Distributed Computing Models & Algorithms

Sébastien Tixeuil sebastien.tixeuil@lip6.fr

Three Approaches

Three Domains

Static Networks

Parallel Computing

Parallel Computing

Parallel Computing

- Tractable Sequential Problems
- Homogeneity
- Synchrony
- Reliable
- Focus on **Efficiency**

Distributed Computing

Distributed Computing

Distributed Computing

- Intrinsically distributed problems
- Heterogeneity
- Asynchrony
- Unreliable
- Focus on Computability and Complexity

Distributed Computing

A distributed system is one in which the failure of a computer you didn't even know existed can render your own computer unusable.

Leslie Lamport

Distributed Computing Elements

Distributed Computing Elements

Distributed Computing Processor Actions

Distributed Computing Processor Actions

Asynchronous Distributed Execution

- Sequence of « processor or link » actions
- (*liveness*) Each processor executes an infinite number of actions (or terminates)
- (*liveness*) Each enabled link action eventually occurs

Client-Server

- Initially:
 - Send Request to Server
- Upon receipt of Response from Server.
 - · Terminate
- Upon receipt of Request from Client:
 - Send Response to Client

Client-Server

Client-Server

Client-Server

Happens Before

Happens Before

Happens Before

Synchronous Distributed Execution

- Alternating sequence of processor and link phases
 - In the **processor phase**, all processors that have not terminated execute their actions
 - In the link phase, all links execute their actions

Space-Time Diagram

Flooding

Synchronous Flooding

Synchronous Flooding

Synchronous Flooding

Synchronous Flooding

Synchronous Flooding

Synchronous Flooding

Asynchronous Flooding

Asynchronous Flooding

Asynchronous Flooding

Asynchronous Flooding

Asynchronous Flooding

Asynchronous Flooding

Leader Election

- · Message complexity ?
 - Lower bound?
- · Weaker model ?
 - No IDs?
 - No Orientation ?
 - General communication graph?

Passively Mobile Networks

Static Algorithms for Mobile Networks

Mobility vs. Global State

Mobility vs. Global State

Mobility vs. Global State

Stateless Algorithms

Statelessness

Statelessness

Statelessness

Stateless Routing

A routing algorithm is **stateless** if it is designed such that devices store *no information* about messages *between transmissions*. It is **stateful** otherwise.

Flooding

Stateless Flooding

Stateless Flooding

Stateless Flooding

Stateless Flooding

Stateless Flooding

Stateless Flooding

Stateless Flooding

Stateless Flooding

Stateless Flooding

Flooding v2

TTL Flooding

TTL Flooding

TTL Flooding

Stateful Flooding

Stateful Flooding

Stateful Flooding

Stateful Flooding

Stateful Flooding

Geometric Routing

- Each node is aware of its *coordinates* (and those of its neighbors)
- The message contains the coordinates of the destination
- **Goal**: deliver the message to the destination without routing tables

Stojmenovic, Ivan (2002). "Position based routing in ad hoc networks". IEEE Communications Magazine. 40 (7): 128–134.

Progress vs. Distance

Which Criterion?

• MFR: most forwarding progress

• CR: minimize angular criterion

• Greedy: minimize distance to destination

• NC: nearest closer

• **NFP**: nearest with forwarding progress

Planar Graph Routing Sose, P.; Morin, P.; Stojmenovic, I.; Urrutia, J. (1999). "Routing with guaranteed delivery in ad hoc wireless networks". Proc. of

the 3rd international workshop on discrete algorithms and methods for mobile computing and communications (DIALM '99).

pp. 48-55.

Self-stabilization

Example

$$U_0 = a$$

$$U_{n+1} = \frac{U_n}{2}$$
 if U_n is even

$$U_{n+1} = \frac{3U_n + 1}{2}$$
 if U_n is odd

Example

$$U_0 = a$$

$$U_{n+1} = \frac{U_n}{2}$$
 if U_n is even

$$U_{n+1} = \frac{3U_n + 1}{2}$$
 if U_n is odd

r		0	_	2	3	4	5	6	7	8	9	10	П	12
\overline{U}	n	7	П	17	26	13	20	10	5	8	4	2	I	2

Self-stabilization Market Stabilization

Distributed Systems

- Configuration: product of the local states of system components
- **Execution**: interleaving of the local executions of the system components

Distributed Systems

- Classical: Starting from a particular initial configuration, the system immediately exhibits correct behavior
- **Self-stabilizing**: Starting from any initial configuration, the system eventually reaches a configuration from which its behavior is correct

Distributed Systems

- **Self-stabilizing**: Starting from any initial configuration, the system eventually reaches a configuration from which its behavior is correct
 - Defined by Dijkstra in 1974
 - Advocated by Lamport in 1984 to address faulttolerant issues
 - Stale states due to **mobility** can be recovered!

Configurations

```
int x = 0;
...
if(x == 0) {
   // code assuming x equals 0
}
else {
   // code assuming x does not equal 0
}
```

Configurations

Configurations

Hypotheses

Atomicity

• A «stabilizing» sequential program

```
int x = 0;
...
while( x == x ) {
    x = 0;
    // code assuming x equals 0
}
```

Atomicity

• A «stabilizing» sequential program

```
O iconst_0
1 istore_1
2 goto 7
5 iconst_0
6 istore_1
7 iload_1
8 iload_1
9 if_icmpeq 5
```

Communications

Communications

Communications

Example

- **Shared memory**: in one atomic step, read the state of all neighbors and write own state
- · Guarded command

Example

 $true \rightarrow Distance_i := Min_{j \in Neighbors_i} \{Distance_j + 1\}$

Example $true \rightarrow Distance_i := Min_{j \in Neighbors_i} \{Distance_j + 1\}$

 $\begin{aligned} & \mathsf{Example} \\ \mathit{true} \rightarrow \mathit{Distance}_i := \mathit{Min}_{j \in Neighbors_i} \{ \mathit{Distance}_j + 1 \} \end{aligned}$

Example

 $true \rightarrow Distance_i := Min_{j \in Neighbors_i} \{ Distance_j + 1 \}$

Example

 $true \rightarrow Distance_i := Min_{j \in Neighbors_i} \{ Distance_j + 1 \}$

 $Example \\ \mathit{true} \rightarrow \mathit{Distance}_i := \mathit{Min}_{j \in Neighbors_i} \{\mathit{Distance}_j + 1\}$

Example $true \rightarrow Distance_i := Min_{j \in Neighbors_i} \{Distance_j + 1\}$

Scheduling

- **Scheduler** (a.k.a. **Daemon**): the daemon chooses among activatable processes those that will execute their actions
 - can be seen as an adversary whose role is to prevent stabilization

 $\begin{array}{c} \text{Spatial Scheduling} \\ \mathit{true} \rightarrow \mathit{color}_i := \mathit{Min} \big\{ \Delta \setminus \{\mathit{color}_j | j \in \mathit{Neighbors}_i \} \big\} \end{array}$ $\Delta = \{ \bigcirc \bigcirc \bigcirc \bigcirc \}$

Spatial Scheduling

Temporal Scheduling

 $token \rightarrow pass \ token \ to \ left \ neighbor \ with \ probability \ \frac{1}{2}$ $token = \bigcirc$ no $token = \bigcirc$

Temporal Scheduling

 $token
ightharpoonup pass token to left neighbor with probability <math>\frac{1}{2}$ $token = \bigcirc no \ token = \bigcirc$

Temporal Scheduling

Temporal Scheduling

A Map of Daemons

A Map of Daemons

A Map of Daemons

Self-stabilization

Population Protocols

Population Protocols

Dana Angluin, James Aspnes, Zoë Diamadi, Michael J. Fischer, René Peralta: Computation in networks of passively mobile finite-state sensors. Distributed Computing 18(4): 235-253 (2006)

Population Protocols

Population Protocols

Population Protocols

· Definition

- A Population Protocol is a 6-tuple (X,Y,Q,I,O,T)
 - X: Set of inputs
 - Y: Set of outputs
 - **Q**: Set of states
 - I: Input mapping function, $X \longrightarrow Q$
 - ${\bf 0}$: Output mapping function, ${\bf Q} \longrightarrow {\bf 0}$
 - **T**: Transition function, $Q \times Q \longrightarrow Q \times Q$

Example 3

- Inputs: (0) (1) (2) (3)
- Outputs: 0 1 2 3 0 1 2 3
- · Sum mod 4?

- 0
- (1)
- 2
- 3

Example 3

- 0
- (2
- 3

Population Protocols

Dynamic Graphs

Time-varying Graphs

- A time-varying graph (TVG) is a 5-tuple (**V**,**E**,**T**,**p**,**I**)
 - V: set of nodes
 - **E**: (labelled) set of edges
 - **T**: lifetime, $\mathbf{T} \subseteq \mathcal{T}$
 - **p**: presence function, $\mathbf{E} \times \mathbf{T} \longrightarrow \{0,1\}$
 - I: latency function, $\mathbf{E} \times \mathbf{T} \longrightarrow \mathcal{T}$

Time-varying Graphs

- A time-varying graph (TVG) is a 5-tuple (**V**,**E**,**T**,**p**',**l**')
 - **V**: set of nodes
 - E: (labelled) set of edges
 - **T**: lifetime, $\mathbf{T} \subseteq \mathcal{T}$
 - **p**': *node* presence function, $\mathbf{V} \times \mathbf{T} \longrightarrow \{0,1\}$
 - I': node latency function, $\mathbf{V} \times \mathbf{T} \longrightarrow \mathcal{T}$

Condition for Global Calculus?

There exists a node (**Center**) such that there exists a journey from every other node to it *and back*

Connectivity Classes

- There exists a node *r* from which a journey reaches every other node 1 → *
- There exists a node r such that there exists a journey from every other node to it * → 1
- There exists a node r such that there exists a
 journey from every other node to to and back

Arnaud Casteigts, Paola Flocchini, Walter Quattrociocchi, Nicola Santoro: Time-varying graphs and dynamic networks. IJPEDS 27(5): 387-408 (2012)

More Classes

- There exists a journey between any two nodes * → *
- There exists a roundtrip journey between any two nodes *****
- There exists a journey between any two nodes infinitely often $* \overset{\mathcal{R}}{\leadsto} *$
- Every edge appears infinitely often \mathcal{R}_{\bullet}

Arnaud Casteigts, Paola Flocchini, Walter Quattrociocchi, Nicola Santoro: Time-varying graphs and dynamic networks. IJPEDS 27(5): 387-408 (2012)

More Classes

- · At any time, the graph is connected
- Every spanning subgraph lasts at least T time units
- Every edge appears infinitely often, and the underlying graph is a clique $\underset{*}{\mathbb{Z}}$

Arnaud Casteigts, Paola Flocchini, Walter Quattrociocchi, Nicola Santoro: Time-varying graphs and dynamic networks. IJPEDS 27(5): 387-408 (2012)

More Classes

- Every edge appears infinitely often, and there is an upper bound between between two occurrences
- Every edge appears infinitely often with some period p

Arnaud Casteigts, Paola Flocchini, Walter Quattrociocchi, Nicola Santoro: Time-varying graphs and dynamic networks. IJPEDS 27(5): 387-408 (2012)

A Classification

A Classification

A Classification

A Classification

Arnaud Casteigts, Paola Flocchini, Bernard Mans, Nicola Santoro: Shortest, Fastest, and Foremost Broadcast in Dynamic Networks. Int. J. Found. Comput. Sci. 26(4): 499-522 (2015)

Actively Mobile Networks

Mobile Agents

Problems to Solve

- **Exploration** (perpetual or with stop)
- · Mapping
- · Rendez-vous
- · Black hole search
- · Capturing an intruder

Models

- **Network** (anonymous *vs.* ID based)
- **Agents** (anonymous *vs.* ID based)
- · Synchrony
- Initial (structural) knowledge
- **Communications** (none, peebles, whiteboards)
- Agent **memory** (infinite, bounded, constant)

Rendez-vous

- Two (or more) mobile agents must meet in a graph
- They start on **distinct** locations
- Computability?
- Complexity?

Black Hole Search

- A **single** black hole in the graph
- The black hole **does not disconnect** the graph
- Identify each adjacent edge
- Minimize #agents, #moves

Mobile Robots

Mobile Robots

- Autonomous (no central control)
- **Homogeneous** (run same algorithm)
- Identical (indistinguishable)
- **Silent** (no explicit communication)

Visibility

Multiplicity Detection

How many robots do you see?

- No detection
- Weak multiplicity detection

>1

• Strong multiplicity detection

Memory

Algorithm

Persistent Memory

Volatile Memory

Oblivious Robot Memory

Algorithm

Volatile Memory

Oblivious Robot Life Cycle

Memory

Two Axes
Direction and Orientation

One Axis Direction and Orientation

Chirality

No Agreement

Overview

Scattering

Scattering

No two robots should occupy the same position

• No deterministic solution

• No termination without multiplicity detection

How Many Tosses?

Minimum?

Influence of multiplicity detection?

Relationship with scattering speed?

Optimal Speed

With strong multiplicity detection:

Algorithm with optimal #tosses terminates in O(1) rounds

Without strong multiplicity detection:

O(1) rounds scattering of n robots is impossible

How fast can we go?

Scattering

Julien Clément, Xavier Défago, Maria Potop-Butucaru, et al. *The cost of probabilistic agreement in oblivious robot networks*. Information Processing Letters, 2010, vol. 110, no 11, p. 431-438.

Scattering

Quentin Bramas and Sébastien Tixeuil. The Ramdom Bit Complexity of Mobile Robot Scattering. Int. J. Found. Comput. Sci. 28(2): 111-134 (2017)

Scattering

	Scattering	Scattering +MD
FSYNC	Yes <i>O(f(n))</i> rounds	Yes O(1) rounds
SSYNC	Yes <i>O(f(n))</i> rounds	Yes O(1) rounds
ASYNC	?	?

Gathering

Gathering

• •

•

Gathering

Gathering

Impossible for two robots

A bivalent configuration

Gathering vs. Convergence

- Gathering: robot must reach the same point in finite time
- Convergence: robots must get closer at time goes by

Center of Gravity

$$\vec{c}[t] = \frac{1}{n} \sum_{i=1}^{n} \vec{r_i}[t]$$

Center of Gravity

$$\vec{c}[t] = \frac{1}{n} \sum_{i=1}^{n} \vec{r_i}[t]$$

Center of Gravity

$$\vec{c}[t] = \frac{1}{n} \sum_{i=1}^{n} \vec{r_i}[t]$$

Center of Gravity of Positions

$$\vec{c}[t] = \frac{1}{p} \sum_{i=1}^{p} \vec{p_i}[t]$$

FSYNC Gathering

$$\vec{c}[t] = \frac{1}{p} \sum_{i=1}^{p} \vec{p_i}[t]$$

FSYNC Gathering

$$\vec{c}[t] = \frac{1}{p} \sum_{i=1}^{p} \vec{p_i}[t]$$

SSYNC Gathering?

SSYNC Gathering?

Convergence & Gathering

	Convergence	2-Gathering	n-Gathering	n-Gathering +MD	n-Gathering +MD+WF
FSYNC	Yes	Yes	Yes	Yes	Yes
SSYNC	Yes	No	No	Yes	Yes
ASYNC	Yes	No	No	Yes	?

Convergence & Gathering

Reuven Cohen and David Peleg. Convergence Properties of the Gravitational Algorithm in Asynchronous Robot Systems. SIAM J. Comput. 34(6): 1516-1528 (2005)

Convergence & Gathering

Ichiro Suzuki, Masafumi Yamashita: Distributed Anonymous Mobile Robots: Formation of Geometric Patterns. SIAM J. Comput. 28(4): 1347-1363 (1999)

Convergence & Gathering

Guiseppe Prencipe. Impossibility of gathering by a set of autonomous mobile robots. Theor. Comput. Sci. 384(2-3): 222-231 (2007)

Convergence & Gathering

	Convergence	2-Gathering	n-Gathering	n-Gathering +MD	n-Gathering +MD+WF
FSYNC	Yes	Yes	Yes	Yes	Yes
SSYNC	Yes	No	No	Yes	Yes
ASYNC	Yes	No	No	Yes	?

Thibaut Balabonski, Amélie Delga, Lionel Rieg, Sébastien Tixeuil, Xavier Urbain: Synchronous Gathering Without Multiplicity Detection: A Certified Algorithm. SSS 2016: 7-19

Convergence & Gathering

Mark Cieliebak, Paola Flocchini, Giuseppe Prencipe, Nicola Santoro. *Distributed Computing by Mobile Robots: Gathering.* SIAM J. Comput. 41(4): 829-879 (2012)

Convergence & Gathering

Quentin Bramas, Sébastien Tixeuil. Wait-Free Gathering Without Chirality. SIROCCO 2015: 313-327

Pattern Formation

Pattern Formation

Initial configuration

Pattern to form

Is it possible?

 $\ensuremath{\text{Yes}},$ if robots agree on a common North and a common Right

Yes, if robots agree on a common North and n is odd

Paola Flocchini, Giuseppe Prencipe, Nicola Santoro, Peter Widmayer: Arbitrary pattern formation by asynchronous, anonymous, oblivious robots. Theor. Comput. Sci. 407(1-3): 412-447 (2008)

Pattern Formation

Initial configuration P Pattern to form F Is it possible?

...assuming a common chirality, and F does not have multiplicity points

Yes, if $\rho(P) \mid \rho(F)$ where $\rho(P)$ is the symmetricity of P, the maximum integer such that the rotation by $2\pi/\rho(P)$ is invariant for P

No, otherwise

Nao Fujinaga, Yukiko Yamauchi, Hirotaka Ono, Shuji Kijima, Masafumi Yamashita: Pattern Formation by Oblivious Asynchronous Mobile Robots. SIAM J. Comput. 44(3): 740-785 (2015)

Pattern Formation

Initial configuration $\ P$ Pattern to form $\ F$ Is it possible?

...assuming a common chirality, and F does not have multiplicity points

Yes, if $\ \rho(P) \ | \ \rho(F)$ where $\ \rho(P)$ is the symmetricity of $\ P$, the maximum integer such that the rotation by $2\pi/\rho(P)$ No, otherwise

Nao Fujinaga, Yukiko Yamauchi, Hirotaka Ono, Shuji Kijima, Masafumi Yamashita: Pattern Formation by Oblivious Asynchronous Mobile Robots. SIAM J. Comput. 44(3): 740-785 (2015)

Pattern Formation

...assuming a common chirality, and F does not have multiplicity points

Yes, if $\ \rho(P) \ | \ \rho(F)$ where $\ \rho(P)$ is the symmetricity of $\ P$, the maximum integer such that the rotation by $\ 2\pi/\rho(P)$ is invariant for $\ P$

Nao Fujinaga, Yukiko Yamauchi, Hirotaka Ono, Shuji Kijima, Masafumi Yamashita: Pattern Formation by Oblivious Asynchronous Mobile Robots. SIAM J. Comput. 44(3): 740-785 (2015)

Pattern Formation

Pattern to form FInitial configuration PIs it possible?

... assuming a common chirality, and F does not have multiplicity points

Yes, if $\rho(P) \mid \rho(F)$ where $\rho(P)$ is the symmetricity of P. the maximum integer such that the rotation by $2\pi/\rho(P)$ is invariant for P No, otherwise

Nao Fujinaga, Yukiko Yamauchi, Hirotaka Ono, Shuji Kijima, Masafumi Yamashita: Pattern Formation by Oblivious Asynchronous Mobile Robots. SIAM J. Comput. 44(3): 740-785 (2015)

Pattern Formation

Initial configuration P Pattern to form FIs it possible?

... assuming a common chirality, and F does not have multiplicity points

Yes, with a randomized algorithm

... assuming robots do not 'pause" while moving ... and using infinitely many random bits per activation

Yukiko Yamauchi, Masafumi Yamashita: Randomized Pattern Formation Algorithm for Asynchronous Oblivious Mobile Robots. DISC 2014: 137-151

Pattern Formation

Pattern to form FInitial configuration PIs it possible?

... assuming a common chirality, and F does not have multiplicity points

No, otherwise

Nao Fujinaga, Yukiko Yamauchi, Hirotaka Ono, Shuji Kijima, Masafumi Yamashita: Pattern Formation by Oblivious Asynchronous Mobile Robots. SIAM J. Comput. 44(3): 740-785 (2015)

Pattern Formation

...assuming a common chirality, and F does not have multiplicity points

Yes, with a randomized algorithm

F is not a point

... assuming robots do not "pause" while moving really asynchronous

... and using infinitely many random bits per activation

Quentin Bramas, Sébastien Tixeuil: Brief Announcement: Probabilistic Asynchronous Arbitrary Pattern Formation. PODC 2016: 443-445

ASYNC Pattern Formation

Pattern	Agreement	Chirality	Randomization
Point	Yes	No	?
Divide Symmetricity	Yes	Yes	Yes
No Multiplicity	Yes	No	Yes
Not a Point	Yes	No	Yes
Arbitrary	Yes	No	?

Mobile Robots

Conclusion

Static Networks

- Fundamental, well established model
 - Space-centric, complexity results
 - Time-centric, computability results

Mobility as an Adversary

- Can corrupt the distributed state of a network
- Can reduces communication capacity
- · Can increase uncertainty
- Can increase protocol complexity

Mobility as a Friend

- Mobility can be the solution to the problem
- Mobility can improve efficiency
- Mobility can promote simplicity

Distributed Computing

Thank You