
Solitaire lobber played on Hamming graphsPaul Dorbe�, Eri Duhêney, Sylvain GravierzAbstratThe one-player game Solitaire Clobber was introdued by Demaine etal. in [2℄. In [3℄, a variation alled SC2 is onsidered. Blak and whitestones are loated on the verties of a given graph. A move onsists inpiking a stone to replae an adjaent stone of the opposite olor. Theobjetive is to minimize the number of remaining stones. The game isinteresting if there is at least one stone of eah olor. In this paper, weinvestigate the ase of Hamming graphs. We prove that game on�gura-tions on suh graphs an always be redued to a single stone, exept forhyperubes. Nevertheless, hyperubes an be redued to two stones.1 Introdution and de�nitionsWe onsider the one-player game SC2 that was introdued in [3℄. This gameis a variation of the game Solitaire Clobber de�ned by Demaine et al. in [2℄.Note that both solitaire games ome from the two-player game Clobber, thatwas reated and studied in [1℄. One an have a look to [4℄ for more informationabout Clobber.The game SC2 is a solitaire game whose rules are desribed in the following.Initially, blak and white stones are plaed on the verties of a given graph G(one per vertex), forming what we all a game on�guration. A move onsistsin piking a stone and "lobbering" (i.e. removing) another one of the oppositeolor loated on an adjaent vertex. The lobbered stone is removed from thegraph and is replaed by the piked one. The goal is to �nd a suession ofmoves that minimizes the number of remaining stones. A game on�gurationof SC2 is said to be k-reduible if there exists a suession of moves that leavesat most k stones on the board. The reduibility value of a game on�gurationC is the smallest integer k for whih C is k-reduible.In [3℄, the game was investigated on yles and trees. It is proved that in theseases, the reduibility value an be omputed in quadrati/ubi time. In thispaper, we play SC2 on Hamming graphs.Given two graphs G1 = (V1; E1) and G2 = (V2; E2), the artesian produtG1�G2 is the graph G = (V;E) where V = V1�V2 and (u1u2; v1v2) 2 E if and�UJF, Institut Fourier, ERTé Maths à Modeler, email:paul.dorbe�ujf-grenoble.fryPostdo in the Université de Liège, ERTé Maths à Modeler, email:eri.duhene�ulg.a.bezCNRS, Institut Fourier, ERTé Maths à Modeler, email:sylvain.gravier�ujf-grenoble.fr1



only if u1 = v1 and (u2; v2) 2 E2, or u2 = v2 and (u1; v1) 2 E1. One generallydepits suh a graph with jV2j vertial opies of G1, and jV1j horizontal opiesof G2, as shown on Fig. 1.
...

..

1

G2

G2

G2

G2

G1 G1 G1

........
..

.....GFigure 1: The artesian produt of two graphs G1 and G2A Hamming graph is a multiple artesian produt of liques. K2�K3 andK4�K5�K2 are examples of Hamming graphs. Hyperubes, de�ned by �nK2,onstitute a well-known lass of Hamming graphs.For the onveniene of the reader, we may often mix up a vertex and the stonethat it supports. The label/olor of a vertex will thus de�ne the olor of thestone on it. We may also say that "a vertex lobbers another one", instead oftalking of the orresponding stones.Given a game on�guration C on a graph G, we say that a label/olor  is rareon a subgraph S of G if there exists a unique vertex v 2 S suh that v is labeled. On the ontrary,  is said to be ommon if there exist at least two verties ofthis olor in S. A on�guration is said to be monohromati if all the vertieshave the same olor. A monohromati game on�guration does not allow anymove, so we now onsider that a game on�guration is never monohromati.Given v a vertex of G, the olor of the stone on v will be denoted by (v). Fora olor  (blak or white), we denote by  the other olor.In this paper, we prove that we an redue any game on�guration (non monohro-mati) on a Hamming graph to one or two stones. Moreover, we assert that wean hoose the olor and the loation of the remaining stones. To failitate theproofs, we need three de�nitions:We say that a graph G is strongly 1-reduible if: for any vertex v, for anyarrangement of the stones on G (provided G n v is not monohromati), for anyolor  (blak or white), there exists a way to play that yields a single stone ofolor  on v.A joker move onsists of hanging the olor of any stone at any time during thegame. It an be used only one. 2



Therefore, a graph G is strongly 1-reduible joker if: for any vertex v, for anyolor , for any arrangement of the stones on G (provided (v) is not rare or(v) = ), there exists a way to play that yields a single stone of olor  on v,with the possible use of a joker move.A graph G is said to be strongly 2-reduible if: for any vertex v, for any arrange-ment of the stones on G (provided G n v is not monohromati), for any twoolors  and 0 (provided there exist two di�erent verties u and u0 suh that(u) =  and (u0) = 0), there exists a way to play that yields a stone of olor on v, and (possibly) a seond stone of olor 0 somewhere else.Let G be a graph, vi and vj two verties of G,  and 0 two olors belongingto f0; 1g. A game on�guration C on G is said to be 1-reduible on vi with or (1; vi; )-reduible if there exists a way to play that yields only one stone ofolor  on G, loated on vi. A on�guration C is said to be 2-reduible on viwith  and 0 or (2; vi; ; 0)-reduible if there exists a way to play that yields astone of olor  on vi, and (possibly) a seond stone of olor 0 on some othervertex. C is said to be (2; vi; ; vj ; 0)-reduible if there exists a way to play thatyields a stone of olor  on vi and a seond stone of olor 0 on vj.In the next setion, we solve the ase of SC2 played on liques. In setion 3,we play the game on hyperubes and prove that they are strongly 2-reduible.In setion 4, we prove that almost all the other Hamming graphs are strongly1-reduible.2 SC2 played on liquesIt is not very surprising that every game on�guration on a lique is 1-reduible.Furthermore, we also prove that we an hoose the olor and the loation of thesingle remaining stone.Proposition 1. Cliques of size n � 3 are strongly 1-reduible.When n < 3, note that liques are 1-reduible, but we an't deide where andwith whih olor we �nish.Proof. Let C be a game on�guration on Kn (n � 3). Let v be a vertex of Knsuh that Kn n v is not monohromati. Let  be any olor in f0; 1g. We provethat C is (1; v; )-reduible:First assume that C ontains no rare olor. We onsider two ases:� if  = (v). By hypothesis, there exists a vertex w labeled (v).Sine (v) and (w) are not rare, there exist two verties v0 and w0suh that (v0) = (v) and (w0) = (w). The suession of movesleading to a single remaining stone is the following: w lobbers v,w0 lobbers all the verties with the label (v) exept v0, and �nally,v0 lobbers all the verties labeled (v), and ends on v.� if  = (v). As previously, there exist w labeled (v) and v0 labeled(v). v0 lobbers all the verties labeled (v) exept w. Then wlobbers all the verties labeled (v) and ends on v.3



Now assume that C has a rare olor loated on a vertex vr 6= v. If  = (vr),then it is enough to have vr lobber all the verties and �nish on v. If  = (vr),have vr lobber all the verties exept one (all it v0 6= v) and �nish on v. Thenhave v0 lobber v and this onludes the proof.3 SC2 played on hyperubesIn this setion, we study SC2 on hyperubes. We prove that these graphs arestrongly 2-reduible.Let n > 2. Note that Qn is de�ned reursively as the produt K2�Qn�1, Q0being a single vertex. This means that Qn is made of two opies Qln and Qrnof Qn�1, where eah vertex of Qln is adjaent to its opy in Qrn. Let N =2n�1. For eah i > 1, it is well known that Qi admits an Hamiltonian yle.Denote by v1; : : : ; vN the verties of Qln, ordered suh that (v1; : : : ; vN ) forman Hamiltonian yle. Denote by v01; : : : ; v0N the verties of Qrn, suh that vi isadjaent to v0i for all i. Note that (v01; : : : ; v0N ) form an Hamiltonian yle ofQrn. Here is the diagram of the hyperube Qn that will be used in the rest ofthe paper:
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Qn,l Qn,rFigure 2: The hyperube QnLet vi be a vertex of Qn. Note that when referring to vi+j , where (i+ j) is notin [1; N ℄, then use the appropriate subsript i+ j �N instead.The following lemmas desribe the suessions of moves used to redue a gameon�guration to a ertain form:Lemma 2. Let C be a game on�guration on an Hamiltonian graph G with nverties (n > 2). Let (v1; : : : ; vn) be the list of the verties ordered aording toan Hamiltonian yle of G. If there exists a vertex vi suh that (vi) is rare onG, then C is both (1; vi�1; (vi))-reduible and (1; vi�2; (vi))-reduible.Proof. The �rst redution is obtained when vi lobbers all the stones along theHamiltonian yle (v1; : : : ; vN ). Aording to the diretion in whih we movearound the yle, we end either on vi+1 or on vi�1.4



To get the seond redution, vi lobbers all the stones along the Hamiltonianyle, exept the last one. This means that vi �nishes on vi+2 or vi�2, and isthen lobbered by vi+1 or vi�1 respetively.Lemma 3. Let C be a game on�guration on Qn, with n > 3. If there exists arare olor on Qrn, and if Qln is not monohromati, then there exists a way toplay that yields no stones on Qrn and N stones on Qln, both olors being ommonon Qln. If n = 3, there may be a rare olor on Qln, but we an hoose its loationon two distint verties.Proof. Let  be the rare olor on Qrn and denote by v0i the vertex suh that(v0i) = . We onsider three ases for the stones on Qln:�  is rare on Qln. Thanks to its Hamiltonian yle and by Lemma 2,we know that Qrn is (1; v0i�2; )-reduible. If n > 3, v0i+2 and v0i�2 aredistint verties. Also sine  is rare on Qln, this means that eithervi+2 or vi�2 is labeled with the olor . Without loss of generality,suppose that vi+2 is labeled , hene we apply a (1; v0i+2; )-redutionof Qrn. Then v0i+2 lobbers vi+2, so that Qln ontains at least twostones of eah olor afterwards.If n = 3 and (vi+2) = , this proof is no more valid. In that ase,there are two ways to play, eah of them leaving the rare olor either on vi+1 (diagram 1) or on vi�1 (diagram 2).
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Figure 3: Lemma 3: speial instane of the ase n = 3�  is rare on Qln. By Lemma 2, Qrn is (1; v0i�1; )-reduible. We knowthat at least one of both verties vi+1 and vi�1 has the ommon label. Without loss of generality, assume vi+1 does. Last, we apply a(1; v0i+1; )-redution of Qrn, and then we play from v0i+1 to vi+1.� Both olors are ommon on Qln. We onsider the four ases for thelabels of vi+1 and vi+2:� (vi+1) =  and (vi+2) = . Use an Hamiltonian yle ofQrn to have v0i lobber all the verties exept v0i+1. Thisoperation yields two stones on Qrn: v0i+1 labeled , andv0i+2 labeled . Play now from v0i+1 to vi+1 and from v0i+2to vi+2.� (vi+1) =  and (vi+2) = . If n > 3,  or 0 appearsmore than twie in Qln. If it is the ase of , then apply a(1; v0i+1; )-redution of Qrn, and play from v0i+1 to vi+1. If5



 appears more than twie in Qln, then apply a (1; v0i+2; )-redution of Qrn, and play from v0i+2 to vi+2. If n = 3,there are two possible arrangements of the stones on Qln.In both ases, there exists a way to play that yields a rareolor on Qln, with two possible loations:
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Figure 4: Lemma 3: speial instanes of the ase n = 3 (2)� (vi+1) =  and (vi+2) = . If  appears more than twiein Qln, then apply a (1; v0i+2; )-redution of Qrn, and playfrom v0i+2 to vi+2. Then play from v0i+2 to vi+2. Otherwise,and if n > 3, this means that the olor  appears morethan twie, in partiular on vi�1. Then apply a (1; v0i+1; )-redution of Qrn, and play from v0i�1 to vi�1. If n = 3, thisimplies (vi) = (vi�1) = . It then su�es to invert theorder of the verties (vi+1 beomes vi�1...) to redue tothe previous ase.� (vi+1) =  and (vi+2) = . This ase is similar to theprevious one.Lemma 4. Let C be a game on�guration on Qn, with n > 2. If there exists arare olor on Qrn, and if Qln is monohromati, then there exists a way to playthat yields no stones on Qrn and N stones on Qln, whih is not monohromati.Also, if this operation yields a rare label on Qln, we an hoose its loation ontwo distint verties.Proof. Let  be the rare olor on Qrn and denote by v0i the vertex suh that(v0i) = . We onsider two ases about Qln:� All the verties of Qln have the olor . Use an Hamiltonian yleof Qrn to have v0i lobber all the verties exept v0i+1 and v0i+2. It6



ends on v0i+3. Then v0i+2 lobbers v0i+3. This operation yields twostones labeled  on v0i+1 and v0i+3. Then play from v0i+1 to vi+1 andfrom v0i+3 to vi+3. Both olors now appear at least twie on Qln.� All the verties of Qln have the olor . By Lemma 2, we an applya (1; v0i�1; )-redution of Qrn. Then play from v0i+1 or v0i�1 to theorresponding vertex in Qln. In that ase, the olor  is rare on Qln,but it an be loated either on vi+1 or on vi�1.We now give the main result of this setion about the "strong reduibility" ofthe hyperube.Theorem 5. Hyperubes are strongly 1-reduible joker and strongly 2-reduible.Of ourse, the most interesting property onerns the 2-reduibility of the hy-perube. However, this result is tightly linked to the strong 1-reduibilty joker.One an notie that the onditions de�ning the strong 2-redution and thestrong 1-redution joker are a bit di�erent. Indeed, the "vertex" ondition ofstrong 2-reduibility (i.e. G n v must not be monohromati) is ontained inthe ondition of strong 1-reduibility joker. But monohromati hyperubesand hyperubes with a rare olor on vr suh that  = (vr) are also strongly1-reduible joker, although they are not strongly 2-reduible. This explains whythe onditions of strong 1-reduibility joker are "larger".Proof. By indution on the dimension of the hyperube.The reader an verify that these results are true on the hyperube Q2 (thesquare). Note that only four arrangements of the stones must be onsidered:tdtd tttt tttd tddtAssume that the theorem is true for the hyperube Qn�1 and onsider the hy-perube Qn.Qn is strongly 1-reduible joker.Without loss of generality, assume that the vertex that will support the laststone is v1. Let  be any olor in f0; 1g. We onsider any arrangement of thestones on Qn suh that (v1) is not rare or (v1) = . Our objetive onsists in�nding a way to yield a single stone of olor  on v1. We are allowed to use ajoker. Five ases are onsidered:1. Suppose Qln is (1; v1; )-reduible joker, and the joker is used to hange theolor of some vertex vj from the olor d 2 f0; 1g to d. Also, we supposethat Qrn is (1; v0j ; d)-reduible joker.We �rst apply the (1; v0j ; d)-redution joker on Qrn, whih yields a stoneof olor d on v0j . We may have used a joker to do this. Then we apply a(1; v1; )-redution joker on Qln with a small modi�ation: instead of usingthe joker on vj , we play from v0j to vj. This move is indeed equivalent tothe use of the joker, sine v0j has the olor d at this moment. At the endof the play, the joker has been used at most one.7



2. Qln is (1; v1; )-reduible joker, and the joker is used to hange the olorof some vertex vj from the olor d 2 f0; 1g to d. Moreover, Qrn is not(1; v0j ; d)-reduible joker. From the onditions of the strong 1-redutionjoker, this means that (v0j) = d, and (v0i) = d for all i 6= j.Sine d is rare on Qrn, we an apply both Lemma 3 and 4. If this yieldsa rare olor on Qln, we hoose a loation di�erent from v1 for it. Hene(v1) is never rare and we an apply a (1; v1; )-redution joker on Qln.3. Qln is (1; v1; )-reduible joker, but the joker is not used. We onsider anyarrangement of the stones on Qrn.We onsider a suession of moves resulting from a (1; v1; )-redutionof Qln. In this sequene, there exists a vertex vi that lobbers at leasttwo other verties before being (or not) lobbered. Indeed, if eah vertexlobbers at most one, then Qln would be a star, whih is not the ase.Denote by vj and vk the �rst two verties lobbered by vi. When themoves from vi to vj and then to vk are made, let y be the olor of vi, andy the olor of vj and vk. We onsider four ases about the olors of v0i andv0j:
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Figure 5: Qln is 1-reduible on v1 with � CASE 1: (v0i) = y and (v0j) = y. Apply a (1; v1; )-redutionof Qln, and when the time omes to play from vi to vj , play to v0iinstead. At this moment, y is not rare on Qrn, so we an applya (1; v0j ; y)-redution joker on Qrn. Play then from v0j to vj andontinue the (1; v1; )-redution of Qln.� CASE 2: (v0i) = (v0j) = y. Begin a (1; v1; )-redution of Qlnup to the move from vj to vk (not inluded). Play to v0j instead.Sine (v0k) is not rare, apply a (1; v0k; y)-redution joker on Qrn.Then play from v0k to vk and ontinue the (1; v1; )-redution ofQln.� CASE 3: (v0i) = (v0j) = y. Apply a (1; v1; )-redution of Qlnup to the move from vi to vj (not inluded). Instead of it, havevj lobber vi and then v0i. The rest of the play is idential tothe previous ase.� CASE 4: (v0i) = y and (v0j) = y. If (v0k) = y, then play as inthe seond ase. Otherwise, play as in the third ase.4. Qln is not (1; v1; )-reduible joker, and Qrn is (2; v01; ; )-reduible.8



This implies that (v1) =  and (vi) =  for all i > 1. If Qrn is (1; v01; )-reduible, we apply this redution and then play from v01 to v1. Qln be-omes monohromati and the (1; v1; )-redution joker an now be appliedon it. If Qrn is (2; v01; ; )-reduible, then hoose the seond remainingstone of olor . Let v0j be the vertex on whih this stone is left. Play nowfrom v01 to v1, and from v0j to vj . Qln now satis�es the right onditions toapply a (1; v1; )-redution joker.5. Qln is not (1; v1; )-reduible joker, and Qrn is not (2; v01; ; )-reduible.There are four possible arrangements of the stones on Qn orrespondingto these onditions:
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Figure 6: Strong 1-reduibility joker: ase 5� The arrangement (A) does not have to be onsidered. Indeed,this arrangement is not allowed by the onditions of the 1-redution joker, sine (v1) is rare on Qn and (v1) 6= .� If the arrangement of the stones is (B), have v01 lobber all theverties of Qrn and end on v0N . Then v0N lobbers vN , and theonditions of a (1; v1; )-redution joker are ful�lled on Qln.� If the arrangement of the stones is (C), have vi lobber v0i forall 2 < i < N . Apply now a (1; v01; )-redution joker of Qrn.Finally, v1 is lobbered by v2, v01 and vN in this order.� If the stones are plaed as in (D), use Lemma 2 to apply a(1; v0N�1; )-redution of Qrn. Then v0N�1 lobbers vN�1, and wean apply a (1; v1; )-redution joker of Qln.Qn is strongly 2-reduible.Without loss of generality, assume that the vertex that will support the laststone is v1. We onsider any arrangement of the stones on Qn suh that Qn nv1is not monohromati. Let  and 0 be any two olors in f0; 1g suh that thereare two distint verties of Qn labeled with these values. Our objetive onsistsin �nding a way to leave a stone of olor  on v1, and possibly another one ofolor 0 somewhere else. We onsider eleven ases, starting with those whereQrn is monohromati (ases 1 to 5):1. Qrn is monohromati of olor y 2 f0; 1g, and Qln is (1; v1; )-reduible.Consider a suession of moves resulting from a (1; v1; )-redution of Qln.9



First suppose that there exists a move from a stone of olor y on somevertex vi lobbering a stone of olor y on the vertex vj . Replae this moveby having vi lobber v0i. There exists an Hamiltonian yle of Qrn wherev0i and v0j are onseutive. Have v0i lobber all the stones of Qrn and endon v0j with the olor y. Finally v0j lobbers vj , and we an ontinue the(1; v1; )-redution of Qln.Suppose now that there exist no moves lobbering a vertex labeled y whenapplying a (1; v1; )-redution of Qln. Neessarily this means that  = y.Also, this implies that all the verties of Qln are labeled y, exept one,namely vi. The (1; v1; )-redution of Qln thus onsists in having vi lobberall the verties of Qln and end on v1. Without loss of generality, supposethat v2 is the penultimate vertex whih is lobbered when applying the(1; v1; )-redution of Qln. The following diagram shows how to apply the(1; v1; )-redution of Qn:
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Figure 7: Strong 2-reduibility: spei� instane of ase 12. Qrn is monohromati of olor y 2 f0; 1g, and Qln is (2; v1; ; y)-reduible.If Qln is (1; v1; )-reduible, then we are in ase 1. Suppose then that theredution yields two stones, the seond one being loated on some vertexvi. In that ase, apply a (2; v1; ; vi; y)-redution of Qln and play from vito v0i. Then use Lemma 2 to yield a stone of olor 0 either on v0i+1 (if0 = y) or on v0i+2 (if 0 = y).In ases 3, 4 and 5, we suppose that Qln is not (2; v1; ; y)-reduible. If Qlnis not (2; v1; ; y)-reduible, then either Q n v1 is monohromati, or  = yand y is rare in Qln. But from our initial assumption that Qn n v1 is notmonohromati, we know that there is at least one stone olored in y inQ n v1. So either Q n v1 is monohromati of olor y (see ases 4 and 5),or y is rare in Qln and (v1) 6= y (see ase 3).3. Qrn is monohromati of olor y 2 f0; 1g, and y is rare on Qln with (v1) 6=y. If Qln is not (2; v1; ; y)-reduible, then  = y and 0 = y (by ourinitial assumption that there are two distint verties of olor  and 0respetively in Qn). Let vi be the vertex of Qln suh that (vi) = y. SeeFig.8 for the diagram of suh a on�guration.10
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We onsider a sequene of moves resulting from a (1; v1; )-redution ofQln. In this sequene, there exists a vertex vi that lobbers at least twoother verties before being (or not) lobbered. Denote by vj and vk the�rst two verties lobbered by vi. When onsidering the moves from vi tovj and then to vk, let y be the olor of vi, and y the olor of vj and vk.We onsider four ases aording to the olors of v0i and v0j:
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y yFigure 10: Strong 2-reduibility: ase 7� CASE 1: (v0i) = y and (v0j) = y. Apply a (1; v1; )-redutionof Qln until the move from vi to vj (not inluded). Play nowfrom vi to v0i, and from vj to v0j instead. After this operation,both olors are still ommon on Qrn, so that we an apply a(2; v0k; y; 0)-redution. Then play from v0k to vk, and ontinuethe (1; v1; )-redution of Qln.� CASE 2: (v0i) = (v0j) = y. Apply a (1; v1; )-redution ofQln, and when the time omes to play from vj to vk, play to v0jinstead. Sine y is not rare on Qrn after this operation, apply a(2; v0k; y; 0)-redution of Qrn. After this, play from v0k to vk andontinue the (1; v1; )-redution of Qln.� CASE 3: (v0i) = (v0j) = y. Apply a (1; v1; )-redution of Qlnuntil the move from vi to vj (not inluded). Instead of it, havevj lobber vi and then v0i. If y is not rare on Qrn after thisoperation, then apply a (2; v0k; y; 0)-redution of Qrn. If y is rareon Qrn, then use an Hamiltonian path of Qrn starting on v0j andending on v0k to yield a stone of olor y on v0k.After this, play from v0k to vk and ontinue the (1; v1; )-redutionof Qln.� CASE 4: (v0i) = y and (v0j) = y. If the olor y appears morethan twie in Qrn, or if (v0k) = y, then play as in the seondase. Otherwise, this means that (v0j) = (v0k) = y and theother verties of Qrn have the olor y. Play thus as in the thirdase.In the next two ases, we suppose that (v1) is not rare on Qln (whihmay be monohromati). Hene Qln is (1; v1; )-reduible joker. If thisredution does not use the joker, then refer to ase 6 or 7. Otherwise,assume that the joker is used to hange the olor of some vertex vj fromd to d.8. If Qrn is (2; v0j ; d; 0)-reduible, we �rst apply a (2; v0j ; d; 0)-redution of Qrn.12



We then apply a (1; v1; )-redution joker of Qln, and when the time omesto use the joker, we play from v0j to vj instead.9. Suppose that Qrn is not (2; v0j ; d; 0)-reduible. By our earlier assumption,Qrn is not monohromati, so this an our in only three kinds of arrange-ments of the stones on Qrn, all with a rare olor. The ase when Qln ismonohromati is studied in ase 10, we assume in this setion that Qln isnot monohromati.� (v0j) 6= d, d is rare on Qrn and 0 = d. If n > 3, then use Lemma3 to empty Qrn and yield N stones on Qln where both olors areommon. Then we an apply a (2; v1; ; 0)-redution of Qln.If n = 3, the lemma an not be used. We thus have to onsiderall the on�gurations on Q3 satisfying these onditions. Figure11 details these �ve on�gurations (the �nal olors  and 0 aredetailed under eah diagram):
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11. Assume that (v1) = y is rare on Qln and that both olors are ommon onQrn.If Qrn is (1; v0N�1; y)-reduible, then apply this redution and move fromv0N�1 to vN�1. Both olors are now ommon on Qln, and we an onludeto the right result.Otherwise, Qrn is 2-reduible on v0N�1 with y, and y on some other vertexalled v0i. Apply this redution. If v0i 6= v01, move from v0N�1 to vN�1, andfrom v0i to vi. If n > 3, then both olors are ommon on Qln, and we anonlude the proof. If n = 3, then y is rare on Qln, and loated either onv2, or on vN . Clobbering along the Hamiltonian yle of Qln permits a2-redution.If v0i = v01, we distinguish two ases. If  = y, then play from v2 to v1, v01 tov1 and vN to v1. Then have v0N�1 lobber vN�1 and follow an Hamiltonianyle of Qln to leave the last stone of olor 0. If  = y, then play from vNto v1, and from v01 to v1. Have v0N�1 lobber vN�1 and use an Hamiltonianyle of Qln to leave the last stone of olor 0.These results ensure that hyperubes are 2-reduible. An interesting problem isdetermining whether an "hyperube on�guration" is 1-reduible or not. Per-haps the answer is ontained in the invariant Æ de�ned by Demaine et al. in[2℄. However, our result does not assert that hyperubes are not all 1-reduible.The next proposition answers to this question.Proposition 6. For eah integer n, there exists a non-monohromati on�g-uration on Qn whih is not 1-reduible.Proof. We prove this result thanks to the invariant de�ned by Demaine et al. in[2℄. On a bipartite graph G, verties of both partitions are respetively labeled'0' and '1'. Now onsider a game on�guration C of Solitaire Clobber on G,with stones labeled '0' and '1'. A stone is said to be "lashing" if its label di�ersfrom the label of the vertex it oupies. Denote by Æ(C) the following quantity:Æ(C) = number of stones plus number of lashing stones.In their paper, Demaine et al. proved that Æ(C) (mod 3) never hanges duringthe game.Let n > 1 and onsider Qn = Qn�1�K2. As previously, denote by Qln and Qrnboth opies of Qn�1. Hyperubes are bipartite graphs. Choose a bipartitionof Qn suh that half the verties of Qln are labeled '0', and the other ones arelabeled '1'. Ditto for Qrn. Now hoose an arrangement of the stones on Qn suhthat all the stones labeled '0' belong to Qln, and all the stones labeled '1' belongto Qrn. In that ase, we haveÆ(C) = 2n + 2n�1 = 3 � 2n�1Hene Æ(C) (mod 3) = 0. Sine a single stone on�guration never satis�esÆ(C) (mod3) = 0 (see [2℄), this onludes the proof.16



4 On the other Hamming graphs...Hyperubes are strongly 2-reduible. In this setion, we prove that almost allthe other Hamming graphs are strongly 1-reduible. This indution is initializedby lemmas 10 and 11, and the property is proved to be hereditary by Theorem 8.In the following, we prove that the artesian produt of a strongly 1-reduiblegraph G with a liqueKn is strongly 1-reduible. This produt ontains n opiesof G, that we denote by G1; : : : ; Gn. For any vertex v of G, we denote by vithe orresponding vertex in the opy Gi. Denote by v1 any vertex of G1.Lemma 7. Let G be a strongly 1-reduible graph ontaining at least 4 verties.K2�G is strongly 1-reduible.Proof. Let G be a strongly 1-reduible graph with at least 4 verties. Withoutloss of generality, assume that the vertex on whih we will leave the last stoneis v1. Let  be any olor in f0; 1g. We onsider any arrangement of the stoneson K2�G suh that K2�Gnv1 is not monohromati. Let us prove that K2�Gis (1; v1; )-reduible. We split the problem into three ases.1. G2 is not monohromati.Sine G is of size at least 4, there exist 2 verties of the same olor inG1 n v1. We denote them by a1 and b1. Similarly, (a2) or (b2) (or both)is ommon in G2. Without loss of generality, we suppose (a2) is. Oneapplies a (1; a2; (a1))-redution of G2, and then have a2 lobber a1. G2 isnow empty. a1 and b1 are now of di�erent olors on G1, so we an applya (1; v1; )-redution of G1.2. G2 is monohromati of olor y and G1 nv1 is not monohromati.This means that G1 is (1; v1; )-reduible. We onsider two ases:� Suppose that when one applies a (1; v1; )-redution of G1, there ex-ists a vertex a1 olored in y lobbering another vertex b1 of olory. We then hoose to apply this redution, and when the timeomes to play from a1 to b1, play to a2 instead. We then applya (1; b2; y)-redution of Q2. b2 then lobbers b1 and we an ontinuethe (1; v1; )-redution of G1.� Otherwise, there is exatly one vertex a1 olored in y in G1. Sinethere are at least 4 verties in G1, a1 has to lobber onseutively2 verties during the (1; v1; )-redution of G1. Denote them by b1and 1. We replae these two onseutive moves by these ones: b1lobbers a1 and then a2. We then apply a (1; 2; y)-redution of G2.It �nally su�es to play from 2 to 1, and ontinue the (1; v1; )-redution of G1.3. G2 is monohromati of olor y and G1 n v1 is monohromati.Sine K2�G n v1 is not monohromati, G1 n v1 is neessarily olored y.Let a1 be any vertex of G1 di�erent from v1. At now as if a1 was oloredy. We an thus onsider a (1; v1; )-redution of G1. The �rst step of suha redution would be �a1 lobbers some vertex b1.� We use this redution,17



replaing this step by �a1 (whih is atually olored y) lobbers a2, thenwe do a (1; b2; y)-redution of G2, followed by b2 lobbers b1�.Theorem 8. Let G be a strongly 1-reduible graph ontaining at least 4 verties.Then Kn�G is strongly 1-reduible.Proof. Let G be a strongly 1-reduible graph with at least 4 verties. We provethe theorem by indution on n. If n = 2, see Lemma 7. Suppose n � 3 andKn�1�G is strongly 1-reduible. Without loss of generality, assume that thevertex on whih we will leave the last stone is v1. Let  be any olor in f0; 1g.We onsider any arrangement of the stones on K2�G suh that K2�G n v1 isnot monohromati. Let us give a (1; v1; )-redution of Kn�G.We onsider 3 di�erent ases:1. There exists i 2 [2 : : : n℄ suh that Gi is not monohromati.Sine G ontains at least 4 verties, there are 2 verties ai and bi suh thatGinfai; big is not monohromati. For the same reasons, in any other opyGj , (aj) or (bj) (or both) is not rare. Without loss of generality, we ansuppose that (aj) is ommon on Gj . Start by applying a (1; ai; (aj))-redution of Gi, and then play from ai to aj. We an proeed with a(1; v1; )-redution of the remaining non monohromati Kn�1�G.2. For all i 2 [2 : : : n℄, Gi is monohromati of olor y.IfGn is deleted from the graph, then the on�guration is (1; v1; )-redutibleaording to the indution hypothesis. In this redution, there exists amove from some ai to some bi of olor y, where 1 < i < n. When on-sidering the graph with Gn, we apply the (1; v1; )-redution as if Gn wasnot there. And when the time omes to play from ai to bi, we play to aninstead. We then do a (1; bn; y)-redution of Gn and have bn lobber bi.We an �nally ontinue the exeution of the (1; v1; )-redution.3. For all i 2 [2 : : : n℄, Gi is monohromati, but all the opies do nothave the same olor.Let y be the olor of some vertex of G1 n v1. Let Gi (i > 1) be a opyof olor y and Gj (j > 1) a opy of olor y. We start by having allthe verties of Gj lobber the orresponding verties of Gi. Hene thereremains a Kn�1�G where Kn�1�G n v1 is not monohromati. We anapply the indution hypothesis to onlude the proof.Thanks to these results, we an assert that any Hamming graph ontaining aK4 is strongly 1-reduible. What about Hamming graphs that are the produtof K2 and K3 only?We begin by studying on�gurations on K2�K3. Suh a graph will be onsid-ered as two adjaent opies G1 and G2 of K3.18



Lemma 9. Let G = K3�K2 and i 2 f1; 2g. For any vertex ai of G, for anyolor  2 f0; 1g and for any on�guration C on G suh that: (i) (ai) is notrare on Gi and (ii) K3�K2 n ai is not monohromati, C is (1; ai; )-reduible.Proof. For i 2 f1; 2g, let vi, ui, and wi be the verties of eah opy Gi. Withoutloss of generality, assume that we will leave the last stone on v1. By (i), onemay assume that v1 and u1 have the same olor y. Let  2 f0; 1g. Our goal isnow to prove that any on�guration satisfying (i) and (ii) is (1; v1; )-reduible.We onsider several ases:� (w1) = y and G2 is not monohromati. By Proposition 1, G2is either (1; u2; y)-reduible, or (1; w2; y)-reduible. Without lossof generality, suppose that G2 is (1; u2; y)-reduible. Apply thisredution and play from u2 to u1. The onditions are now ful�lledon the lique G1 to apply a (1; v1; )-redution.� (w1) = y and G2 is monohromati. From (ii), G2 is monohro-mati of olor y. Aording to , play as shown on diagrams (a)( = y) or (b) ( = y) of Figure 16.� (w1) = y and G2 is (1; v2; y)-reduible. Apply this redution, andthen play from v2 to v1. Now G1 is (1; v1; )-reduible by Proposition1.� (w1) = y and G2 is monohromati. Play aording to Figure 16.On diagrams () and (e), we have  = y. On diagrams (d) and (f),we end with the olor  = y.� (w1) = y and (v2) is rare on G2. In both ases, we play from v2either to u2 or to w2, suh that (u2) 6= (u1) and (w2) 6= (w1)after this operation. We then play from u2 to u1, and from w2 tow1. Use Proposition 1 to apply a (1; v1; )-redution of G1.
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Figure 16: redution of K2�K3Lemma 10. K3�K3 is strongly 1-reduible.19



Proof. Let us onsider the graphK3�K3, v1 being any vertex of it. Assume thatwe will leave the last stone on v1. Let  2 f0; 1g. We onsider any arrangementof the stones suh that K3�K3 n v1 is not monohromati. Let us prove thatthis on�guration is (1; v1; )-reduible.Among the six opies of K3 onstituting the produt K3�K3 (three horizontaland three vertial), one of them is not monohromati and does not ontain v1:all it G3. Denote by G1 the parallel opy of G3 ontaining v1, and G2 the lastparallel opy. G3 is then 1-reduible with any olor on two possible verties: a3and b3. At least one of these is di�erent from v3 (v3 being the opy of v1 in G3).Without loss of generality, assume a3 6= v3.If G1 n v1 is not monohromati, we apply a (1; a3; (a2))-redution of G3 andthen play from a3 to a2. Otherwise, we apply a (1; a3; (a1))-redution of G3and then play from a3 to a1. In both ases, we �nally get a on�guration onK2�K3 that we an redue from Lemma 9.Lemma 11. K3�K2�K2 is strongly 1-reduible.Proof. Consider the graph K3�K2�K2. Let v1 be any vertex of it and let be any olor. Assume that we will leave the last stone on v1. We onsider anyarrangement of the stones suh that K3�K2�K2 n v1 is not monohromati.Let G1 be the opy of K3 ontaining v1. We all G2, G3, and G4 the otheropies of K3, G3 being the opy ontaining no neighbour of v1. We distinguishtwo ases:� The graph without G1 is not monohromatiThere exists a non monohromati opy of K2�K3 that does not ontainG1. Without loss of generality, suppose it is the one made of G3 and G4.We an 1-redue it to various plaes.We �rst suppose that both verties a1 and b1 ofG1nv1 have the same olor.At least one of the orresponding vertex a4 and b4 in G4 has a ommonolor in G4. Assume it is the ase of a4. The onditions of Lemma 9 areful�lled so that we are able to apply a (1; a4; (a1))-redution of G3 [G4;then we have a4 lobber a1. Now, G1[G2 nv1 is not monohromati, and(v1) is ommon on G1. By Lemma 9, G1 [G2 is (1; v1; )-reduible.Suppose now that the verties a1 and b1 of G1 n v1 have di�erent olors.At least one vertex of a3 and b3 has a ommon olor in G3. Assume itis a3. The onditions of Lemma 9 are ful�lled to apply a (1; a3; (a2))-redution of G3 [G4; then have a3 lobber a2. Now, G1 [G2 n v1 is notmonohromati, and (v1) is ommon on G1. By Lemma 9, G1 [ G2 is(1; v1; )-reduible.� The graph without G1 is monohromati of olor yThen G1 n v1 ontains a stone of olor y. Denote by z the initial olor ofv1. We desribe the way to play on Figure 17.In ases (a) and (), we have  = z. We exeute the moves desribed bythe �gure, leaving v1 and a opy of K2�K3. We an apply a (1; v2; z)-redution of this opy (from Lemma 9), and onlude by playing from v2to v1. In ases (b) and (d), we have  = z. Just follow the moves on the�gure as soon as they are possible.20
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Figure 17: 1-redution of K3�K2�K2
From all these results, we an dedue the following theorem about Hamminggraphs.Theorem 12. Any Hamming graph that is neither K2�K3 nor an hyperubeis strongly 1-reduible.Note that K2�K3 is 1-reduible for any oloration, and is also strongly 1-reduible joker.Referenes[1℄ Mihael H. Albert, J. P. Grossman, Rihard J. Nowakowski, and David WolfeAn introdution to Clobber. Integers 5 (2005)[2℄ Erik D. Demaine, Martin L. Demaine, and Rudolf Fleisher Solitaire Clobber.Theor. Comput. Si. 313 (2004), 325-338.[3℄ L. Beaudou, E. Duhêne, L. Faria and S. Gravier Solitaire Clobber playedon graphs. Submitted[4℄ Ivars Peterson Getting Clobbered.Siene News 161 (2002), http://www.sienenews.org/artiles/20020427/mathtrek.asp
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