
Solitaire 
lobber played on Hamming graphsPaul Dorbe
�, Eri
 Du
hêney, Sylvain GravierzAbstra
tThe one-player game Solitaire Clobber was introdu
ed by Demaine etal. in [2℄. In [3℄, a variation 
alled SC2 is 
onsidered. Bla
k and whitestones are lo
ated on the verti
es of a given graph. A move 
onsists inpi
king a stone to repla
e an adja
ent stone of the opposite 
olor. Theobje
tive is to minimize the number of remaining stones. The game isinteresting if there is at least one stone of ea
h 
olor. In this paper, weinvestigate the 
ase of Hamming graphs. We prove that game 
on�gura-tions on su
h graphs 
an always be redu
ed to a single stone, ex
ept forhyper
ubes. Nevertheless, hyper
ubes 
an be redu
ed to two stones.1 Introdu
tion and de�nitionsWe 
onsider the one-player game SC2 that was introdu
ed in [3℄. This gameis a variation of the game Solitaire Clobber de�ned by Demaine et al. in [2℄.Note that both solitaire games 
ome from the two-player game Clobber, thatwas 
reated and studied in [1℄. One 
an have a look to [4℄ for more informationabout Clobber.The game SC2 is a solitaire game whose rules are des
ribed in the following.Initially, bla
k and white stones are pla
ed on the verti
es of a given graph G(one per vertex), forming what we 
all a game 
on�guration. A move 
onsistsin pi
king a stone and "
lobbering" (i.e. removing) another one of the opposite
olor lo
ated on an adja
ent vertex. The 
lobbered stone is removed from thegraph and is repla
ed by the pi
ked one. The goal is to �nd a su

ession ofmoves that minimizes the number of remaining stones. A game 
on�gurationof SC2 is said to be k-redu
ible if there exists a su

ession of moves that leavesat most k stones on the board. The redu
ibility value of a game 
on�gurationC is the smallest integer k for whi
h C is k-redu
ible.In [3℄, the game was investigated on 
y
les and trees. It is proved that in these
ases, the redu
ibility value 
an be 
omputed in quadrati
/
ubi
 time. In thispaper, we play SC2 on Hamming graphs.Given two graphs G1 = (V1; E1) and G2 = (V2; E2), the 
artesian produ
tG1�G2 is the graph G = (V;E) where V = V1�V2 and (u1u2; v1v2) 2 E if and�UJF, Institut Fourier, ERTé Maths à Modeler, email:paul.dorbe
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only if u1 = v1 and (u2; v2) 2 E2, or u2 = v2 and (u1; v1) 2 E1. One generallydepi
ts su
h a graph with jV2j verti
al 
opies of G1, and jV1j horizontal 
opiesof G2, as shown on Fig. 1.
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artesian produ
t of two graphs G1 and G2A Hamming graph is a multiple 
artesian produ
t of 
liques. K2�K3 andK4�K5�K2 are examples of Hamming graphs. Hyper
ubes, de�ned by �nK2,
onstitute a well-known 
lass of Hamming graphs.For the 
onvenien
e of the reader, we may often mix up a vertex and the stonethat it supports. The label/
olor of a vertex will thus de�ne the 
olor of thestone on it. We may also say that "a vertex 
lobbers another one", instead oftalking of the 
orresponding stones.Given a game 
on�guration C on a graph G, we say that a label/
olor 
 is rareon a subgraph S of G if there exists a unique vertex v 2 S su
h that v is labeled
. On the 
ontrary, 
 is said to be 
ommon if there exist at least two verti
es ofthis 
olor in S. A 
on�guration is said to be mono
hromati
 if all the verti
eshave the same 
olor. A mono
hromati
 game 
on�guration does not allow anymove, so we now 
onsider that a game 
on�guration is never mono
hromati
.Given v a vertex of G, the 
olor of the stone on v will be denoted by 
(v). Fora 
olor 
 (bla
k or white), we denote by 
 the other 
olor.In this paper, we prove that we 
an redu
e any game 
on�guration (non mono
hro-mati
) on a Hamming graph to one or two stones. Moreover, we assert that we
an 
hoose the 
olor and the lo
ation of the remaining stones. To fa
ilitate theproofs, we need three de�nitions:We say that a graph G is strongly 1-redu
ible if: for any vertex v, for anyarrangement of the stones on G (provided G n v is not mono
hromati
), for any
olor 
 (bla
k or white), there exists a way to play that yields a single stone of
olor 
 on v.A joker move 
onsists of 
hanging the 
olor of any stone at any time during thegame. It 
an be used only on
e. 2



Therefore, a graph G is strongly 1-redu
ible joker if: for any vertex v, for any
olor 
, for any arrangement of the stones on G (provided 
(v) is not rare or
(v) = 
), there exists a way to play that yields a single stone of 
olor 
 on v,with the possible use of a joker move.A graph G is said to be strongly 2-redu
ible if: for any vertex v, for any arrange-ment of the stones on G (provided G n v is not mono
hromati
), for any two
olors 
 and 
0 (provided there exist two di�erent verti
es u and u0 su
h that
(u) = 
 and 
(u0) = 
0), there exists a way to play that yields a stone of 
olor
 on v, and (possibly) a se
ond stone of 
olor 
0 somewhere else.Let G be a graph, vi and vj two verti
es of G, 
 and 
0 two 
olors belongingto f0; 1g. A game 
on�guration C on G is said to be 1-redu
ible on vi with 
or (1; vi; 
)-redu
ible if there exists a way to play that yields only one stone of
olor 
 on G, lo
ated on vi. A 
on�guration C is said to be 2-redu
ible on viwith 
 and 
0 or (2; vi; 
; 
0)-redu
ible if there exists a way to play that yields astone of 
olor 
 on vi, and (possibly) a se
ond stone of 
olor 
0 on some othervertex. C is said to be (2; vi; 
; vj ; 
0)-redu
ible if there exists a way to play thatyields a stone of 
olor 
 on vi and a se
ond stone of 
olor 
0 on vj.In the next se
tion, we solve the 
ase of SC2 played on 
liques. In se
tion 3,we play the game on hyper
ubes and prove that they are strongly 2-redu
ible.In se
tion 4, we prove that almost all the other Hamming graphs are strongly1-redu
ible.2 SC2 played on 
liquesIt is not very surprising that every game 
on�guration on a 
lique is 1-redu
ible.Furthermore, we also prove that we 
an 
hoose the 
olor and the lo
ation of thesingle remaining stone.Proposition 1. Cliques of size n � 3 are strongly 1-redu
ible.When n < 3, note that 
liques are 1-redu
ible, but we 
an't de
ide where andwith whi
h 
olor we �nish.Proof. Let C be a game 
on�guration on Kn (n � 3). Let v be a vertex of Knsu
h that Kn n v is not mono
hromati
. Let 
 be any 
olor in f0; 1g. We provethat C is (1; v; 
)-redu
ible:First assume that C 
ontains no rare 
olor. We 
onsider two 
ases:� if 
 = 
(v). By hypothesis, there exists a vertex w labeled 
(v).Sin
e 
(v) and 
(w) are not rare, there exist two verti
es v0 and w0su
h that 
(v0) = 
(v) and 
(w0) = 
(w). The su

ession of movesleading to a single remaining stone is the following: w 
lobbers v,w0 
lobbers all the verti
es with the label 
(v) ex
ept v0, and �nally,v0 
lobbers all the verti
es labeled 
(v), and ends on v.� if 
 = 
(v). As previously, there exist w labeled 
(v) and v0 labeled
(v). v0 
lobbers all the verti
es labeled 
(v) ex
ept w. Then w
lobbers all the verti
es labeled 
(v) and ends on v.3



Now assume that C has a rare 
olor lo
ated on a vertex vr 6= v. If 
 = 
(vr),then it is enough to have vr 
lobber all the verti
es and �nish on v. If 
 = 
(vr),have vr 
lobber all the verti
es ex
ept one (
all it v0 6= v) and �nish on v. Thenhave v0 
lobber v and this 
on
ludes the proof.3 SC2 played on hyper
ubesIn this se
tion, we study SC2 on hyper
ubes. We prove that these graphs arestrongly 2-redu
ible.Let n > 2. Note that Qn is de�ned re
ursively as the produ
t K2�Qn�1, Q0being a single vertex. This means that Qn is made of two 
opies Qln and Qrnof Qn�1, where ea
h vertex of Qln is adja
ent to its 
opy in Qrn. Let N =2n�1. For ea
h i > 1, it is well known that Qi admits an Hamiltonian 
y
le.Denote by v1; : : : ; vN the verti
es of Qln, ordered su
h that (v1; : : : ; vN ) forman Hamiltonian 
y
le. Denote by v01; : : : ; v0N the verti
es of Qrn, su
h that vi isadja
ent to v0i for all i. Note that (v01; : : : ; v0N ) form an Hamiltonian 
y
le ofQrn. Here is the diagram of the hyper
ube Qn that will be used in the rest ofthe paper:
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Qn,l Qn,rFigure 2: The hyper
ube QnLet vi be a vertex of Qn. Note that when referring to vi+j , where (i+ j) is notin [1; N ℄, then use the appropriate subs
ript i+ j �N instead.The following lemmas des
ribe the su

essions of moves used to redu
e a game
on�guration to a 
ertain form:Lemma 2. Let C be a game 
on�guration on an Hamiltonian graph G with nverti
es (n > 2). Let (v1; : : : ; vn) be the list of the verti
es ordered a

ording toan Hamiltonian 
y
le of G. If there exists a vertex vi su
h that 
(vi) is rare onG, then C is both (1; vi�1; 
(vi))-redu
ible and (1; vi�2; 
(vi))-redu
ible.Proof. The �rst redu
tion is obtained when vi 
lobbers all the stones along theHamiltonian 
y
le (v1; : : : ; vN ). A

ording to the dire
tion in whi
h we movearound the 
y
le, we end either on vi+1 or on vi�1.4



To get the se
ond redu
tion, vi 
lobbers all the stones along the Hamiltonian
y
le, ex
ept the last one. This means that vi �nishes on vi+2 or vi�2, and isthen 
lobbered by vi+1 or vi�1 respe
tively.Lemma 3. Let C be a game 
on�guration on Qn, with n > 3. If there exists arare 
olor on Qrn, and if Qln is not mono
hromati
, then there exists a way toplay that yields no stones on Qrn and N stones on Qln, both 
olors being 
ommonon Qln. If n = 3, there may be a rare 
olor on Qln, but we 
an 
hoose its lo
ationon two distin
t verti
es.Proof. Let 
 be the rare 
olor on Qrn and denote by v0i the vertex su
h that
(v0i) = 
. We 
onsider three 
ases for the stones on Qln:� 
 is rare on Qln. Thanks to its Hamiltonian 
y
le and by Lemma 2,we know that Qrn is (1; v0i�2; 
)-redu
ible. If n > 3, v0i+2 and v0i�2 aredistin
t verti
es. Also sin
e 
 is rare on Qln, this means that eithervi+2 or vi�2 is labeled with the 
olor 
. Without loss of generality,suppose that vi+2 is labeled 
, hen
e we apply a (1; v0i+2; 
)-redu
tionof Qrn. Then v0i+2 
lobbers vi+2, so that Qln 
ontains at least twostones of ea
h 
olor afterwards.If n = 3 and 
(vi+2) = 
, this proof is no more valid. In that 
ase,there are two ways to play, ea
h of them leaving the rare 
olor 
either on vi+1 (diagram 1) or on vi�1 (diagram 2).
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Figure 3: Lemma 3: spe
ial instan
e of the 
ase n = 3� 
 is rare on Qln. By Lemma 2, Qrn is (1; v0i�1; 
)-redu
ible. We knowthat at least one of both verti
es vi+1 and vi�1 has the 
ommon label
. Without loss of generality, assume vi+1 does. Last, we apply a(1; v0i+1; 
)-redu
tion of Qrn, and then we play from v0i+1 to vi+1.� Both 
olors are 
ommon on Qln. We 
onsider the four 
ases for thelabels of vi+1 and vi+2:� 
(vi+1) = 
 and 
(vi+2) = 
. Use an Hamiltonian 
y
le ofQrn to have v0i 
lobber all the verti
es ex
ept v0i+1. Thisoperation yields two stones on Qrn: v0i+1 labeled 
, andv0i+2 labeled 
. Play now from v0i+1 to vi+1 and from v0i+2to vi+2.� 
(vi+1) = 
 and 
(vi+2) = 
. If n > 3, 
 or 
0 appearsmore than twi
e in Qln. If it is the 
ase of 
, then apply a(1; v0i+1; 
)-redu
tion of Qrn, and play from v0i+1 to vi+1. If5




 appears more than twi
e in Qln, then apply a (1; v0i+2; 
)-redu
tion of Qrn, and play from v0i+2 to vi+2. If n = 3,there are two possible arrangements of the stones on Qln.In both 
ases, there exists a way to play that yields a rare
olor on Qln, with two possible lo
ations:
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Figure 4: Lemma 3: spe
ial instan
es of the 
ase n = 3 (2)� 
(vi+1) = 
 and 
(vi+2) = 
. If 
 appears more than twi
ein Qln, then apply a (1; v0i+2; 
)-redu
tion of Qrn, and playfrom v0i+2 to vi+2. Then play from v0i+2 to vi+2. Otherwise,and if n > 3, this means that the 
olor 
 appears morethan twi
e, in parti
ular on vi�1. Then apply a (1; v0i+1; 
)-redu
tion of Qrn, and play from v0i�1 to vi�1. If n = 3, thisimplies 
(vi) = 
(vi�1) = 
. It then su�
es to invert theorder of the verti
es (vi+1 be
omes vi�1...) to redu
e tothe previous 
ase.� 
(vi+1) = 
 and 
(vi+2) = 
. This 
ase is similar to theprevious one.Lemma 4. Let C be a game 
on�guration on Qn, with n > 2. If there exists arare 
olor on Qrn, and if Qln is mono
hromati
, then there exists a way to playthat yields no stones on Qrn and N stones on Qln, whi
h is not mono
hromati
.Also, if this operation yields a rare label on Qln, we 
an 
hoose its lo
ation ontwo distin
t verti
es.Proof. Let 
 be the rare 
olor on Qrn and denote by v0i the vertex su
h that
(v0i) = 
. We 
onsider two 
ases about Qln:� All the verti
es of Qln have the 
olor 
. Use an Hamiltonian 
y
leof Qrn to have v0i 
lobber all the verti
es ex
ept v0i+1 and v0i+2. It6



ends on v0i+3. Then v0i+2 
lobbers v0i+3. This operation yields twostones labeled 
 on v0i+1 and v0i+3. Then play from v0i+1 to vi+1 andfrom v0i+3 to vi+3. Both 
olors now appear at least twi
e on Qln.� All the verti
es of Qln have the 
olor 
. By Lemma 2, we 
an applya (1; v0i�1; 
)-redu
tion of Qrn. Then play from v0i+1 or v0i�1 to the
orresponding vertex in Qln. In that 
ase, the 
olor 
 is rare on Qln,but it 
an be lo
ated either on vi+1 or on vi�1.We now give the main result of this se
tion about the "strong redu
ibility" ofthe hyper
ube.Theorem 5. Hyper
ubes are strongly 1-redu
ible joker and strongly 2-redu
ible.Of 
ourse, the most interesting property 
on
erns the 2-redu
ibility of the hy-per
ube. However, this result is tightly linked to the strong 1-redu
ibilty joker.One 
an noti
e that the 
onditions de�ning the strong 2-redu
tion and thestrong 1-redu
tion joker are a bit di�erent. Indeed, the "vertex" 
ondition ofstrong 2-redu
ibility (i.e. G n v must not be mono
hromati
) is 
ontained inthe 
ondition of strong 1-redu
ibility joker. But mono
hromati
 hyper
ubesand hyper
ubes with a rare 
olor on vr su
h that 
 = 
(vr) are also strongly1-redu
ible joker, although they are not strongly 2-redu
ible. This explains whythe 
onditions of strong 1-redu
ibility joker are "larger".Proof. By indu
tion on the dimension of the hyper
ube.The reader 
an verify that these results are true on the hyper
ube Q2 (thesquare). Note that only four arrangements of the stones must be 
onsidered:tdtd tttt tttd tddtAssume that the theorem is true for the hyper
ube Qn�1 and 
onsider the hy-per
ube Qn.Qn is strongly 1-redu
ible joker.Without loss of generality, assume that the vertex that will support the laststone is v1. Let 
 be any 
olor in f0; 1g. We 
onsider any arrangement of thestones on Qn su
h that 
(v1) is not rare or 
(v1) = 
. Our obje
tive 
onsists in�nding a way to yield a single stone of 
olor 
 on v1. We are allowed to use ajoker. Five 
ases are 
onsidered:1. Suppose Qln is (1; v1; 
)-redu
ible joker, and the joker is used to 
hange the
olor of some vertex vj from the 
olor d 2 f0; 1g to d. Also, we supposethat Qrn is (1; v0j ; d)-redu
ible joker.We �rst apply the (1; v0j ; d)-redu
tion joker on Qrn, whi
h yields a stoneof 
olor d on v0j . We may have used a joker to do this. Then we apply a(1; v1; 
)-redu
tion joker on Qln with a small modi�
ation: instead of usingthe joker on vj , we play from v0j to vj. This move is indeed equivalent tothe use of the joker, sin
e v0j has the 
olor d at this moment. At the endof the play, the joker has been used at most on
e.7



2. Qln is (1; v1; 
)-redu
ible joker, and the joker is used to 
hange the 
olorof some vertex vj from the 
olor d 2 f0; 1g to d. Moreover, Qrn is not(1; v0j ; d)-redu
ible joker. From the 
onditions of the strong 1-redu
tionjoker, this means that 
(v0j) = d, and 
(v0i) = d for all i 6= j.Sin
e d is rare on Qrn, we 
an apply both Lemma 3 and 4. If this yieldsa rare 
olor on Qln, we 
hoose a lo
ation di�erent from v1 for it. Hen
e
(v1) is never rare and we 
an apply a (1; v1; 
)-redu
tion joker on Qln.3. Qln is (1; v1; 
)-redu
ible joker, but the joker is not used. We 
onsider anyarrangement of the stones on Qrn.We 
onsider a su

ession of moves resulting from a (1; v1; 
)-redu
tionof Qln. In this sequen
e, there exists a vertex vi that 
lobbers at leasttwo other verti
es before being (or not) 
lobbered. Indeed, if ea
h vertex
lobbers at most on
e, then Qln would be a star, whi
h is not the 
ase.Denote by vj and vk the �rst two verti
es 
lobbered by vi. When themoves from vi to vj and then to vk are made, let y be the 
olor of vi, andy the 
olor of vj and vk. We 
onsider four 
ases about the 
olors of v0i andv0j:
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Figure 5: Qln is 1-redu
ible on v1 with 
� CASE 1: 
(v0i) = y and 
(v0j) = y. Apply a (1; v1; 
)-redu
tionof Qln, and when the time 
omes to play from vi to vj , play to v0iinstead. At this moment, y is not rare on Qrn, so we 
an applya (1; v0j ; y)-redu
tion joker on Qrn. Play then from v0j to vj and
ontinue the (1; v1; 
)-redu
tion of Qln.� CASE 2: 
(v0i) = 
(v0j) = y. Begin a (1; v1; 
)-redu
tion of Qlnup to the move from vj to vk (not in
luded). Play to v0j instead.Sin
e 
(v0k) is not rare, apply a (1; v0k; y)-redu
tion joker on Qrn.Then play from v0k to vk and 
ontinue the (1; v1; 
)-redu
tion ofQln.� CASE 3: 
(v0i) = 
(v0j) = y. Apply a (1; v1; 
)-redu
tion of Qlnup to the move from vi to vj (not in
luded). Instead of it, havevj 
lobber vi and then v0i. The rest of the play is identi
al tothe previous 
ase.� CASE 4: 
(v0i) = y and 
(v0j) = y. If 
(v0k) = y, then play as inthe se
ond 
ase. Otherwise, play as in the third 
ase.4. Qln is not (1; v1; 
)-redu
ible joker, and Qrn is (2; v01; 
; 
)-redu
ible.8



This implies that 
(v1) = 
 and 
(vi) = 
 for all i > 1. If Qrn is (1; v01; 
)-redu
ible, we apply this redu
tion and then play from v01 to v1. Qln be-
omes mono
hromati
 and the (1; v1; 
)-redu
tion joker 
an now be appliedon it. If Qrn is (2; v01; 
; 
)-redu
ible, then 
hoose the se
ond remainingstone of 
olor 
. Let v0j be the vertex on whi
h this stone is left. Play nowfrom v01 to v1, and from v0j to vj . Qln now satis�es the right 
onditions toapply a (1; v1; 
)-redu
tion joker.5. Qln is not (1; v1; 
)-redu
ible joker, and Qrn is not (2; v01; 
; 
)-redu
ible.There are four possible arrangements of the stones on Qn 
orrespondingto these 
onditions:
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Figure 6: Strong 1-redu
ibility joker: 
ase 5� The arrangement (A) does not have to be 
onsidered. Indeed,this arrangement is not allowed by the 
onditions of the 1-redu
tion joker, sin
e 
(v1) is rare on Qn and 
(v1) 6= 
.� If the arrangement of the stones is (B), have v01 
lobber all theverti
es of Qrn and end on v0N . Then v0N 
lobbers vN , and the
onditions of a (1; v1; 
)-redu
tion joker are ful�lled on Qln.� If the arrangement of the stones is (C), have vi 
lobber v0i forall 2 < i < N . Apply now a (1; v01; 
)-redu
tion joker of Qrn.Finally, v1 is 
lobbered by v2, v01 and vN in this order.� If the stones are pla
ed as in (D), use Lemma 2 to apply a(1; v0N�1; 
)-redu
tion of Qrn. Then v0N�1 
lobbers vN�1, and we
an apply a (1; v1; 
)-redu
tion joker of Qln.Qn is strongly 2-redu
ible.Without loss of generality, assume that the vertex that will support the laststone is v1. We 
onsider any arrangement of the stones on Qn su
h that Qn nv1is not mono
hromati
. Let 
 and 
0 be any two 
olors in f0; 1g su
h that thereare two distin
t verti
es of Qn labeled with these values. Our obje
tive 
onsistsin �nding a way to leave a stone of 
olor 
 on v1, and possibly another one of
olor 
0 somewhere else. We 
onsider eleven 
ases, starting with those whereQrn is mono
hromati
 (
ases 1 to 5):1. Qrn is mono
hromati
 of 
olor y 2 f0; 1g, and Qln is (1; v1; 
)-redu
ible.Consider a su

ession of moves resulting from a (1; v1; 
)-redu
tion of Qln.9



First suppose that there exists a move from a stone of 
olor y on somevertex vi 
lobbering a stone of 
olor y on the vertex vj . Repla
e this moveby having vi 
lobber v0i. There exists an Hamiltonian 
y
le of Qrn wherev0i and v0j are 
onse
utive. Have v0i 
lobber all the stones of Qrn and endon v0j with the 
olor y. Finally v0j 
lobbers vj , and we 
an 
ontinue the(1; v1; 
)-redu
tion of Qln.Suppose now that there exist no moves 
lobbering a vertex labeled y whenapplying a (1; v1; 
)-redu
tion of Qln. Ne
essarily this means that 
 = y.Also, this implies that all the verti
es of Qln are labeled y, ex
ept one,namely vi. The (1; v1; 
)-redu
tion of Qln thus 
onsists in having vi 
lobberall the verti
es of Qln and end on v1. Without loss of generality, supposethat v2 is the penultimate vertex whi
h is 
lobbered when applying the(1; v1; 
)-redu
tion of Qln. The following diagram shows how to apply the(1; v1; 
)-redu
tion of Qn:
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Figure 7: Strong 2-redu
ibility: spe
i�
 instan
e of 
ase 12. Qrn is mono
hromati
 of 
olor y 2 f0; 1g, and Qln is (2; v1; 
; y)-redu
ible.If Qln is (1; v1; 
)-redu
ible, then we are in 
ase 1. Suppose then that theredu
tion yields two stones, the se
ond one being lo
ated on some vertexvi. In that 
ase, apply a (2; v1; 
; vi; y)-redu
tion of Qln and play from vito v0i. Then use Lemma 2 to yield a stone of 
olor 
0 either on v0i+1 (if
0 = y) or on v0i+2 (if 
0 = y).In 
ases 3, 4 and 5, we suppose that Qln is not (2; v1; 
; y)-redu
ible. If Qlnis not (2; v1; 
; y)-redu
ible, then either Q n v1 is mono
hromati
, or 
 = yand y is rare in Qln. But from our initial assumption that Qn n v1 is notmono
hromati
, we know that there is at least one stone 
olored in y inQ n v1. So either Q n v1 is mono
hromati
 of 
olor y (see 
ases 4 and 5),or y is rare in Qln and 
(v1) 6= y (see 
ase 3).3. Qrn is mono
hromati
 of 
olor y 2 f0; 1g, and y is rare on Qln with 
(v1) 6=y. If Qln is not (2; v1; 
; y)-redu
ible, then 
 = y and 
0 = y (by ourinitial assumption that there are two distin
t verti
es of 
olor 
 and 
0respe
tively in Qn). Let vi be the vertex of Qln su
h that 
(vi) = y. SeeFig.8 for the diagram of su
h a 
on�guration.10
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Figure 9: Strong 2-redu
ibility: 
ase 4Sin
e 
 = y and 
0 = y, Qln is (2; v1; 
; 
0)-redu
ible. Consider the �rstmove of this 2-redu
tion: it is a move from vi to some vj sin
e 
(vi) israre. Instead of playing it, play from vi to v0i, and then have v0i 
lobberall the stones of Qrn and end on v0j. Then play from v0j to vj and 
ontinuethe (2; v1; 
; 
0)-redu
tion of Qln to 
on
lude this part of the proof.4. Qrn is mono
hromati
 of 
olor y 2 f0; 1g and 
(v1) = y is rare on Qln (seeFig. 9).We �rst 
onsider the 
ase 
 = y. For all 2 � i � N , play from vi tov0i. Then use an Hamiltonian 
y
le of Qrn to yield the se
ond stone of theright 
olor 
0 (on vN or vN�1 a

ording to 
0) after having 
lobbered allthe other verti
es of Qrn.If 
 = y, then �rst vN 
lobbers v1. Then vi 
lobbers v0i for all 3 � i � N�1.We apply a (2; v01; y; 
0)-redu
tion of Qrn. The last two moves are v01 to v1,and v2 to v1.5. Qrn is mono
hromati
 of 
olor y 2 f0; 1g and Qln is mono
hromati
 of 
olory.We �rst 
onsider the 
ase when 
 = y. Play from vN to v0N and from v0N�1to vN�1. Then use an Hamiltonian 
y
le of Qrn to 
lobber all its verti
esand yield a stone of 
olor 
0 on Qrn. Finally, have vN�1 
lobber all thestones of Qln and end on v1.If 
 = y, play from v01 to v1, and then from v2 to v1. Have vi 
lobber v0i forall 2 < i � N . Use an Hamiltonian 
y
le to redu
e Qrn to a single stoneof 
olor 
0.In the next 
ases, we suppose that Qrn is not mono
hromati
.6. Qln is (1; v1; 
)-redu
ible, and Qrn has a rare 
olor.Apply a (1; v1; 
)-redu
tion of Qln and use an Hamiltonian 
y
le to redu
eQrn to a single stone of 
olor 
0 on v0i+1 or v0i+2.7. Qln is (1; v1; 
)-redu
ible and both 
olors are 
ommon on Qrn.11



We 
onsider a sequen
e of moves resulting from a (1; v1; 
)-redu
tion ofQln. In this sequen
e, there exists a vertex vi that 
lobbers at least twoother verti
es before being (or not) 
lobbered. Denote by vj and vk the�rst two verti
es 
lobbered by vi. When 
onsidering the moves from vi tovj and then to vk, let y be the 
olor of vi, and y the 
olor of vj and vk.We 
onsider four 
ases a

ording to the 
olors of v0i and v0j:
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y y

y

y
y yFigure 10: Strong 2-redu
ibility: 
ase 7� CASE 1: 
(v0i) = y and 
(v0j) = y. Apply a (1; v1; 
)-redu
tionof Qln until the move from vi to vj (not in
luded). Play nowfrom vi to v0i, and from vj to v0j instead. After this operation,both 
olors are still 
ommon on Qrn, so that we 
an apply a(2; v0k; y; 
0)-redu
tion. Then play from v0k to vk, and 
ontinuethe (1; v1; 
)-redu
tion of Qln.� CASE 2: 
(v0i) = 
(v0j) = y. Apply a (1; v1; 
)-redu
tion ofQln, and when the time 
omes to play from vj to vk, play to v0jinstead. Sin
e y is not rare on Qrn after this operation, apply a(2; v0k; y; 
0)-redu
tion of Qrn. After this, play from v0k to vk and
ontinue the (1; v1; 
)-redu
tion of Qln.� CASE 3: 
(v0i) = 
(v0j) = y. Apply a (1; v1; 
)-redu
tion of Qlnuntil the move from vi to vj (not in
luded). Instead of it, havevj 
lobber vi and then v0i. If y is not rare on Qrn after thisoperation, then apply a (2; v0k; y; 
0)-redu
tion of Qrn. If y is rareon Qrn, then use an Hamiltonian path of Qrn starting on v0j andending on v0k to yield a stone of 
olor y on v0k.After this, play from v0k to vk and 
ontinue the (1; v1; 
)-redu
tionof Qln.� CASE 4: 
(v0i) = y and 
(v0j) = y. If the 
olor y appears morethan twi
e in Qrn, or if 
(v0k) = y, then play as in the se
ond
ase. Otherwise, this means that 
(v0j) = 
(v0k) = y and theother verti
es of Qrn have the 
olor y. Play thus as in the third
ase.In the next two 
ases, we suppose that 
(v1) is not rare on Qln (whi
hmay be mono
hromati
). Hen
e Qln is (1; v1; 
)-redu
ible joker. If thisredu
tion does not use the joker, then refer to 
ase 6 or 7. Otherwise,assume that the joker is used to 
hange the 
olor of some vertex vj fromd to d.8. If Qrn is (2; v0j ; d; 
0)-redu
ible, we �rst apply a (2; v0j ; d; 
0)-redu
tion of Qrn.12



We then apply a (1; v1; 
)-redu
tion joker of Qln, and when the time 
omesto use the joker, we play from v0j to vj instead.9. Suppose that Qrn is not (2; v0j ; d; 
0)-redu
ible. By our earlier assumption,Qrn is not mono
hromati
, so this 
an o

ur in only three kinds of arrange-ments of the stones on Qrn, all with a rare 
olor. The 
ase when Qln ismono
hromati
 is studied in 
ase 10, we assume in this se
tion that Qln isnot mono
hromati
.� 
(v0j) 6= d, d is rare on Qrn and 
0 = d. If n > 3, then use Lemma3 to empty Qrn and yield N stones on Qln where both 
olors are
ommon. Then we 
an apply a (2; v1; 
; 
0)-redu
tion of Qln.If n = 3, the lemma 
an not be used. We thus have to 
onsiderall the 
on�gurations on Q3 satisfying these 
onditions. Figure11 details these �ve 
on�gurations (the �nal 
olors 
 and 
0 aredetailed under ea
h diagram):
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Figure 11: Case 9: arrangements on Q3 (1)� 
(v0j) = d, and d is rare on Qrn. If n > 3, we play as in theprevious 
ase. When n = 3, here are the 
on�gurations thatmust be 
onsidered:
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Figure 12: Case 9: arrangements on Q3 (2)� d is rare on Qrn and 
(v0j) = d. If n > 3, we play as in theprevious 
ase. If n = 3, here are the 
on�gurations that mustbe 
onsidered:
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Figure 13: Case 9: arrangements on Q3 (3)10. Assume that 
(v1) = y is rare on Qln or that Qln is mono
hromati
, andthat Qrn has a rare label. This indu
es four possible 
ases:
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Figure 14: Possible arrangements in 
ase 10� CASE 1: We suppose that 
(v1) = y is rare on Qln and Qrn.Let v0i be the vertex su
h that 
(v0i) = y. Either v0i+1 or v0i�1(or both) is di�erent from v01. Without loss of generality, as-sume v0i+1 is. Apply a (1; v0i+1; y)-redu
tion of Qrn in the way ofLemma 2. Then play from v0i+1 to vi+1. Both 
olors are now
ommon on Qln, whi
h be
omes (2; v1; 
; 
0)-redu
ible.� CASE 2: 
(v1) = y is rare on Qln and y is rare on some vertexv0i of Qrn. By Lemma 2, apply a (1; v0i�2; y)-redu
tion of Qrn(
hoose to �nish on a vertex di�erent from v01). Play then as inthe previous 
ase. This operation is not possible if n = 3 andwhen the arrangement of the stones is the following:
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Figure 15: Spe
ial instan
e of the 
ase 10.2In that 
ase, if (
; 
0) 6= (y; y), then 
onsider the following su
-
ession of moves: v0i+1 to vi+1, v0i to v02, v01 to v02, v02 to v2. Usethen an Hamiltonian 
y
le of Qln to 
on
lude. If (
; 
0) = (y; y),then play like this: use an Hamiltonian 
y
le of Qrn to apply a(1; v01; y)-redu
tion. Then move from v2 to v1, from v01 to v1,and from vN to v1.� CASE 3: Qln is mono
hromati
 of 
olor y and y is rare on somev0i of Qrn. This 
ase is identi
al to the �rst 
ase (note that
 = 
0 = y is not allowed sin
e y is rare on Qn).� CASE 4: Qln is mono
hromati
 of 
olor y and y is rare onsome v0i. Have v0i 
lobber all the verti
es of Qrn ex
ept v0i+1 andv0i+2,and end on v0i+3. Then play from v0i+2 to v0i+3, from v0i+3to vi+3, and from v0i+1 to vi+1. All the stones of Qrn have beenremoved and both 
olors are now 
ommon on Qln. Apply nowa (2; v1; 
; 
0)-redu
tion of Qln.15



11. Assume that 
(v1) = y is rare on Qln and that both 
olors are 
ommon onQrn.If Qrn is (1; v0N�1; y)-redu
ible, then apply this redu
tion and move fromv0N�1 to vN�1. Both 
olors are now 
ommon on Qln, and we 
an 
on
ludeto the right result.Otherwise, Qrn is 2-redu
ible on v0N�1 with y, and y on some other vertex
alled v0i. Apply this redu
tion. If v0i 6= v01, move from v0N�1 to vN�1, andfrom v0i to vi. If n > 3, then both 
olors are 
ommon on Qln, and we 
an
on
lude the proof. If n = 3, then y is rare on Qln, and lo
ated either onv2, or on vN . Clobbering along the Hamiltonian 
y
le of Qln permits a2-redu
tion.If v0i = v01, we distinguish two 
ases. If 
 = y, then play from v2 to v1, v01 tov1 and vN to v1. Then have v0N�1 
lobber vN�1 and follow an Hamiltonian
y
le of Qln to leave the last stone of 
olor 
0. If 
 = y, then play from vNto v1, and from v01 to v1. Have v0N�1 
lobber vN�1 and use an Hamiltonian
y
le of Qln to leave the last stone of 
olor 
0.These results ensure that hyper
ubes are 2-redu
ible. An interesting problem isdetermining whether an "hyper
ube 
on�guration" is 1-redu
ible or not. Per-haps the answer is 
ontained in the invariant Æ de�ned by Demaine et al. in[2℄. However, our result does not assert that hyper
ubes are not all 1-redu
ible.The next proposition answers to this question.Proposition 6. For ea
h integer n, there exists a non-mono
hromati
 
on�g-uration on Qn whi
h is not 1-redu
ible.Proof. We prove this result thanks to the invariant de�ned by Demaine et al. in[2℄. On a bipartite graph G, verti
es of both partitions are respe
tively labeled'0' and '1'. Now 
onsider a game 
on�guration C of Solitaire Clobber on G,with stones labeled '0' and '1'. A stone is said to be "
lashing" if its label di�ersfrom the label of the vertex it o

upies. Denote by Æ(C) the following quantity:Æ(C) = number of stones plus number of 
lashing stones.In their paper, Demaine et al. proved that Æ(C) (mod 3) never 
hanges duringthe game.Let n > 1 and 
onsider Qn = Qn�1�K2. As previously, denote by Qln and Qrnboth 
opies of Qn�1. Hyper
ubes are bipartite graphs. Choose a bipartitionof Qn su
h that half the verti
es of Qln are labeled '0', and the other ones arelabeled '1'. Ditto for Qrn. Now 
hoose an arrangement of the stones on Qn su
hthat all the stones labeled '0' belong to Qln, and all the stones labeled '1' belongto Qrn. In that 
ase, we haveÆ(C) = 2n + 2n�1 = 3 � 2n�1Hen
e Æ(C) (mod 3) = 0. Sin
e a single stone 
on�guration never satis�esÆ(C) (mod3) = 0 (see [2℄), this 
on
ludes the proof.16



4 On the other Hamming graphs...Hyper
ubes are strongly 2-redu
ible. In this se
tion, we prove that almost allthe other Hamming graphs are strongly 1-redu
ible. This indu
tion is initializedby lemmas 10 and 11, and the property is proved to be hereditary by Theorem 8.In the following, we prove that the 
artesian produ
t of a strongly 1-redu
iblegraph G with a 
liqueKn is strongly 1-redu
ible. This produ
t 
ontains n 
opiesof G, that we denote by G1; : : : ; Gn. For any vertex v of G, we denote by vithe 
orresponding vertex in the 
opy Gi. Denote by v1 any vertex of G1.Lemma 7. Let G be a strongly 1-redu
ible graph 
ontaining at least 4 verti
es.K2�G is strongly 1-redu
ible.Proof. Let G be a strongly 1-redu
ible graph with at least 4 verti
es. Withoutloss of generality, assume that the vertex on whi
h we will leave the last stoneis v1. Let 
 be any 
olor in f0; 1g. We 
onsider any arrangement of the stoneson K2�G su
h that K2�Gnv1 is not mono
hromati
. Let us prove that K2�Gis (1; v1; 
)-redu
ible. We split the problem into three 
ases.1. G2 is not mono
hromati
.Sin
e G is of size at least 4, there exist 2 verti
es of the same 
olor inG1 n v1. We denote them by a1 and b1. Similarly, 
(a2) or 
(b2) (or both)is 
ommon in G2. Without loss of generality, we suppose 
(a2) is. Oneapplies a (1; a2; 
(a1))-redu
tion of G2, and then have a2 
lobber a1. G2 isnow empty. a1 and b1 are now of di�erent 
olors on G1, so we 
an applya (1; v1; 
)-redu
tion of G1.2. G2 is mono
hromati
 of 
olor y and G1 nv1 is not mono
hromati
.This means that G1 is (1; v1; 
)-redu
ible. We 
onsider two 
ases:� Suppose that when one applies a (1; v1; 
)-redu
tion of G1, there ex-ists a vertex a1 
olored in y 
lobbering another vertex b1 of 
olory. We then 
hoose to apply this redu
tion, and when the time
omes to play from a1 to b1, play to a2 instead. We then applya (1; b2; y)-redu
tion of Q2. b2 then 
lobbers b1 and we 
an 
ontinuethe (1; v1; 
)-redu
tion of G1.� Otherwise, there is exa
tly one vertex a1 
olored in y in G1. Sin
ethere are at least 4 verti
es in G1, a1 has to 
lobber 
onse
utively2 verti
es during the (1; v1; 
)-redu
tion of G1. Denote them by b1and 
1. We repla
e these two 
onse
utive moves by these ones: b1
lobbers a1 and then a2. We then apply a (1; 
2; y)-redu
tion of G2.It �nally su�
es to play from 
2 to 
1, and 
ontinue the (1; v1; 
)-redu
tion of G1.3. G2 is mono
hromati
 of 
olor y and G1 n v1 is mono
hromati
.Sin
e K2�G n v1 is not mono
hromati
, G1 n v1 is ne
essarily 
olored y.Let a1 be any vertex of G1 di�erent from v1. A
t now as if a1 was 
oloredy. We 
an thus 
onsider a (1; v1; 
)-redu
tion of G1. The �rst step of su
ha redu
tion would be �a1 
lobbers some vertex b1.� We use this redu
tion,17



repla
ing this step by �a1 (whi
h is a
tually 
olored y) 
lobbers a2, thenwe do a (1; b2; y)-redu
tion of G2, followed by b2 
lobbers b1�.Theorem 8. Let G be a strongly 1-redu
ible graph 
ontaining at least 4 verti
es.Then Kn�G is strongly 1-redu
ible.Proof. Let G be a strongly 1-redu
ible graph with at least 4 verti
es. We provethe theorem by indu
tion on n. If n = 2, see Lemma 7. Suppose n � 3 andKn�1�G is strongly 1-redu
ible. Without loss of generality, assume that thevertex on whi
h we will leave the last stone is v1. Let 
 be any 
olor in f0; 1g.We 
onsider any arrangement of the stones on K2�G su
h that K2�G n v1 isnot mono
hromati
. Let us give a (1; v1; 
)-redu
tion of Kn�G.We 
onsider 3 di�erent 
ases:1. There exists i 2 [2 : : : n℄ su
h that Gi is not mono
hromati
.Sin
e G 
ontains at least 4 verti
es, there are 2 verti
es ai and bi su
h thatGinfai; big is not mono
hromati
. For the same reasons, in any other 
opyGj , 
(aj) or 
(bj) (or both) is not rare. Without loss of generality, we 
ansuppose that 
(aj) is 
ommon on Gj . Start by applying a (1; ai; 
(aj))-redu
tion of Gi, and then play from ai to aj. We 
an pro
eed with a(1; v1; 
)-redu
tion of the remaining non mono
hromati
 Kn�1�G.2. For all i 2 [2 : : : n℄, Gi is mono
hromati
 of 
olor y.IfGn is deleted from the graph, then the 
on�guration is (1; v1; 
)-redu
tiblea

ording to the indu
tion hypothesis. In this redu
tion, there exists amove from some ai to some bi of 
olor y, where 1 < i < n. When 
on-sidering the graph with Gn, we apply the (1; v1; 
)-redu
tion as if Gn wasnot there. And when the time 
omes to play from ai to bi, we play to aninstead. We then do a (1; bn; y)-redu
tion of Gn and have bn 
lobber bi.We 
an �nally 
ontinue the exe
ution of the (1; v1; 
)-redu
tion.3. For all i 2 [2 : : : n℄, Gi is mono
hromati
, but all the 
opies do nothave the same 
olor.Let y be the 
olor of some vertex of G1 n v1. Let Gi (i > 1) be a 
opyof 
olor y and Gj (j > 1) a 
opy of 
olor y. We start by having allthe verti
es of Gj 
lobber the 
orresponding verti
es of Gi. Hen
e thereremains a Kn�1�G where Kn�1�G n v1 is not mono
hromati
. We 
anapply the indu
tion hypothesis to 
on
lude the proof.Thanks to these results, we 
an assert that any Hamming graph 
ontaining aK4 is strongly 1-redu
ible. What about Hamming graphs that are the produ
tof K2 and K3 only?We begin by studying 
on�gurations on K2�K3. Su
h a graph will be 
onsid-ered as two adja
ent 
opies G1 and G2 of K3.18



Lemma 9. Let G = K3�K2 and i 2 f1; 2g. For any vertex ai of G, for any
olor 
 2 f0; 1g and for any 
on�guration C on G su
h that: (i) 
(ai) is notrare on Gi and (ii) K3�K2 n ai is not mono
hromati
, C is (1; ai; 
)-redu
ible.Proof. For i 2 f1; 2g, let vi, ui, and wi be the verti
es of ea
h 
opy Gi. Withoutloss of generality, assume that we will leave the last stone on v1. By (i), onemay assume that v1 and u1 have the same 
olor y. Let 
 2 f0; 1g. Our goal isnow to prove that any 
on�guration satisfying (i) and (ii) is (1; v1; 
)-redu
ible.We 
onsider several 
ases:� 
(w1) = y and G2 is not mono
hromati
. By Proposition 1, G2is either (1; u2; y)-redu
ible, or (1; w2; y)-redu
ible. Without lossof generality, suppose that G2 is (1; u2; y)-redu
ible. Apply thisredu
tion and play from u2 to u1. The 
onditions are now ful�lledon the 
lique G1 to apply a (1; v1; 
)-redu
tion.� 
(w1) = y and G2 is mono
hromati
. From (ii), G2 is mono
hro-mati
 of 
olor y. A

ording to 
, play as shown on diagrams (a)(
 = y) or (b) (
 = y) of Figure 16.� 
(w1) = y and G2 is (1; v2; y)-redu
ible. Apply this redu
tion, andthen play from v2 to v1. Now G1 is (1; v1; 
)-redu
ible by Proposition1.� 
(w1) = y and G2 is mono
hromati
. Play a

ording to Figure 16.On diagrams (
) and (e), we have 
 = y. On diagrams (d) and (f),we end with the 
olor 
 = y.� 
(w1) = y and 
(v2) is rare on G2. In both 
ases, we play from v2either to u2 or to w2, su
h that 
(u2) 6= 
(u1) and 
(w2) 6= 
(w1)after this operation. We then play from u2 to u1, and from w2 tow1. Use Proposition 1 to apply a (1; v1; 
)-redu
tion of G1.
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Figure 16: redu
tion of K2�K3Lemma 10. K3�K3 is strongly 1-redu
ible.19



Proof. Let us 
onsider the graphK3�K3, v1 being any vertex of it. Assume thatwe will leave the last stone on v1. Let 
 2 f0; 1g. We 
onsider any arrangementof the stones su
h that K3�K3 n v1 is not mono
hromati
. Let us prove thatthis 
on�guration is (1; v1; 
)-redu
ible.Among the six 
opies of K3 
onstituting the produ
t K3�K3 (three horizontaland three verti
al), one of them is not mono
hromati
 and does not 
ontain v1:
all it G3. Denote by G1 the parallel 
opy of G3 
ontaining v1, and G2 the lastparallel 
opy. G3 is then 1-redu
ible with any 
olor on two possible verti
es: a3and b3. At least one of these is di�erent from v3 (v3 being the 
opy of v1 in G3).Without loss of generality, assume a3 6= v3.If G1 n v1 is not mono
hromati
, we apply a (1; a3; 
(a2))-redu
tion of G3 andthen play from a3 to a2. Otherwise, we apply a (1; a3; 
(a1))-redu
tion of G3and then play from a3 to a1. In both 
ases, we �nally get a 
on�guration onK2�K3 that we 
an redu
e from Lemma 9.Lemma 11. K3�K2�K2 is strongly 1-redu
ible.Proof. Consider the graph K3�K2�K2. Let v1 be any vertex of it and let 
be any 
olor. Assume that we will leave the last stone on v1. We 
onsider anyarrangement of the stones su
h that K3�K2�K2 n v1 is not mono
hromati
.Let G1 be the 
opy of K3 
ontaining v1. We 
all G2, G3, and G4 the other
opies of K3, G3 being the 
opy 
ontaining no neighbour of v1. We distinguishtwo 
ases:� The graph without G1 is not mono
hromati
There exists a non mono
hromati
 
opy of K2�K3 that does not 
ontainG1. Without loss of generality, suppose it is the one made of G3 and G4.We 
an 1-redu
e it to various pla
es.We �rst suppose that both verti
es a1 and b1 ofG1nv1 have the same 
olor.At least one of the 
orresponding vertex a4 and b4 in G4 has a 
ommon
olor in G4. Assume it is the 
ase of a4. The 
onditions of Lemma 9 areful�lled so that we are able to apply a (1; a4; 
(a1))-redu
tion of G3 [G4;then we have a4 
lobber a1. Now, G1[G2 nv1 is not mono
hromati
, and
(v1) is 
ommon on G1. By Lemma 9, G1 [G2 is (1; v1; 
)-redu
ible.Suppose now that the verti
es a1 and b1 of G1 n v1 have di�erent 
olors.At least one vertex of a3 and b3 has a 
ommon 
olor in G3. Assume itis a3. The 
onditions of Lemma 9 are ful�lled to apply a (1; a3; 
(a2))-redu
tion of G3 [G4; then have a3 
lobber a2. Now, G1 [G2 n v1 is notmono
hromati
, and 
(v1) is 
ommon on G1. By Lemma 9, G1 [ G2 is(1; v1; 
)-redu
ible.� The graph without G1 is mono
hromati
 of 
olor yThen G1 n v1 
ontains a stone of 
olor y. Denote by z the initial 
olor ofv1. We des
ribe the way to play on Figure 17.In 
ases (a) and (
), we have 
 = z. We exe
ute the moves des
ribed bythe �gure, leaving v1 and a 
opy of K2�K3. We 
an apply a (1; v2; z)-redu
tion of this 
opy (from Lemma 9), and 
on
lude by playing from v2to v1. In 
ases (b) and (d), we have 
 = z. Just follow the moves on the�gure as soon as they are possible.20
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Figure 17: 1-redu
tion of K3�K2�K2
From all these results, we 
an dedu
e the following theorem about Hamminggraphs.Theorem 12. Any Hamming graph that is neither K2�K3 nor an hyper
ubeis strongly 1-redu
ible.Note that K2�K3 is 1-redu
ible for any 
oloration, and is also strongly 1-redu
ible joker.Referen
es[1℄ Mi
hael H. Albert, J. P. Grossman, Ri
hard J. Nowakowski, and David WolfeAn introdu
tion to Clobber. Integers 5 (2005)[2℄ Erik D. Demaine, Martin L. Demaine, and Rudolf Fleis
her Solitaire Clobber.Theor. Comput. S
i. 313 (2004), 325-338.[3℄ L. Beaudou, E. Du
hêne, L. Faria and S. Gravier Solitaire Clobber playedon graphs. Submitted[4℄ Ivars Peterson Getting Clobbered.S
ien
e News 161 (2002), http://www.s
ien
enews.org/arti
les/20020427/mathtrek.asp

21


