
Reducing asynchrony to synchronized rounds

Cezara Drăgoi1 and Josef Widder2

1 INRIA, ENS, PSL, France
2 TU Wien, Austria

Abstract. Synchronous computation models simplify the design and
the verification of fault-tolerant distributed systems. For efficiency rea-
sons such systems are designed and implemented using an asynchronous
semantics. In this paper, we bridge the gap between these two worlds.
We introduce a (synchronous) round-based computational model and we
prove a reduction for a class of asynchronous protocols to our new model.
The reduction is based on properties of the code that can be checked with
sequential methods. We apply the reduction to state machine replication
systems, such as, Paxos, Zab, and Viewstamped Replication.

1 Introduction

Fault-tolerant distributed systems provide a dependable service on top of
unreliable computers and networks. Fault tolerance protocols ensure that
the unreliable replicas are perceived as a single reliable component from
the outside. This intuition has been formalized under terms like strong
consistency, consensus, and state machine replication, and has been ad-
dressed by distributed algorithms for atomic broadcast, atomic commit-
ment, or primary-backup.

Designing such systems is a hard and error-prone task. The designer
has to anticipate faults, concurrency, and asynchrony due to different pro-
cessing speeds and network delays. While a clear programming abstraction
like synchronized rounds [4] would relieve the designer from many of these
challenges, it is well-understood that synchronous distributed systems, are
often “impossible or inefficient to implement” [20, p. 5]. Hence, designers
turn to the asynchronous model, in which the performance emerges [17]
from the current load of a system, which in normal operation entails signif-
icant better performance. To get the best of the synchronous and the asyn-
chronous worlds, partially synchronous models have emerged [9,4,12] that
allow us to reason in synchronous semantics, and capture asynchrony in
an abstract way. The central design paradigm is to always ensure safety—
even if the networks behaves bad temporarily—and to ensure liveness in
good periods.

ar
X

iv
:1

80
4.

07
07

8v
1

 [
cs

.P
L

]
 1

9
A

pr
 2

01
8

The probably best-known algorithmic ideas that ensure state machine
replication on top of a partially synchronous system are Paxos [16] and
Viewstamped Replication [24]. These ideas have been implemented in sev-
eral systems, e.g., [14,22,25,23,15].

Verification of these asynchronous systems is in general undecidable.
Finding classes of distributed that can be verified is major research chal-
lenge. Currently most approaches that address this problem are based
on interactive theorem provers [31,18,29,13,28,26]. These methods require
expertise in the tools, and changing details in the system design or code
entail considerable manual effort in adapting existing proofs. On the con-
trary, automated verification of round-based (synchronous) distributed
algorithms has recently made great progress [21,7,30,1]. The enabler for
these techniques is the observation that instead of considering all local
states that are the result of interleavings in asynchronous systems, for
the verification of distributed systems, it is sufficient to reason about the
global state at the boundaries between rounds, which simplifies drastically
the proof arguments. Therefore we believe that the difficulty in automat-
ing the verification of distributed asynchronous systems comes from the
lack of suitable abstractions when we reason about their behaviors.

Contributions. This paper introduces a new round-based (synchronous)
model that truthfully captures relevant asynchronous distributed proto-
cols for strong consistency. In order to achieve this, we address the follow-
ing challenges.

1. We identify a class of asynchronous programs that have an “equivalent”
(a term that we make precise) synchronous round-based semantics,
namely communication-closed programs. While this notion has been
originally introduced for CSP [10], its message-passing correspondence
requires that a message that process i sends to j when i is in round r,
is received by j only at a time when j is in its round r. We introduce a
characterization in terms of local variables, so that it can be checked
by sequential techniques. Examples of communication-closed asyn-
chronous programs and algorithms include Zab[14], Raft [25], view-
stamped replication [24] Paxos [16], atomic broadcast [2].

2. We prove a reduction theorem for such asynchronous programs follow-
ing the idea of [10]. In contrast to Lipton’s reduction [19], where one
proves that actions in an execution can be moved in order to get a sim-
ilar execution with large atomic blocks of local code, for distributed
algorithms one proves that one can group together the round r send
events of all processes, then the round r receive events of all processes,

2

and then all round r computation steps, for all rounds r in increasing
order. In this way, an asynchronous execution corresponds to a syn-
chronous (round-based) one where all processes simultaneously send
round r messages, before they receive round r messages, etc. This
reduction maintains local properties [3], that is, a fragment of LTL
specifications that are tolerant to local stuttering.

3. To exploit communication closure, we require the system designer
to annotate the program with tags that capture the rounds. Given
that designers typically have and intuitive understanding of rounds—
which is demonstrated many figures similar to Fig. 2 in work on such
systems—this task does not require too much effort by the designer.

4. We extend the Heard-Of Model [4] (HO model for short) by intro-
ducing a compositional semantics. By this we address the control flow
of programs that implement state machine replication. For instance,
in Paxos [16] processes execute a sequence of independent agreements
each with the goal of agreeing on what to write in the next element of
a growing list of ballots. By compositional reasoning, the code that im-
plements the agreement should be encoded and verified independently
of the code that captures the move from one ballot to the next.

5. We define a re-writing procedure that, given an annotated program,
produces an algorithm in the HO model, which paves the way for
round-based verification. By separation of concerns, we relieve ver-
ification of local properties from the complications that are due to
asynchrony.

Comparing with verification techniques that investigate alternative
synchronous semantics [5,6], we fix not only semantically but also syntacti-
cally a synchronous computational model, and we define code annotations
that capture its structure and are locally expressible and checkable.

2 Round-based compositional model

We introduce CompHO, a compositional extension of the HO model [4].
The HO model was introduced to model one-shot algorithms, while the
systems discussed here require calls to multiple instances. Thus, an al-
gorithm in CompHO consists of an interface and several machines, each
defining a distributed procedure, with a main machine as entry point. The
interface defines operations used to communicate with an external client.

3

1 Zab-Discovery
2 def init(){
3 leader := leader()}//oracle
4 def round Curr_E:
5 SEND cepoch to leader
6 UPDATE(Mbox)
7 if leader and |MBox(p)| > n/2
8 lab := New_E
9 newepoch := max of vals ∈ Mbox

10 def round New_E:
11 if lab = New_E SEND newepoch to all
12 UPDATE(Mbox)
13 if rcvd newepoch from leader
14 cepoch := newepoch; lab := Ack_E
15 def round Ack_E:
16 if (lab = Ack_E) SEND (log) to leader
17 UPDATE(Mbox)
18 if (leader and |Mbox|> n/2)
19 newlog := max history in Mbox
20 lab := New_L
21 if (!leader && lab=Ack_E) lab := New_L

22 def round New_L:
23 if (lab = New_L and leader) SEND nlog

to all
24 UPDATE(Mbox)
25 if lab = New_L and newlog ∈ Mbox
26 log := newlog; lab := Ack_L
27 def round Ack_L:
28 if lab = Ack_L SEND Ack_L to leader
29 UPDATE(Mbox)
30 if (leader && MBox(p)>n/2) lab := Cmt
31 if(!leader && lab = Ack_L) lab := Cmt
32 def round Cmt:
33 if leader && lab = Cmt
34 SEND commit to all
35 UPDATE(Mbox)
36 if (lab = Cmt and leader in MBox)
37 for each zvid<i<log.size out(log[i])
38 xviz := log.size
39 log := broadcast (log, leader)
40 leader = leader()

Fig. 1: Zab-HO: Zab in CompHO

New_E

Ack_E

Cmt

Curr_E

New_L

Ack_L

Leader discovery Synchronisation

i
n
(
v
)

Prp Ack_PCmt

o
u
t
(
v
)

Broadcast

New_E@14

Cur
r_E

@5

Ack_E@21

Curr_E
@5

New_L

Curr_E@5

Curr_E@5

New_E

Ack_E

Cmt

Curr_E

New_L

Ack_L Curr_E

New_E

Fig. 2: Executions of Zab-HO.

We start by giving the adapta-
tion of Zookeeper’s atomic broad-
cast protocol [14] in CompHO in
Fig. 1 as example. The proto-
col solves ensures that all replicas
store multiple requests issued by a
client in the same order in a local
log. Zab-HO consists of two types
of CompHOmachines: Discovery,
the main machine, and Broadcast
(that we omit for presentation rea-
sons). Discovery iterates over so-
called epochs and implements leader election in each epoch. A leader
identity is suggested to each process by an oracle leader(). As differ-
ent processes may receive different suggestions, several rounds of message
exchange shall ensure that (i) there is at most one leader, and (ii) it has
a majority of followers: In the first round Curr_E, processes send their
epoch number, i.e, cepoch, to their leader. If a process believes that it is
the leader and has received a majority of messages, it picks the biggest
one of them. Next, in New_E, a process who believes that it is the leader
tries to impose the chosen value to a majority of processes, by sending
newepoch to them. The Discovery protocol then continues in ping-pong
fashion. In the first execution in Fig 2 only the first two processes en-

4

ter Broadcast although initially all processes participate in the leader
election.

An established leader and its followers execute a Broadcast for this
epoch. Processes that do not agree on the leader skip forward to the
next epoch. In Broadcast the leader accepts requests from the client, and
broadcasts them to the replicas. If a process loses connection to its leader,
it returns to Discovery for the next epoch leader election.
Syntax. Similar to the classic HO model, each CompHO-machine is com-
posed of a set of local variables, an initialization operation init, and a
non-empty sequence of rounds, called phase. Each process executes in a
loop the sequence of rounds defined by the phase. Rounds are commu-
nication closed, that is all messages not received within the same round
are lost. Each round is composed of a send function, that sends messages,
followed by an update function, which modifies the local state of a process.

A CompHO-machine differs from the classic HO model in the update
function. A process may call another machine and block until the other
machine returns. An update may call at most one machine on each path
in its control flow. (A sequence of calls can be implemented using multiple
rounds.) Due to branching, only a subset of the processes may make a call
in a round. We denote a set or processes that call the same machine by A
(active). For the main machine, A is the entire set of processes.

The init and send operations are assumed to terminate within a
number of steps that depends on the number of processes and the input
values of the initialization function. The same holds for update unless it
calls another machine in which case its termination is predicated by a ter-
mination of the called machine. Within the called machine, the statement
out_internal marks the end of computing locally the returned values,
and their return to the caller. The computation of the called machine
continues until the instruction exit is reached.
Lockstep semantics. Each process has a variable interpreted over sets of
processes, called the HO-set that captures asynchrony and faults. The
messages received by a process p in round r, are the messages that were
sent to p by the processes in its HO-set. At the beginning of each round,
HO-sets are non-deterministically modified by the environment.

Assuming a finite, non-empty set of n processes P , the state of a HO
machine is represented by the tuple 〈SU, s, r,msg,A,HO〉 where: SU ∈
{Snd, Updt} indicates if the next operation is send or update; s ∈ [P →
V → D] stores the process local states; r ∈ N is the counter for the
executed rounds; msg ⊆ 2P,T,P stores the messages which are in transit,
where T is the type of the message payload; A ⊆ 2P stores the processes

5

Start
init()−→ s(p)

∗
∅,{initp()|p∈P}

−→ 〈Snd, s, 0, ∅, P,HO〉

Return
∀p ∈ A. out_internal 6= ⊥

∀p ∈ A. caller.po(p) = callee.po(p)

Init
A = {p|caller.inHO(p) = callee_name}

∀p ∈ P.caller.inHO(p) 6= ⊥

∀p ∈ A. ∗ init(caller.pi)−→ s(p)

∗
∅,{initp(pi)|p∈A}

−→
〈
Snd, s, 0,
∅, A,HO

〉
Send

∀p ∈ A. s(p)
phase[r].send(mp)−→ s(p)

msg = {(p, t, q) | p ∈ P ∧ (t, q) ∈ mp}〈
Snd, s, r,
∅, A,HO

〉
{sendp(mp)},∅−−−−−−−−−−→

p∈A

〈
Updt, s, r,
msg,A,HO′

〉
Update

∀p ∈ A. mboxp = {(q, t) | (q, t, p) ∈ msg ∧ q ∈ HO(p)}

∀p ∈ A. s(p)
phase[r].update+(mboxp)),op−→ s′(p)

r′ = r + 1 ∀p ∈ A.inHO(p) = ⊥ O = {op | p ∈ A}

〈Updt, s, r,msg,A,HO〉
{updatep(mboxp)|p∈A},O

−→
〈
Snd, s′, r′, ∅, A,HO

〉
Fig. 3: CompHO semantics.

which are started the current machine; HO ∈ [P → 2A] evaluates the
HO-sets for the current round.

The semantics is shown in Figure 3. Initially the system state is un-
defined, denoted by ∗. The first transition calls the init operation of
the main HO machine on all processes (see Start in Fig. 3), initializ-
ing the state: The round is 0, no messages are in the system. An exe-
cution alternates Send and Update transitions. In the Send step, all
processes send messages, which are added to a pool of messages msg,
without modifying the local states. The values of the HO-sets are up-
dated non-deterministically by the environment to be a subset of A. In an
Update step, messages are received and the update operation is applied
in each process. A message is lost if the senders identity does not belong
to the HO set of the receiver. The set of received messages is the input of
update. The update operation might produce an observable transition op.
At the end of the round, msg is purged and r is incremented by 1.
Synchronized HO machine calls. Locally, os some process p, the seman-
tics of HO-machine calls is defined as for procedure calls, where the
call of process p is synchronized with the init operation of the callee
on p (matching the values of the input parameter), and the instruction
out_internal returns the values computed by the callee. Globally, the
INIT rule defined in Fig. 3, forces all processes calling the same machine in
the same round, to perform their init operation synchronously. Similarly
the RETURN rule ensures that all returns from the same HO-machine
happen synchronously.

6

To express global synchronization the rules use two auxiliary variables
inHO and outHO. inHO takes values in the set of machine names, #, or nop.
A call to a machine sets the inHO variable to the name of that machine. If
by the last statement of update, no machines where called by the process,
the semantics of the last statement sets inHO to nop. For each called
machine, the set of processes A that have called it is set in the init
operation according to the information in the inHO variables of its caller
(see Fig.3 INIT).

The variable outHO takes values in {⊥, done} where ⊥ which is its
initial value. Per process, outHO changes value only once during the exe-
cution of an HO-machine, when the instruction out_internal is reached.
For a HO machine call to return to its caller, all processes that made the
call must have set outHO to done (see Fig.3 RETURN).

Definition 1 (HO semantics). Given an HO protocol P and a non-
empty set of processes P , the semantics of P, denoted by JPK, is defined
by the set of executions of the transition system in Figure 3.

Environment assumptions. Strong consistency problems, such as, primary
backup, are not solvable in asynchronous networks with faults [11]. There-
fore, algorithms make assumptions on the network and the faults in order
to progress, given typically in english. The HO model enables their for-
malization by LTL formulas over the HO sets. For example, Zab-HO, is safe
under any network assumptions but for progress requires that infinitely
often there exists a sequence of six rounds, corresponding to a phase of
Discovery followed by a phase of Broadcast where the HO-set leader is
greater then n/2. The execution prefix in Fig. 2 satisfies this property,
while the one in Fig. 5 does not.

3 Building HO-machines from asynchronous protocols

We define a procedure that builds a CompHO-machine from an asyn-
chronous protocol. First we fix a class of asynchronous protocols in Sec. 3.1.
In Sec. 3.2 we characterize asynchronous protocols that have an equivalent
CompHO semantics. Finally in Sec. 3.3 we define a code-to-code rewriting.

3.1 Asynchronous systems

We consider distributed systems where all processes execute the same
code (modulo process identifiers). The code uses local variables, denoted
Vars, which are separated into algorithm variables AVars, evaluated over

7

1 p := ⊥ a := ⊥ h := <> zvid := ⊥
2 while (true){//@lab,p
3 leader := leader()
4 lab := Curr_E
5 send (p,lab) to leader
6 if (leader){ mbox := ∅
7 while(|mbox|<n/2 && !retry){
8 mbox := ∪ receive _Curr_E(m,p))
9 retry := {T/F}}

10 if (retry) continue;
11 Q := mbox.senders
12 p = max({m.1| m ∈ mbox}) + 1
13 lab = New_E
14 send (p,lab) to Q
15 }

16 lab := New_E
17 mbox := receive _New_E(leader,p)
18 if (mbox = ∅) continue
19 p := mbox.m.1
20 lab := Ack_E
21 send (lab,p,a,h) to leader
22 if(leader){ mbox := ∅
23 while(|mbox|<n/2 && !retry){
24 mbox := ∪ receive _Ack_E(Q);
25 retry := {T/F}}
26 if(retry) continue
27 h := max(mbox.payload)
28 Q := mbox.senders
29 lab := New_L
30 send (lab,p,h) to Q
31 }

Fig. 4: Asynchronous Zab

values of basic data types, e.g., enumerate, int, int∗, and reception vari-
ables RVars, evaluated over sets/arrays of values of record types, where
the record types corresponds to message payload types. The latter record
types are denoted by T. Given a variable m of type T ∈ T, m.j denotes the
jth component of the record type T. The protocol defines an interface for
the communication with the client, denoted in the following in, out.

.

Fig. 4 shows an extract from Zab-HO Discovery in Fig 1. Like in the
HO version, processes send their current epoch number p, to the leader
defined by an oracle. A leader waits for n/2 messages and sets its epoch
number p, to the maximum received value (Lines 6-12). Then, a leader
sends the new epoch number to all the processes it received messages from
(the Quorum Q)(Line 13). The code is structured in two loops, the outer
one implementing the leader election algorithm, and an inner where the
previously established leader starts accepting new requests. The remainder
of the code is similar and therefore not given in Fig. 4.

New_E@14

Cur
r_E

@5

Ack_E@21

Curr_E
@5

New_L

Curr_E@5

Curr_E@5

New_E

Ack_E

Cmt

Curr_E

New_L

Ack_L Curr_E

New_E

Fig. 5: Executions in Zab.

The time-out for waiting for
a message is captured by the
non-deterministic assignment to
the variable retry. When a fol-
lower does not receive a message
from the leader, it skips to the
next iteration of the loop (trying
to elect another leader). Similarly, the leader jumps to the next iteration
if it does not receive enough messages. Fig 5 shows such a behavior.

8

Send
p

send(ms)−→ p′ msg′ = {(p,m, q) | (m, q) ∈ ms} ∪msg

〈p,msg〉
{sendp(ms)},∅−→

〈
p′,msg′

〉
Receive

m ∈ msg

m.receiver = p p
receive(m)−→ p′ p |AVars∪RVars= p′|AVars∪RVars msg′ = msg \m

〈p,msg〉
{receivep(m)},∅

−→
〈
p′,msg′

〉
Mailbox

Mbox ∈ RVars

p
write(Mbox)−→ p′

p |AVars= p′|AVars

〈p,msg〉 {write(Mbox)},∅−→
〈
p′,msg

〉
Statement1

p
stm,∅−→ p′

〈p,msg〉 {stm},{∅}−→
〈
p′,msg

〉
Statement2

p
αp−→ p

〈p,msg〉
{},{αp}−→ 〈p,msg〉

Parallel Composition
P ′ ⊆ P

msg =]p∈P ′msgp msg′ = ∪p∈P ′msg′p I = ∪p∈P ′I ′p O = ∪p∈P ′O′
p

∀p ∈ P \ P ′. s(p) = s′(p) ∀p ∈ P ′. 〈s(p),msgp〉
Ip,Op−→

〈
s′(p),msg′p

〉
〈s,msg〉 I,O−→

〈
s′,msg′

〉
Fig. 6: Semantics of asynchronous protocols. Parallel Composition is
defined over global states. All the other rules are defined over local states.

The semantics of receive(see Fig. 6) allows any message to be re-
ceived, modulo a check on the receiver’s identity. However, all programs fil-
ter the received messages, w.r.t. their payloads. For example, the receive
at line 8 in Fig. 4 waits for messages of type (int, enum) where the first
component equals Curr_E. We assume that these filters only read the algo-
rithms variables. Also, we assume that when a process waits for multiple
messages, it does it in a reception loop, where only the reception variables
are written (lines 7-9). The only message payloads that can be read by
the algorithms variables are those stored in the reception variables. More
precisely, we assume that locally a processes goes through the following
sequence of transitions Statement∗(Send∗ (Receive Mailbox)∗ Statement∗)∗,
whose semantics is given in Fig. 6.

Formally, the state of a protocol P is a tuple 〈s] sb,msg〉 where:
s ∈ [P → Vars ∪ Loc→ D] is a valuation of the variables in P where the
program location is added to the local state; sb is a local buffer used to
store delivered but unused messages; msg ∈ [T→ (P,T, P,N)→ N] is the
multiset of messages in transit. Fig. 6 defines the local transition system
of a process, and the system semantics which is the asynchronous parallel
composition of the local transition systems.

9

The Send rule states that the messages sent by a process are added
to the global pool of messages msg. The Receive rule defines message
reception. It affects only the message buffers and auxiliary variable (which
are scoped in the reception loop). The Mailbox rule defines a write to a
reception variable, denoted Mbox. All the other statements have the usual
semantics. The rule Statement1 says that statements corresponding to
interface operations, denoted αP , do not modify the local state, while
Statement2 says that all the other statements have the usual semantics.
While we omit the rules that describe the fault model, we consider that
processes, do not recover, and crashed process do not modify the global
state. Messages can be duplicated and dropped by the network.

The set of executions of a protocol P, denoted by [[P]], is the set of
executions of the transition system in Fig. 6.

3.2 Reduction

We introduce conditions over the local executions of a protocol, and prove
them to be sufficient to have an "equivalent" (indistinguishable) Com-
pHO–semantics. We start by defining relations over executions; first the
causality relation: Given a protocol P and an execution π ∈ [[P]], two tran-
sitions t1 and t2 are causally ordered in π, denoted t1 <π t2, if they are
ordered by the local program order, or if t1 is a send and the message sent
in t1 is written in the mailbox of the process that executes the receieve t2.

Definition 2 (Indistinguishability). Given two executions π and π′ of
a protocol P, a process p cannot distinguish locally between π and π′, w.r.t.
a set of variablesW , denoted π 'Wp π′, iff the projection of both executions
on the sequence of states of p, restricted to the variables in W , agree up
to finite stuttering, denoted, π�p,W≡ π′�p,W .

Two executions π and π′ are indistinguishable, w.r.t. a set of variables
W , denoted π 'W π′, iff (1) no process can distinguish between them, i.e.,
∀p. π 'Wp π′, and (2) the causality order between send and receives is the
same in both executions.

We consider protocols where the local execution of each process i goes
through a sequence of layers L1

i , L
2
i , . . . , so that inter-process communi-

cation occurs only within the layer, i.e., for processes i and j, if i in layer
Lki sends a message to j, then j “receives” the message in layer Lkj , a.k.a.,
communication closed layers [10]. We consider this “receive” operation as
a local action that takes a message that is delivered to the process as
input, and determines based on the state of the process whether the mes-
sage should be dropped, or its content should be written to some variable

10

of the process. Dismissing old messages is implicitly done in all the state
machine replication protocols we are aware of. However, many algorithms
react on messages from “future” rounds, that is, if a process is in layer k
and receives a message from a process in layer k′ > k, then it concludes
that its local computation is behind the local computation of other pro-
cesses, so that it skips forward to k′. In our theory, this behavior does not
break communication closure as long as the receptions are followed by a
local transition that skips forward to that layer. We shall prove that a
protocol of that structure have an indistinguishable CompHO-semantics,
where an HO round corresponds to a layer.
Tag annotations. In the systems we consider, we observed that layers
are uniquely identified by values of a subset of the protocol’s variables,
and the layers order coincides with the lexicographic order on the product
of the domains of these variables. Thus, we introduce tag annotations,
that

1. associate each control location with a subset of (algorithm) variables,
postulating that the values of those variables define the layer where
the execution of the corresponding instruction belongs to, and

2. map each message type to some of these variables, postulating that
each message sent or received is tagged with the layer it belongs to.

Definition 3 (Tag annotation). Given a protocol P, a tag annotation
is a tuple (SyncV,≺, tags, tagm) where:

– SyncV is a subset of the protocols variables and ≺ is a total ordered
over SyncV,

– tags : Loc→ 2SyncV, is a function that annotates each control location
with variables in SyncV, and

– tagm : T→ [T
injective
⇀ SyncV] is an injective partially defined function,

that maps a component of a record type T to a variable in SyncV of
the same type.

The evaluation of a tag over P’s semantics is ([[tags]], [[tagm]]), where

– [[tags]] : Σ → [SyncV→ D], is a function over the set of local process
states, Σ =

⋃
s∈[[P]]

⋃
p∈P s(p), defined by [[tags]]s = (v1, . . . , v|SyncV|),

with vi = [[xi]]s if xi ∈ tags([[pc]]s) otherwise vi = ⊥, where xi is the ith

variable in SyncV w.r.t. ≺, and pc is the program counter.
– [[tagm]] : T → T → [SyncV → D ∪ ⊥] is a function that for any value
m = (m1, . . . ,mt) of record type T associates a tuple [[tagm]]m:T =
(v1, . . . , v|SyncV|) with

11

• vi = mj if xi = tagm(T)(j), where xi is the ith variable in SyncV

and tagm(T)(j) is the mapping of the jth component of the record
type T,

• vi = ⊥, otherwise.

For our example Zab, the natural tag annotation associates all control
locations of the outer loop with p, the epoch number, and lab, a label, with
p ≺ lab. Filtering out the message payload, messages of type (int, enum)
and (int, enum, int∗) are mapped to (p, lab,⊥,⊥) (its a quadruple be-
cause the inner loop that executes broadcast is also annotated by two dif-
ferent variables). A message m = (3, Curr_E) is evaluated by tagm into
(3, Curr_E,⊥,⊥). tags(@8) in a state s evaluates into (3, Curr_E,⊥,⊥)
is the value of the variable p is 3 in s. Note that Curr_E is the only value
lab can take at location @6. In the CompHO a layer corresponds to the
phase and the round number. Therefore each program location should
be annotated with an even number of variables. Intuitively, instructions
tagged with the same variables belong to the same machine. In case of
nested machine calls, the code belonging to called machine is annotated
also with the phase and number of its caller.

We now characterize tag annotation tag that we will prove to identify
communication closed protocols.

Definition 4 (Synchronization tag). Given a program P, an annota-
tion tag (SyncV, tags, tagm) is called synchronization tag iff:

(I.) for any local execution π = s0A0s1A1 . . . ∈ [[P]]p of a process p in
the semantics of P, [[tags]]s0 [[tags]]s1 [[tags]]s2 . . . is a monotonically
increasing sequence of tuples of values w.r.t. the lexicographic order.

(II.) for any local execution π ∈ [[P]]p, if s
send(p,m)−→ s′ is a transition of

π, with m a value of some record type, then [[tags]]s = [[tagm]]m and
[[tags]]s = [[tags]]s′.

(III.) for any local execution π ∈ [[P]]p, if s
receive(m,p);write(Mbox)−−−−−−−−−−−−−−−→ s′, is a

transition of π, with m a value of some record type, then
– if m ∈ [[Mbox]]s′ then
• [[tags]]s ≤ [[tagm]]m if tagm(T, [[pc]]s) totally defined,
• [[tags]]s = [[tagm]]m, otherwise.

– m 6∈ [[Mbox]]s′ , s = s′

(IV.) for any local execution π ∈ [[P]]p, if s
stm→ s′ is a transition of π with

[[tags]]s < [[tagm]]([[Mbox]]s) then [[tags]]s′ = [[tagm]]([[Mbox]]s), where
[[tagm]]([[Mbox]]s) = max{[[tagm]]m | m ∈ [[Mbox]]s}.

12

If an annotation tag is a synchronization tag, the variables that anno-
tated the protocol are called synchronization variables.

Condition (I.) states that the variables incarnating the layer numbers
are not decreased by any local statement. Condition (II.) states that any
message sent is tagged with a layer number that coincides with the layer
of the current state. Condition (III.) states that any message received and
stored is tagged with a layer number greater or equal than the current layer
of the process. If a message contains more than a layer number, its tag
must coincide with the tag of the state where it is received. Finally, (IV.)
states if messages from future layers are stored by a process in its reception
variable, any statement that is executed once the reception is over must
make the process jump to the maximal layer it received a message from.
Reductions. In the following we will denote by Si a global state and by
si(p) the local state of process p in the global state Si. In several steps,
we are going to reduce an asynchronous execution ae to an HO execu-
tion se in which all processes go through the same sequence of states
(ignoring the variables where messages are stored). The first reduction
considers the receive statements. If the local execution is of the form
π = . . . spi , receivei, s

p
i+1, receivei+1, s

p
i+1, . . ., in the asynchronous execu-

tion, the two receive actions can be interleaved by actions of other pro-
cesses. Following the theory by Lipton [19], all receive statements are
right movers with respect to all other operations of other processes, as
the corresponding send must always be to the left of the receive. In this
way, we reduce an asynchronous execution to one where local sequences
of receives appear as block. By the same argumentation, this block can
be moved right until the first stm action of this process. We thus get an
asynchronous executions with blocks that consist of several receives (pos-
sibly just one receive) followed by stm. We will subsume such a block by
a single (atomic) action Receive, and by abuse of notation use the same
symbol [[P]] for asynchronous semantics with the atomic Receive.

Lemma 1. Given a program P if there is a synchronization tag (tags, tagm)
for P, then ∀ae ∈ [[P]], if ae = . . . Si−1, A

p
i , Si, A

q
i+i, Si+i . . ., and [[tags]]si(p) >

[[tags]]si+1(q), then ae′ = . . . Si−1, A
q
i+i, S

′
i, A

p
i , Si+i . . . ∈ [[P]]. Further ae′, ae

are indistinguishable w.r.t. all protocol variables, i.e., ae′ ' ae′.

Proof. From (I.) follows that p 6= q, so that swapping cannot violate the
local control flow. As p 6= q, if Aqi+i is a send or a stm, the action at p has
no influence on the applicability of Aqi+i to Si. The only remaining case is
that Aqi+i is a Receive. Only if Api sends a message m that is received in

13

Aqi+i, A
q
i+i cannot be moved to the left. We prove by contradiction that

this is not the case: By (II.), [[tags]]si(p) = [[tagm]]m. By (III.) and (IV.),
and the atomicity of Receive, [[tags]]si+1(q) = [[tagm]]m. Thus, [[tags]]si(p) =
[[tags]]si+1(q) which provides the required contradiction to the assumption
of the lemma [[tags]]si(p) > [[tags]]si+1(q).

The statement on indistinguishability follows from the reduction. ut

By inductive application of the lemma, we obtain an asynchronous ex-
ecution ae′ = . . . Si−1, A

p
i , Si, A

q
i+i, Si+i . . ., where for each i and any two

processes p and q, [[tags]]si(p) ≤ [[tags]]si+1(q). The asynchronous execu-
tion ae′ is thus a decomposition of ae into layers. We now do a reduction
within the layers. The local code within each layer is structured in that
first are send, then Receive, and then other statements. By the arguments
from [3], the send actions are left movers with respect to all other oper-
ations, Receive actions are left movers with all statements except sends.
We thus obtain ae′′ where within a layer all send actions come before all
Receive actions, which come before all other actions. As in [3], we can
now subsume all send actions within a layer to a global send step in the
layer. The same we do for receive actions. As it is sufficient to check states
only when the tags change, we also subsume the other actions. We thus
obtain a synchronous execution se, where the messages received in a Re-
ceive statement correspond to the HO sets; if a process did not receive a
messages this corresponds to an empty HO set which results in skipping
this round. As observed in [3], such a reduction maintains local properties
that are sufficient to express specifications of, e.g., replicated state ma-
chines. Fig. 5 shows an asynchronous execution that is indistinguishable
from the second HO execution in Fig. 2.

Theorem 1. Given a program P if there exists a synchronization tag
(tags, tagm) for P, then ∀ae ∈ [[P]] there exists an indistinguishable exe-
cution that belongs to the HO semantics.

Local properties are those that are tolerant to local stuttering. Indis-
tinguishability is an equivalence relation over traces, and local properties
are closed under indistinguishability. They have been formalized in [3,8].

Theorem 2. If there exists a synchronization tag (SyncV, tags, tagm) for
P, then ∀ae ∈ [[P]] there exists an HO-execution se that satisfies the same
local properties.

Given an annotation tag, our conditions from Definition 4 can be
checked on the local code. They translate into assert statements and tran-
sition invariants over the reception and synchronization variables.

14

3.3 Code to code translation

Theorem 1 ensures that communication closure preserves local behaviors
under reduction, but does not formally imply a code to code transla-
tion. We introduce a rewriting algorithm make-HO, that takes as input a
protocol P annotated with a tag (SyncV,≺, tags, tagm) and produces a
CompHO-machine HO(P) that preserves all local behaviors, or aborts.

The rewriting make-HO tries to generate an HO machine for each loop,
where in the case of nested loops, the machine associated with the outer
loop calls the machine associated with the inner loop. For this, the tag-
ging function must define two unique synchronization variables for each
loop, corresponding to the phase and the round number of the machine
associated with the loop. An inner loop will be annotated also with the
synchronization variables of its outer loops. If this is not the case the al-
gorithm aborts. To match loop iterations with phases of an HO machine,
the variable representing the phase number must be increased in each it-
eration, otherwise the rewriting procedure aborts (if phases expend over
loop iterations more involved analysis is required to identify them. How-
ever we did not encountered an example to motivate us to explore this).
For the programs we have rewritten, this check was trivial as the required
variables are explicit in the code.

We now split a loop body to rounds. Let us fix a loop in the following. If
the round variable does not take values in a bounded domain the rewriting
aborts. Otherwise, let l1, . . . , lk be the values round can take, with li < lj
iff i < j. The rewriting needs a marking of the control locations where
the round variable change values (from the definition of a tag the value
can only increase). This marking corresponds to the rounds switch points.
Again this was immediate to identify on our examples, because messages
are tagged with labels from a finite domain (e.g., Curr_E, and cepoch),
defining the exact values of the rounds. If the round variable changes
values more than k times in a loop body the rewriting aborts (one loop
iterations goes over multiple phases). With this marking, make-HO now
takes care of the branching within the loop body:
Decomposing branches into code for rounds. For each path π in the loop
body, make-HO computes a partition Rπ of its program locations. Each
R ∈ Rπ contains code for one round, i.e., a sequence of locations starting
at the next location after a marked control location, and ending either at
the next marked location, or at the end of the loop body. For simplicity,
we assume each element of these partitions contains at most one send
instruction (possibly a “send to all” instruction) and at most one reception

15

loop. These partitions are totally ordered, by the order over the program
locations in the control flow graph.
Constructing a round from paths in Rπ Let us first assume that along
each path there is code for each round, i.e., the partition associated with
each path is of size k. Then, any element R of Rπ, for any path π, maps
uniquely to values in {l1, . . . , lk}. make-HO groups all Rπi ∈ Rπ, for all π,
into a global round li as follows:

Send. First, the global send operation of round li is a sequence of if
statements, one for each path π, each ending with the send operation
in Rπi , if present. (The conditions condπ in the if of a send are built
as in the case of update except (3), see below).

Receive. In eachRπi , make-HO replaces the reception loop with one atomic
check over the received set of messages: while(cond && !retry)
{ m=receive (); if(m ..) mbox := ..} is replaced with the HO
instruction if (!cond).

Update The update operation of round li, has one if statement per path
π, whose condition condπ is (1) the round variable equals li, (2) the
conjunction of all conditions on the path π from the loop entry to the
first instruction of Rπi , and (3) the condition on the received messages
from the reception loop. The code on the if branch of this conditional
is the sequence of statements after the reception loop in Rπi .

If there is no code for each round in each path, then there are two
cases. If this is due to a continue statement—some rounds are skipped
over— this encodes implicit branching. In this case the missing code can
be filled with no-ops. If this is not the case make-HO aborts.

Theorem 3. Given an asynchronous program P annotated with a tag-
ging function (SyncV,≺, tags, tagm) if the algorithm make-HO applied P
returns an HO machine HO(P), then the executions of HO(P) are indis-
tinguishable from the executions of P, w.r.t. the algorithm variables, and
HO(P) preserves all the local properties of P.

4 Conclusion

Current verification techniques for state machine replication (local prop-
erties) are monolithic from the verification perspective, i.e., they apply
general purpose verification techniques to selected protocols. For instance,
IronFleet [13] uses mechanized proofs and IVY uses encodings in exten-
sions of EPR [27]. In search for modular verification, we distinguish two

16

approaches: the ones based on the atomic objects abstraction [32], that
use verification techniques developed for shared memory for distributed
systems, and the ones based on synchronous abstractions [5,6,8]. We chose
to explore synchronous abstractions because they match the intuition of
the system designers, and we are interested in exploring domain-specific
verification techniques for distributed systems. Thus, we have introduced
conditions on the local code that ensure the existence of an equivalent
synchronous semantics. Future works consists in automating the reduction
scheme we introduced using automated verifiers like IVY [27] or CL [7].

One aspect of such distributed systems is recovery: a process that is
late can asks the leader at any time for the latest state. This communi-
cation is not closed as considered in this paper. However, recovery has
no clear specification and has no impact on the qualitative (safety and
liveness) specification of the system; it is a matter of performance. We
thus suggest that recovery should be verified independently from the ver-
ification of the running system, and leave this challenge for future work.

References

1. Benjamin Aminof, Sasha Rubin, Ilina Stoilkovska, Josef Widder, and Florian
Zuleger. Parameterized model checking of synchronous distributed algorithms by
abstraction. In VMCAI, pages 1–24, 2018.

2. Tushar Deepak Chandra and Sam Toueg. Unreliable failure detectors for reliable
distributed systems. J. ACM, 43(2):225–267, 1996.

3. Mouna Chaouch-Saad, Bernadette Charron-Bost, and Stephan Merz. A reduction
theorem for the verification of round-based distributed algorithms. In RP, volume
5797 of LNCS, pages 93–106, 2009.

4. Bernadette Charron-Bost and André Schiper. The heard-of model: computing in
distributed systems with benign faults. Distributed Computing, 22(1):49–71, 2009.

5. Ankush Desai, Pranav Garg, and P. Madhusudan. Natural proofs for asynchronous
programs using almost-synchronous reductions. In Andrew P. Black and Todd D.
Millstein, editors, Proceedings of the 2014 ACM International Conference on Object
Oriented Programming Systems Languages & Applications, OOPSLA 2014, part of
SPLASH 2014, Portland, OR, USA, October 20-24, 2014, pages 709–725, 2014.

6. Ankush Desai, Sanjit A. Seshia, Shaz Qadeer, David Broman, and John C. Eidson.
Approximate synchrony: An abstraction for distributed almost-synchronous sys-
tems. In Computer Aided Verification - 27th International Conference, CAV 2015,
San Francisco, CA, USA, July 18-24, 2015, Proceedings, Part II, pages 429–448,
2015.

7. Cezara Dragoi, Thomas A. Henzinger, Helmut Veith, Josef Widder, and Damien
Zufferey. A logic-based framework for verifying consensus algorithms. In Ken-
neth L. McMillan and Xavier Rival, editors, VMCAI, pages 161–181. Springer,
2014.

8. Cezara Dragoi, Thomas A. Henzinger, and Damien Zufferey. Psync: a partially
synchronous language for fault-tolerant distributed algorithms. In POPL, pages
400–415, 2016.

17

9. Cynthia Dwork, Nancy Lynch, and Larry Stockmeyer. Consensus in the presence
of partial synchrony. JACM, 35(2):288–323, April 1988.

10. Tzilla Elrad and Nissim Francez. Decomposition of distributed programs into
communication-closed layers. Sci. Comput. Program., 2(3):155–173, 1982.

11. Michael J. Fischer, Nancy A. Lynch, and M. S. Paterson. Impossibility of dis-
tributed consensus with one faulty process. J. ACM, 32(2):374–382, April 1985.

12. Eli Gafni. Round-by-round fault detectors: Unifying synchrony and asynchrony
(extended abstract). In Brian A. Coan and Yehuda Afek, editors, Proceedings of
the Seventeenth Annual ACM Symposium on Principles of Distributed Computing,
PODC ’98, Puerto Vallarta, Mexico, June 28 - July 2, 1998, pages 143–152, 1998.

13. Chris Hawblitzel, Jon Howell, Manos Kapritsos, Jacob R. Lorch, Bryan Parno,
Michael L. Roberts, Srinath T. V. Setty, and Brian Zill. Ironfleet: proving safety
and liveness of practical distributed systems. Commun. ACM, 60(7):83–92, 2017.

14. Flavio Paiva Junqueira, Benjamin C. Reed, and Marco Serafini. Zab: High-
performance broadcast for primary-backup systems. In DSN, pages 245–256, 2011.

15. Ramakrishna Kotla, Lorenzo Alvisi, Michael Dahlin, Allen Clement, and Ed-
mund L. Wong. Zyzzyva: Speculative Byzantine Fault Tolerance. ACM Trans.
Comput. Syst., 27(4):7:1–7:39, 2009.

16. Leslie Lamport. Generalized consensus and paxos. Technical report, March 2005.
17. Gérard Le Lann. Asynchrony and real-time dependable computing. In WORDS,

pages 18–25, 2003.
18. Mohsen Lesani, Christian J. Bell, and Adam Chlipala. Chapar: Certified Causally

Consistent Distributed Key-value Stores. In POPL, pages 357–370, 2016.
19. Richard J. Lipton. Reduction: A method of proving properties of parallel programs.

Commun. ACM, 18(12):717–721, 1975.
20. Nancy Lynch. Distributed Algorithms. Morgan Kaufman, 1996.
21. Ognjen Maric, Christoph Sprenger, and David A. Basin. Cutoff Bounds for Con-

sensus Algorithms. In CAV, pages 217–237, 2017.
22. Andre Medeiros. ZooKeeper’s atomic broadcast protocol: Theory and practice.

Technical report, 2012.
23. Iulian Moraru, David G. Andersen, and Michael Kaminsky. There is more consen-

sus in egalitarian parliaments. In Proceedings of the Twenty-Fourth ACM Sympo-
sium on Operating Systems Principles, SOSP ’13, pages 358–372, New York, NY,
USA, 2013. ACM.

24. Brian M. Oki and Barbara Liskov. Viewstamped replication: A general primary
copy. In PODC, pages 8–17, 1988.

25. Diego Ongaro and John K. Ousterhout. In search of an understandable consensus
algorithm. In 2014 USENIX Annual Technical Conference, USENIX ATC ’14,
Philadelphia, PA, USA, June 19-20, 2014., pages 305–319, 2014.

26. Oded Padon, Giuliano Losa, Mooly Sagiv, and Sharon Shoham. Paxos made EPR:
decidable reasoning about distributed protocols. PACMPL, 1(OOPSLA):108:1–
108:31, 2017.

27. Oded Padon, Giuliano Losa, Mooly Sagiv, and Sharon Shoham. Paxos made EPR:
decidable reasoning about distributed protocols. PACMPL, 1(OOPSLA):108:1–
108:31, 2017.

28. Oded Padon, Kenneth L. McMillan, Aurojit Panda, Mooly Sagiv, and Sharon
Shoham. Ivy: safety verification by interactive generalization. In PLDI, pages
614–630, 2016.

29. Vincent Rahli, David Guaspari, Mark Bickford, and Robert L. Constable. For-
mal specification, verification, and implementation of fault-tolerant systems using
EventML. ECEASST, 72, 2015.

18

30. Klaus von Gleissenthall, Nikolaj Bjørner, and Andrey Rybalchenko. Cardinalities
and Universal Quantifiers for Verifying Parameterized Systems. In PLDI, pages
599–613, 2016.

31. Doug Woos, James R. Wilcox, Steve Anton, Zachary Tatlock, Michael D. Ernst,
and Thomas E. Anderson. Planning for Change in a Formal Verification of the
RAFT Consensus Protocol. In CPP, pages 154–165, 2016.

32. Álvaro García-Pérez, Alexey Gotsman, and Yuri Meshman. Paxos consensus, de-
constructed and abstracted. In ESOP, 2018. to appear.

19

	Reducing asynchrony to synchronized rounds
	1 Introduction
	Contributions.

	2 Round-based compositional model
	3 Building HO-machines from asynchronous protocols
	3.1 Asynchronous systems
	3.2 Reduction
	3.3 Code to code translation

	4 Conclusion

