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Motivation

Approach

• Faults and attacks occur in the network 

• The network’s user must not notice something 
wrong happened 

• A small number of faulty components 

• Masking approach to fault/attack tolerance
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Problems

• Replicated input sensors may not give the 
same data 

• Faulty input sensor or processor may not fail 
gracefully 

• The system might not be tolerant to software 
bugs

Byzantine Generals

Settings
• Byzantine generals are camping outside an 

enemy city 

• Generals can communicate by sending 
messengers 

• Generals must decide upon common plan of 
action 

• Some of the Generals can be traitors

Goal

• All loyal generals decide upon the same plan of 
action 

• A small number of traitors cannot cause the 
loyal generals to adopt a bad plan



Two Generals Paradox
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The (simple) Byzantine 
Generals Problem

• Generals lead n divisions of the Byzantine army 

• The divisions communicate via reliable 
messengers 

• The generals must agree on a plan (“attack” or 
“retreat”) even if some of them are killed by 
enemy spies

Oral Model

• A1: Every message that is sent is delivered 
correctly 

• A2: The receiver of a message knows who sent 
it 

• A3: The absence of a message can be 
detected



Solution?
plan: array of {A,R}; finalPlan: {A,R} 

1: plan[myID] := ChooseAorR() 

2: for all other G send(G, myID, plan[myID]) 

3: for all other G receive(G, plan[G]) 

4: finalPlan := majority(plan)
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Crashing Networks
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The Byzantine Generals 
Problem

• A general and n-1 lieutenants lead n divisions 
of the Byzantine army 

• The divisions communicate via messengers 
that can be captured or delayed 

• The generals must agree on a plan (“attack” or 
“retreat”) even if some of them are traitors that 
want to prevent agreement

The Byzantine Generals 
Problem

• A commanding general must sent an order to 
his n-1 lieutenants generals such that 

• IC1: all loyal lieutenants obey the same order 

• IC2: if the commanding general is loyal, then 
every loyal lieutenant obeys the order he 
sends



Oral Model

• A1: Every message that is sent is delivered 
correctly 

• A2: The receiver of a message knows who sent 
it 

• A3: The absence of a message can be 
detected

3k+1 nodes are necessary 
(oral model)
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3k+1 nodes are sufficient 
(oral model)
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3k+1 nodes are sufficient 
(oral model)
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Written Model
• A1-A3: Same as before 

• A4: 

• A loyal general’s signature cannot be forged, 
and any alteration of the contents of his 
signed messages can be detected 

• Anyone can verify the authenticity of a 
general’s signature
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Why not Cryptography?

PKI Example



Example Example

Trusted third party Trusted keys



Trusted Software

Arbitrary Networks
Topology Discovery

Topology Discovery
• Given 

• asynchronous network 

• up to k Byzantine nodes 

• each node knows its immediate neighbors 
identifiers 

• Goal 

• each node must discover the complete network 
topology

Weak Topology Discovery
• Termination 

• either all non-faulty processes determine the system 
topology or at least one detects fault 

• Safety 

• for each non-faulty process, the determined 
topology is subset of actual 

• Validity 

• fault detected only if it indeed exists



Weak Topology Discovery Weak Topology Discovery

Weak Topology Discovery

• Bounds 

• cannot determine presence of edge if two 
adjacent nodes are faulty 

• cannot be (completely) solved if network is 
less than k+1 connected

Strong Topology Discovery

• Termination 

• all non-faulty processes determine the 
system topology 

• Safety 

• for each non-faulty process the determined 
topology is subset of actual



Strong Topology Discovery Strong Topology Discovery

Strong Topology Discovery Strong Topology Discovery

• Bounds 

• cannot determine presence of edge if one 
neighbor is faulty 

• cannot be solved if network is less than 2k+1 
connected



Solutions Preliminaries
• Main idea

• Menger’s theorem: if a graph is k connected 
then for any two vertices there exists two 
internally node-disjoint paths connecting 
them 

• a single (non-source) node cannot 
compromise info if it travels over two node-
disjoint paths

Dolev’s Algorithm

• Store traveled path in message, forward 
message that contains simple path to all 
outgoing links 

• Accept message if received through k+1 node-
disjoint paths
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Wireless Networks
Secure Positioning



Traps and Pitfalls
• No way to assess sender 

• Byzantine must lie consistently
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Assumptions

• No three nodes are colinear 

• No more than f faking nodes, with n-f-2 > f 

• Distance is impossible to fake 

• Faking nodes send at most one message per 
round

A Naive Protocol

• For every annoucement by a node v 

• Report OK(v) if perceived distance matches 
annouced distance, else report KO(v)

• Count OK(v)s and KO(v)s for every report 

• If #KO(v) > #OK(v) - 2, v is faulty
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Faking the Distance
• RSS

• Change emitting signal strength  

• Must be consistent for all nodes 

• ToF & DAT 

• Change processing speed or timestamps 

• Must be consistent for all nodes
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Faking Distance (ToF)
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Dynamic Networks
Reliable Broadcast

Context

Information broadcast in multi hop networks

Example



Example Example
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Example Information Broadcast

Information Broadcast Objective

• Broadcast algorithms resilient to Byzantine 
Failures 

• No false message ever accepted 

• Correct messages always received



Local Vote Vote on Multiple Paths

Condition for reliable 
communication in static networks

• k = number of Byzantine nodes 

• Condition: 2k+1 node-disjoint paths between the 
source and the destination

Enter Dynamic Networks



Menger’s Theorem Menger’s Theorem

Menger’s Theorem Condition in  
Dynamic Networks

• k=number of Byzantine nodes 

• Condition: 2k+1 nodes must be removed to cut all 
dynamic paths



Necessary Condition Sufficient Condition

• Send the message through all journeys 

• Register the journeys 

• When a set of journeys that cannot be cut by 2k 
nodes is collected, accept the message

Condition in Dynamic 
Networks with Cryptography

• k = number of Byzantine nodes 

• Condition: k+1 nodes must be removed to cut all 
journeys

Necessary Condition with 
Cryptography



Sufficient Condition with 
Cryptography

• Send the message through all journeys 

• When a cryptographically acceptable message 
arrives, accept it

Case Studies

• Participants in a conference 

• Agents in the subway

Participants Interacting in a 
Conference

Unreliable multihop communication 
Reliable multi hop communication 
Direct communication

Participants Interacting in a 
Conference

Cryptographic multihop communication 
Non-Cryptographic multi hop communication 
Direct communication



Paris Subway Users Paris Subway Users

Unreliable multihop communication 
Reliable multi hop communication 
Direct communication

IF vs. IFF

Min-cut multihop communication 
Node-disjoint multihop communication 
Direct communication

Byzantine Robots
Gathering and Convergence



Gathering

Possibility of FSYNC 
Byzantine Gathering with n>3f
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Noa Agmon, David Peleg: Fault-Tolerant Gathering Algorithms for Autonomous 
Mobile Robots. SIAM J. Comput. 36(1): 56-82 (2006)
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Byzantine Tolerant 
Gathering and Convergence

2D Gathering

FSYNC Yes 
n>3f

SSYNC No 
n=3, f=1

ASYNC

Noa Agmon, David Peleg: Fault-Tolerant Gathering Algorithms for Autonomous 
Mobile Robots. SIAM J. Comput. 36(1): 56-82 (2006)

Byzantine Tolerant 
Gathering and Convergence

2D Gathering

FSYNC Yes 
n>3f

SSYNC
No, n>f, f>0 

bounded scheduler & 
randomness 

ASYNC

Xavier Défago, Maria Gradinariu Potop-Butucaru, Julien Clément, Stéphane Messika, Philippe 
Raipin Parvédy: Fault and Byzantine Tolerant Self-stabilizing Mobile Robots Gathering - 
Feasibility Study -. CoRR abs/1602.05546 (2016)



Byzantine Tolerant 
Gathering and Convergence

2D Gathering

FSYNC Yes 
n>3f

SSYNC
No, n>f, f>0, deterministic 

bounded scheduler & memory  
& non uniform & common axes 

ASYNC

Taisuke Izumi, Zohir Bouzid, Sébastien Tixeuil, Koichi Wada: The BG-simulation for 
Byzantine Mobile Robots. CoRR abs/1106.0113 (2011)

Convergence

1D Convergence with 
Byzantine Robots

• Shrinking: the distance between correct robots 
eventually decreases  

• Cautious: positions of correct robot always remain 
within the range of correct robots 

• Shrinking is necessary 

• Shrinking+Cautious is sufficient 

Weak Multiplicity Detection 
is Necessary

R1

RB
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Strong Multiplicity Detection 
is Necessary
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n>3f is Necessary in SSYNC
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Byzantine Tolerant 
Gathering and Convergence

2D Gathering 1D Convergence

FSYNC Yes 
n>3f

Yes 
n>2f

SSYNC No* Yes 
n>3f

ASYNC Yes 
n>5f



Open Questions 
(Byzantine Robots)

• Lower bound for 2D FSYNC Gathering (w.r.t. f)? 

• Sufficient condition for 2D SSYNC Gathering? 

• Sufficient condition for 2D Convergence?

Faults, Attacks, and 
Fault-tolerance

Faults & Attacks

Time

Faults & Attacks
Extent



Faults & Attacks
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Multi-Tolerance ?
Extent

Nature

Time


