious pair (ai; bi)0�i<n for whih both onditions bi � ai = bn � an andr(ai� ) = r(an� ) are simultaneously satis�ed.Figure 6 illustrates the �rst P-positions of the ase � = � = 2.This algorithm means that for a given nonnegative di�erene d, all the P-positions f(ai1; bi1); : : : ; (ai�; bi�)g suh that bik � aik = d for all 1 � k � �(i.e., the � P-positions on the dth diagonal) satisfyfr(ai1� ); : : : ; r(ai�� )g = f0; : : : ; �� 1g.Theorem 13 The algorithm above onstruts the set of the P-positions of the[�; �; 1℄ games.PROOF. Denote by S the set of positions built by the algorithm. In orderto show that S is the set of the P-positions of the [�; �; 1℄ game, it suÆes toshow that S is a stable and absorbent set of the game graph.S is a stable setLet (a; b) and (a0; b0) be two distint positions of S. We will prove that thereexists no move from (a; b) to (a0; b0).By onstrution, there is exatly one position of S in eah row and eah olumnof the hessboard. A move aording to v1 or v2 from (a; b) to (a0; b0) impliesa0 = a or b0 = b, ontraditing the previous remark.Playing aording to v3 implies (a0; b0) = (a � q�; b � q�) with q > 0. Thedi�erenes (b � a) and (b0 � a0) are idential, and r( a�) = r(a�q�� ). Aording9



to the algorithm, positions (a; b) and (a0; b0) annot be in S.S is an absorbent setOn the grid, mark eah position of S with the symbol "S". Mark "*" eahposition absorbed by S. We will prove that eah position of the hessboard ismarked.By de�nition, a S-marked position P generates a set of positions marked withstars (these are positions from whih there exists a move leading to P ). SeeFigure 7 for an example with � = 2.
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Figure 8. Proof ofthe absorption when� = 2Suppose there exists a position C = (i; j) whih is not marked. Choose C asthe \smallest" one, i.e., there exists no other position C 0 = (i0; j 0) not markedsuh that i0 � i and j 0 � j. By symmetry of the game and without loss ofgenerality, assume that i � j. The positions on the left of C, above C, andon the north-west diagonal at a distane multiple of � are neessarily markedwith stars (see Figure 8).Sine there is exatly one S-marked position by row, there exists a positionmarked S in the ith row. Sine C is not marked and positions on the left ofC are marked with stars, there exists p > j suh that (i; p) belongs to S (seeFigure 8). Sine j < p, there are two possible reasons explaining why (i; p)was seleted by the algorithm instead of (i; j):� The integer j has already been seleted by the algorithm. Hene there wouldbe a S-marked position in the olumn above C, but it is not the ase.� There exists a S-marked position (k; l) with k < i, l < j, suh that (l�k) =(j � i) and r( k�) = r( i�). This means that (k; l) is on the same diagonal as(i; j) and at a distane whih is multiple of �. But suh a position is marked�, as mentioned above.Hene C should have been seleted by the algorithm instead of (i; p), leadingto a ontradition. 2 10



The [2; 2; 1℄ gameIn the ase � = 2, we will detail another algorithm to ompute the P-positionsof the game. It looks like the algorithm of Wytho� deribed in the introdutionof this paper, but there is no algebrai haraterization known for it untiltoday.De�ne (Pn; Qn) as the sequene of integers suh thatPn = Mex(P0; : : : ; Pn�1; Q0; : : : ; Qn�1), and Qn = Pn + 2bn=4. Initialize itwith (P0; Q0) = (0; 0). Hene Pn and Qn are two sequenes for whih eaheven di�erene (Qn � Pn) appears exatly four times in an inreasing order.Given two positive integers � and �, we an atually de�ne a set of integersequenes (P �;�n ; Q�;�n ), where P �;�n is de�ned by the Mex rule, and the (n+1)thdi�erene (Q�;�n � P �;�n ) is equal to �bn=�. This means that di�erenes thatare multiples of � appear exatly � times in an inreasing order. When � =� = 1, this de�nes Wytho�'s sequene. Aording to the theorem detailed in[4℄, a haraterization of Pn or Qn as a spetrum sequene (i.e., in the formbn� + �, �; � 2 R, as for Wytho�'s game) does not exist. Moreover, C.Kimberling has reently added one of these sequenes (with � = 1 and � = 2)to Sloane's enylopedia 2 . In agreement with him, it seems that there is noknown haraterization for it.Consider now the integer sequene (pn; qn) suh that pn = Pn, qn = Qn ifn � 0(4) or n � 1(4), qn = Qn+1 if n � 2(4), and qn = Qn�1 if n � 3(4).The array below desribes the �rst values of both sequenes (Pn; Qn) and(pn; qn). To obtain qn from Qn, it suÆes to exhange values Q4k+2 and Q4k+3for eah positive integer k.

2 http://www.researh.att.om/~njas/sequenes/index.html11



Qn � Pn Pn Qn pn qn qn � pn r( pn� )0 0 0 0 0 0 00 1 1 1 1 0 10 2 2 2 3 1 00 3 3 3 2 �1 12 4 6 4 6 2 02 5 7 5 7 2 12 8 10 8 11 3 02 9 11 9 10 1 14 12 16 12 16 4 04 13 17 13 17 4 14 14 18 14 19 5 04 15 19 15 18 3 16 20 26 20 26 6 06 21 27 21 27 6 1Lemma 14 For eah nonnegative integer k, there exist two nonnegative inte-gers i and j suh that eah blok of pairs (p4k+p; q4k+p)p=0:::3 an be written inthe form: (p4k; q4k) = (2i; 2i+ 2k)(p4k+1; q4k+1) = (2i+ 1; 2i+ 1 + 2k)(p4k+2; q4k+2) = (2j; 2j + 2k + 1)(p4k+3; q4k+3) = (2j + 1; 2j + 2k)PROOF. By onstrution of (pn; qn) from (Pn; Qn), eah of the four pairssatis�es the right di�erene (q4k+p� p4k+p)p=0:::3. Therefore, it suÆes to showthat the values p4k+p are orret.Aording to the table above, the lemma is true for k = 0 (hoose i = 0 andj = 1). Assume it is true until a ertain rank k and onsider the (k + 1)thrank. As pn is a stritly inreasing sequene, we have p4k+4 > p4k+3 = (2j+1).By de�nition of pn with the Mex rule, the unique reason for whih p4k+4ould not be equal to (2j +2) is that this integer has already appeared in theqn sequene. By indution hypothesis and sine (2j + 2) is even, this valueould have appeared only as q4k0 or q4k0+3, with k0 � k. If it is the ase, theonseutive integer (2j + 3) would have also appeared before, respetively asq4k0+1 or q4k0+2. Hene we onlude that if an even value already appearedbefore, the onseutive odd value appeared too. Therefore, there exists l suh12



that p4k+4 = 2l. Hene p4k+5 = 2l+1 (If not, (2l+1) would have appeared inthe qn sequene. By indution hypothesis, its predeessor 2l would have alsoappeared in qn, yielding a ontradition).Sine p4k+6 > (2l + 1), and with the same argument as previously, we provethat p4k+6 is an even positive integer, and that p4k+7 is the onseutive one. 2Proposition 15 The sequene (pn; qn) desribes the P-positions of the [2; 2; 1℄game.PROOF. Denote by (an; bn) the sequene of the P-positions of the [2; 2; 1℄game. This sequene is obtained from the algorithm of Theorem 13. De�nethe sequene (xn; yn) as follows:(xn; yn) = (an; bn) 8 0 � n � 2(x3; y3) = (y2; x2) = (3; 2)(xn; yn) = (an�1; bn�1) 8 n > 3Now, if we apply the algorithm of Theorem 13 from the rank n = 4 and initi-ated with the values (xi; yi)0�i�3, we onstrut preisely the sequene (xn; yn).Indeed, sine the values x3 and y3 are the respetive repetitions of y2 and x2,and sine the di�erene (y3� x3) is negative, the insertion of the pair (x3; y3)does not a�et the result of the algorithm. Therefore, we will onsider that(xn; yn) is produed by the algorithm of Theorem 13.De�ne (dn) = (yn � xn) as the sequene of the di�erenes. First observe thatsine xn and pn are both de�ned with the Mex rule, the sequenes (xn) and(pn) are inreasing. Moreover, aording to Lemma 14 and the Mex rule, onean show that qj > qi for all j > i+ 1.We will now show that (xn; yn) = (pn; qn). The proof works as follows: provingthat xn = pn is easy sine both values are omputed with the Mex rule appliedon the previous values (supposed equal by indution hypothesis).In order to determine yn, we study the possible values d� for dn. We start withthe smallest possible value d� available for dn. This value is known by Lemma14 and by indution hypothesis. If d� = yj � xj for some j < n and if xn hasthe same parity as xj, then we onsider the next available value d� allowed bythe algorithm and repeat the test. Otherwise, this means that d� is hosen bythe algorithm, and so yn = xn + d�. By Lemma 14, it only remains to hekthat xn + d� = qn.We now give the proof in details: 13



One an easily hek the equality of (xn; yn) and (pn; qn) for n < 4. Supposethis equality holds for the subsets (x4k+i; y4k+i) and (p4k+i; q4k+i)i=0:::3, for allk < t for some t > 0. This hypothesis ensures that x4t = p4t sine they are bothde�ned with the Mex rule on the previous values. Note that x4t is thus evenby Lemma 14. By de�nition of the sequene (x4t; y4t) and from Lemma 14,d4t � (2t� 1), sine all the smallest di�erenes have already appeared twie.The di�erene (2t� 1) = d4t�2 has been used one, but sine x4t�2 = p4(t�1)+2(by indution hypothesis) and x4t are both even, the algorithm does not al-low d4t = (2t � 1). The next di�erene 2t has not been used before and isgreater than all the previous di�erenes. Therefore, sine (xn) is an inreasingsequene, the value x4t + 2t is stritly greater than all the previous values. Itis hosen by the algorithm and thus y4t = x4t + 2t. By Lemma 14, one anhek that q4t = y4t.As previously, we have x4t+1 = p4t+1, sine the Mex rule is applied on thesame set of integers. Hene x4t+1 = x4t + 1 aording to Lemma 14. Sine(x4t+1+2t�1) = y4t, we have d4t+1 6= 2t�1, as an integer annot appear sev-eral times in the sequene (xn; yn). Then we get d4t+1 = 2t, sine x4t+1 and x4thave di�erent parities, and sine (x4t+1+2t) has not appeared before (greaterthan all other values). Therefore we have y4t+1 = x4t+1+2t = p4t+1+2t = q4t+1by Lemma 14.By de�nition of the sequenes xn and pn with the Mex rule, we have x4t+2 =p4t+2. Lemma 14 ensures that x4t+2, as x4t�2, is even. Hene d4t+2 an not beequal to (2t� 1) = d4t�2. Sine the di�erene 2t has been used twie, the nextsmallest available di�erene is (2t+1). We proeed as in the �rst ase (i = 0),whih leads to the equality y4t+2 = q4t+2.We have x4t+3 = p4t+3 for the same reasons as previously. By Lemma 14,this implies x4t+3 = x4t+2 + 1, whih is an odd number. Now onsider theinteger (x4t+3 + 2t � 1). Aording to Lemma 14, it is equal to (y4t+2 � 1)and is stritly greater than yi for any i < (4t + 2) (f. preliminary remarkabout the sequene (qn)). Sine x4t+3 and x4t�2 have di�erent parities, thealgorithm hooses d4t+3 = 2t � 1. One an �nally hek that y4t+3 = q4t+3,whih onludes the proof. 2As explained in [12℄, most of ombinatorial games have an exponential strat-egy. Nim and Wytho�'s games have a polynomial omplexity thanks to theiralgebrai haraterizations. In the ase � = 2, Theorem 15 improves the read-ibility of the general algorithm and opens a door to a possible polynomialalgebrai haraterization (as a sum of spetrum sequenes for example). A14



short investigation made us suppose that instanes [�; �; 1℄ have sets of P-positions that an be similarly dedued from integer sequenes. Suh resultsombined with the obtention of formulas for these sequenes would lead to anie haraterization of the P-positions for the three vetors game.Remark 16 Although the sequene Pn annot be written as a spetrum se-quene (f. [4℄), it seems that it has the same progression as bn(3+p17)4 . Weonjeture that jPn�bn(3+p17)4 j � 4. In [9℄, Fraenkel investigates this onje-ture and introdues the notion of probabilisti winning strategy.4.3 P-positions of [�; �; ℄ games, with  > 1We now onsider instanes [�; �; ℄ of the three vetors game, with  > 1.Note that one an assume that �, � and  are prime together. Indeed, theinstanes [�; �; ℄ and [k�; k�; k℄ de�ne the same game.Given a game position (a1v1+a2v2+a3v3), one assoiates the following anon-ial triplet: (a1 + ba3 �; a2 + ba3 �; r(a3 )):Therefore, any game position will be de�ned by a triplet (a; b; i), with 0 � a; band 0 � i < . It an be heked that this representation uniquely desribesthe game positions.Now, the options of a game position (a; b; i) an be de�ned as:Op(a; b; i) = f(a � k; b; i) : 1 � k � ag[f(a; b� k; i) : 1 � k � bg[f(a � bk �; b� bk �; (i� r(k ))[℄) : 0 < k; 0 � bk � � a; 0 � bk � � bg:where [:℄ denotes the modulo operator.Lemma 17 Let (a; b; i) be a P-position of Nim. Then a� i � b � a+ i.PROOF. If (a; b; i) is a P-position of Nim, then it satis�es b = a � i. Asthe operator � de�nes the binary sum without arrying, it is lear thatb = a� i � a+ i. 15



The seond inequality is dedued from the �rst one, using the fat thatif (a; b; i) is a P-position of Nim, then (b; a; i) is also a P-position of thisgame. 2Theorem 18 Let [�; �; ℄ be an instane of the three vetors game, suh that > 1 and � > �(2� 1). Then a game position (a; b; i) is a P-position if andonly if a� b� i = 0.PROOF. First observe that the options of a (a; b; i) position ontain all theoptions of a game of Nim with three heaps of respetive sizes a, b, and i. Thisresult is straightforward for the options onerning the heaps of sizes a and b.For the heap of size i, onsider the last option of the three vetors game withb k� = 0.Therefore, it suÆes to show that for a position (a; b; i) suh that a�b� i = 0,eah position (a0; b0; i0) 2 Op(a; b; i) satis�es a0 � b0 � i0 6= 0.Let (a; b; i) be a game position satisfying a � b � i = 0. Let (a0; b0; i0) be anoption of (a; b; i). Let k > 0 be an integer.� Consider the options (a0; b0; i0) = (a� k; b; i) with 1 � k � a. Sine (Z�0;�)is a group, we have (a� k)� b� i 6= a� b� i.� The ase (a0; b0; i0) = (a; b�k; i) with 1 � k � b an be treated as previously.Hene a� (b� k)� i 6= 0.� Suppose that (a0; b0; i0) = ((a� bk �; b� bk �; (i� r(k ))[℄) with 0 < k;0 � bk � � a; 0 � bk � � b. Let p = bk . If p = 0, one an onlude as inthe previous ases. Now assume that p > 0. With our notations, we have:i0 = (i� r(k ))[℄a0 = a� p�b0 = b� p�One an notie that (a�a0)� = (b�b0)�. By way of ontradition, assumethat a0 � b0 � i0 = 0. Then b0 = a0 � i0 and from Lemma 17,a0 � i0 � b0 � a0 + i0Similarly, sine a� b� i = 0, we havea� i � b � a+ iFrom these two inequalities we getb� b0 � a� a0 + i+ i016



Moreover, sine i + i0 � 2 � 2 and b� b0 = (a� a0)�� , we obtain(a� a0)(�� � 1) � 2 � 2Finally, sine a0 < a, we get� � (2 � 1)� 2Remark 19 From Theorem 18, one an assert that for any values of � and, there exists �� suh that for all � � ��, the games [�; �; ℄ and [1; 2; ℄have the same P-positions.Remark 20 One an wonder whether the [�; �; ℄ games and the game ofNim on three heaps have the same Grundy funtion. With the atual bound(i.e., � > �(2 � 1)), the [�; �; ℄ games have a G funtion di�erent from theNim sum. However, this assumption might be true for some larger values of�.Therefore, a seond question onsists in omparing the G funtions of the[�; �; ℄ games, for � > �(2� 1). Even if � is �xed, there exists some gameswith di�erent G funtions (e.g. games [1; 4; 2℄ and [1; 5; 2℄).Remark 21 There exist [�; �; ℄ games with � � �(2 � 1) for whih theP-positions di�er from those of the game of Nim. This is for example the aseof the games [1; 3; 2℄, [1; 5; 3℄, or [2; 14; 7℄. However, it seems that for some� � �(2 � 1), the P-positions of the orresponding [�; �; ℄ games remainequal to those of Nim. This leads us to Conjeture 22 and Problem 23 below.Conjeture 22 Let � � 2 + � � 1. Then a game position (a; b; i) is a P-position of the orresponding [�; �; ℄ game if and only if a� b� i = 0.Problem 23 Find the smallest value �(�; ) suh that for all � � �(�; ),all the games [�; �; ℄ have a their P-positions idential to those of Nim.5 The R-radius gameIn Wytho�'s game, one moves the queen on the hessboard aording to one ofthe three diretions, no matter the number of squares jumped. In the R-radiusgame, the length of the moves is bounded by a onstant R. The diretions al-lowed do not hange. For example, playing the 1-radius game amounts tomoving a king on the hessboard. The example of the 3-radius game is givenby Figure 9. The original Wytho�'s game an be onsidered as the 1-radius17



game.
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3Figure 10.P-positions ofthe 3-radiusgameIn this setion, we prove that the P-positions of Wytho�'s game are suÆientto determine those of the R-radius game.Lemma 24 If (an; bn) is a P-position of Wytho�'s game with an � bn, thenbn � 2an.PROOF. Wytho� proved in [15℄ that (an; bn) an be written as the pair(bn�; bn� + n). Sine � � 1, it is easy to hek that n � bn�. 2Theorem 25 For any R � 1, the P-positions of the R-radius game are de-sribed by : (a+ (R + 1) k; b + (R + 1) l) 8 k; l � 0for all the pairs (a; b) whih are P-positions of Wytho�'s game with a � Rand b � R.PROOF. Let R � 1 and (X; Y ) be a position of the R-radius game. Thenthere exist a unique a, b and k suh thatX = a+ (R + 1)k; 0 � a � R; 0 � kY = b + (R + 1)l; 0 � b � R; 0 � l- If (a; b) is not a P-position of Wytho�'s game, then there exists a movefrom (a; b) to a P-position (a0; b0) of Wytho�'s game with a0 � a and b0 � b.Moreover, this move satis�es ja� a0j < R and jb� b0j < R. Thus there existsa move of the R-radius game from (X; Y ) to (a0 + (R + 1)k; b0 + (R + 1)l).18



- Now suppose that (a; b) is a P-position of Wytho�'s game. Let (X 0; Y 0) 6=(X; Y ) be a position of the R-radius game suh thatX 0 = a0 + (R + 1)k0; 0 � a0 � R; 0 � k0Y 0 = b0 + (R + 1)l; 0 � b0 � R; 0 � l0and where (a0; b0) is a P-position of Wytho�'s game.We will prove that there is no move from (X; Y ) to (X 0; Y 0).By way of ontradition, assume that with 0 < m � R, one of the threefollowing onditions holds:(1) X 0 = X �m and Y 0 = Y(2) X 0 = X and Y 0 = Y �m(3) X 0 = X �m and Y 0 = Y �m(1) The equality Y 0 = Y implies b = b0. And sine an integer annot appearmore than one in Wytho�'s sequene, we have also a0 = a. Sine X 0 6= Xwe have k > k0, whih implies that m � R + 1.(2) Similarly by exhanging the roles of X and Y we get the same onlusionas in (1).(3) The ase X 0 = X �m and Y 0 = Y �m. Sine m < (R+ 1), we have oneof the four following ases:� k = k0 and l = l0. Then a = a0 +m and b = b0 +m. This implies (b �a) = (b0 � a0). Sine eah di�erene appears exatly one in Wytho�'ssequene, we must have b = b0 and a = a0, yielding a ontradition.� k = k0+1 and l = l0+1. Then a = a0+m�R�1 and b = b0+m�R�1.We onlude similarly as in the previous ase.� k = k0 and l = l0 + 1. Then a = a0 +m � R � 1 and b = b0 + m. Wededue the following equality:a� b+R + 1 = a0 � b0 (5A)If a0 � b0, then we have a + R + 1 � b from (5A). By Lemma 24, thisimplies a+R+ 1 � 2a and �nally R+ 1 � a, yielding a ontradition.Hene a0 > b0. From (5A) and sine b < (R + 1), we obtaina0 � b0 > a (5B)Sine (b0; a0) is a P-position of Wytho�'s game and by Lemma 24, wehave a0 � 2b0. Thus a < a0� b0 � b0 by using (5B). Now, from (5A) andsine a0 < (R + 1), we geta0 � b0 > a� b+ a0 (5C)19



Moreover, sine a0� b0 � R, we have a < b from (5A). So by Lemma 24we have b � 2a. Now we havea0 � b0 < a0 � a � a0 + a� b;whih ontradits (5C).� k = k0 + 1 and l = l0. By symmetry, we onlude as in the previousase. 2One may suppose that this kind of result is true for the "bounded" threevetors game, but this is not the ase (this property is not satis�ed for theinstane [2; 2; 1℄ for example).Remark 26 Theorem 25 asserts that the P-positions of bounded Wytho�'sgame an be determined by translation of the P-positions of Wytho�'s gameon a bounded hessboard. It is easy to hek that this property is also true forthe game of Nim with two heaps. Are there other games for whih this resultis true ?Problem 27 One an investigate the ase of Wytho�'s game whih is onlybounded in the diagonal diretion. Conversely, onsider the ase where the hor-izontal and vertial distanes are bounded, but the diagonal distane is in�nite.Problem 28 In [11℄, Fraenkel de�nes a generalized Wytho�'s game. If oneremoves k and l tokens in both heaps, then the ondition jk � lj < a must beful�lled, where a is a �xed positive integer. One an investigate the boundedversion of this game, and test whether some periodiity of the P-positionsappears.AknowledgementsWe wish to thank the referee for his remarks, orretions, and advies. Wealso thank Aviezri Fraenkel for his interest, and for the questions he suggestedabout these variants of Wytho�'s game.Referenes[1℄ E.R. Berlekamp, J.H. Conway and R.K. Guy, Winning ways for yourmathematial plays, Aademi Press, (1982).[2℄ U. Blass and A.S. Fraenkel, The Sprague-Grundy funtion for Wytho�'s game,Theor. Comput. Si. 75 (1990), 311-333.20
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