Distributed Computing Models \& Algorithms

Complexity-driven

Problem-driven

Model-driven

A Map of Models

Parallel Computing

Static Networks

Parallel Computing

Parallel Computing

- Tractable Sequential Problems
- Homogeneity
- Synchrony
- Reliable
- Focus on Efficiency

Distributed Computing

Distributed Computing

-

Distributed Computing

- Intrinsically distributed problems
- Heterogeneity
- Asynchrony
- Unreliable
- Focus on Computability and Complexity

Distributed Computing

Distributed Computing

A distributed system is one in which the failure of a computer you didn't even know existed can render your own computer unusable.

Leslie Lamport

Distributed Computing Elements

Distributed Computing Processor Actions

Distributed Computing
Elements

Distributed Computing Processor Actions

Distributed Computing Processor Actions

Distributed Computing Link Actions

Asynchronous Distributed Execution

- Sequence of « processor or link» actions
- (liveness) Each processor executes an infinite number of actions (or terminates)
- (liveness) Each enabled link action eventually occurs

Client-Server

Client-Server

-

Client-Server

Client-Server

Client-Server

Communication Graph

Communication Graph

Communication Graphs

Communication Graph
Models

Communication Graph Models

$\bigcirc \odot \odot$ $\ominus \ominus$

Space-Time Diagram

Happens Before

Happens Before

Synchronous Distributed Execution

- Alternating sequence of processor and link phases
- In the processor phase, all processors that have not terminated execute their actions
- In the link phase, all links execute their actions

Space-Time Diagram

Flooding

Synchronous Flooding

Synchronous Flooding

Synchronous Flooding

Synchronous Flooding

Synchronous Flooding

Synchronous Flooding

Asynchronous Flooding

Asynchronous Flooding

Asynchronous Flooding

Asynchronous Flooding

Asynchronous Flooding

Asynchronous Flooding

Asynchronous Flooding

Asynchronous Flooding

Asynchronous Flooding

Asynchronous Flooding

Configurations

Synchronous vs.
Asynchronous

Synchronous vs.
Asynchronous

Leader Election

Leader Election

Leader Election

Leader Election

Leader Election

Leader Election

Leader Election

Leader Election

Leader Election

Leader Election

Leader Election

- Message complexity ?
- Lower bound ?
- Weaker model ?
- No IDs?
- No Orientation?
- General communication graph ?

Static Networks

Mobility-induced Dynamic Networks

Mobility-induced Dynamic Networks

Mobility-induced
Dynamic Networks

Static Algorithms for Mobile Networks

Link Lifetime

Link Lifetime

Mobility vs. Global State

Mobility vs. Global State

Mobility vs. Global State

Mobility vs. Global State

Stateless Algorithms

Statelessness

HTTP		
UDP	TCP	
IP		
RIP	OSPF	BGP
Lower layers		

Statelessness

Statelessness

HTTP		
UDP	TCP	
IP		
RIP	OSPF	BGP
Lower layers		

Stateless Routing

A routing algorithm is stateless if it is designed such that devices store no information about messages between transmissions. It is stateful otherwise.

Stateless Flooding

Stateless Flooding

Stateless Flooding

Stateless Flooding

Stateless Flooding

Stateless Flooding

Stateless Flooding

Stateless Flooding

Stateless Flooding

Stateless Flooding

Stateless Flooding

Stateless Flooding

Stateless Flooding

Stateless Flooding

Flooding v2

TTL Flooding

TTL Flooding

TTL Flooding

TTL Flooding

TTL Flooding

TTL Flooding

TTL Flooding

Flooding v3

\rightarrow

Stateful Flooding

Stateful Flooding

Stateful Flooding

Stateful Flooding

Stateful Flooding

Stateful Flooding

Stateful Flooding

Geometric Routing

- Each node is aware of its coordinates (and those of its neighbors)
- The message contains the coordinates of the destination
- Goal: deliver the message to the destination without routing tables

Progress vs. Distance

Which Criterion?

- MFR: most forwarding progress
- CR: minimize angular criterion
- Greedy: minimize distance to destination
- NC: nearest closer
- NFP: nearest with forwarding progress

Delivery Guarantee?

Planar Graph Routing

Bose, P.; Morin, P.; Stojmenovic, I.; Urrutia, J. (1999). "Routing with guaranteed delivery in ad hoc wireless networks". Proc. of the 3rd international workshop on discrete algorithms and methods for mobile computing and communications (DIALM '99). pp. 48-55

Face Routing

Planar Graphs!

Greedy / Face / Greedy

Self-stabilization

Example

$$
\begin{aligned}
& U_{0}=a \\
& U_{n+1}=\frac{U_{n}}{2} \text { if } U_{n} \text { is even } \\
& U_{n+1}=\frac{3 U_{n}+1}{2} \text { if } U_{n} \text { is odd }
\end{aligned}
$$

Example

$$
U_{0}=a
$$

$$
U_{n+1}=\frac{U_{n}}{2} \text { if } U_{n} \text { is even }
$$

$$
U_{n+1}=\frac{3 U_{n}+1}{2} \text { if } U_{n} \text { is odd }
$$

n	0	1	2	3	4	5	6	7	8	9	10	11	12
U_{n}	7	11	17	26	13	20	10	5	8	4	2	1	2

$$
\begin{aligned}
& U_{0}=a \\
& U_{n+1}=\frac{U_{n}}{2} \text { if } U_{n} \text { is even } \\
& U_{n+1}=\frac{3 U_{n}+1}{2} \text { if } U_{n} \text { is odd }
\end{aligned}
$$

"Correct"
terations

Self-stabilization

Self-stabilization

Distributed Systems

- Classical: Starting from a particular initial configuration, the system immediately exhibits correct behavior
- Self-stabilizing: Starting from any initial configuration, the system eventually reaches a configuration from which its behavior is correct

Distributed Systems

- Configuration: product of the local states of system components
- Execution: interleaving of the local executions of the system components

Distributed Systems

- Self-stabilizing: Starting from any initial configuration, the system eventually reaches a configuration from which its behavior is correct
- Defined by Dijkstra in 1974
- Advocated by Lamport in 1984 to address faulttolerant issues
- Stale states due to mobility can be recovered!

Configurations

```
int x = 0;
if( }\textrm{x}==0\mathrm{ ) {
    // code assuming x equals 0
}
else {
    // code assuming x does not equal 0
}
```


Configurations

Hypotheses

Atomicity

- A «stabilizing» sequential program

```
int x = 0;
```

```
while( x == x ) {
    x = 0;
    // code assuming x equals 0
}
```


Communications

Atomicity

- A «stabilizing» sequential program

```
0 iconst_0
1 istore_1
2 goto 7
5 iconst_0
6 istore_1
7 iload_1
iload_1
9 if_icmpeq 5
```


Communications

Communications

Example

- Shared memory: in one atomic step, read the state of all neighbors and write own state

- Guarded command

Example

true \rightarrow Distance $_{i}:=$ Min $_{j \in \text { Neighbors }_{i}}\left\{\right.$ Distance $\left._{j}+1\right\}$

Example
true \rightarrow Distance $_{i}:=$ Min $_{j \in \text { Neighbors }_{i}}\left\{\right.$ Distance $\left._{j}+1\right\}$

Example

true \rightarrow Distance $_{i}:=$ Min $_{j \in \text { Neighbors }_{i}}\left\{\right.$ Distance $\left._{j}+1\right\}$

Example

true \rightarrow Distance $_{i}:=$ Min $_{j \in \text { Neighbors }_{i}}\left\{\right.$ Distance $\left._{j}+1\right\}$

Example
true \rightarrow Distance $_{i}:=$ Min $_{j \in \text { Neighbors }_{i}}\left\{\right.$ Distance $\left._{j}+1\right\}$

Example
true \rightarrow Distance $_{i}:=$ Min $_{j \in \text { Neighbors }_{i}}\left\{\right.$ Distance $\left._{j}+1\right\}$

Example

true \rightarrow Distance $_{i}:=$ Min $_{j \in \text { Neighbors }_{i}}\left\{\right.$ Distance $\left._{j}+1\right\}$

Example

true \rightarrow Distance $_{i}:=$ Min $_{j \in \text { Neighbors }_{i}}\left\{\right.$ Distance $\left._{j}+1\right\}$

Example
true \rightarrow Distance $_{i}:=$ Min $_{j \in \text { Neighbors }_{i}}\left\{\right.$ Distance $\left._{j}+1\right\}$

Example
true \rightarrow Distance $_{i}:=$ Min $_{j \in \text { Neighbors }_{i}}\left\{\right.$ Distance $\left._{j}+1\right\}$

Example

true \rightarrow Distance $_{i}:=$ Min $_{j \in \text { Neighbors }_{i}}\left\{\right.$ Distance $\left._{j}+1\right\}$

Example

true \rightarrow Distance $_{i}:=$ Min $_{j \in \text { Neighbors }_{i}}\left\{\right.$ Distance $\left._{j}+1\right\}$

Example
true \rightarrow Distance $_{i}:=$ Min $_{j \in \text { Neighbors }_{i}}\left\{\right.$ Distance $\left._{j}+1\right\}$

Example
true \rightarrow Distance $_{i}:=$ Min $_{j \in \text { Neighbors }_{i}}\left\{\right.$ Distance $\left._{j}+1\right\}$

Scheduling

- Scheduler (a.k.a. Daemon): the daemon chooses among activatable processes those that will execute their actions
- can be seen as an adversary whose role is to prevent stabilization

Spatial Scheduling
true \rightarrow color $_{i}:=\operatorname{Min}\left\{\Delta \backslash\left\{\right.\right.$ color $_{j} \mid j \in$ Neighbors $\left.\left._{i}\right\}\right\}$
$\Delta=\{\bigcirc \bigcirc \bigcirc \bigcirc$

Temporal Scheduling

token \rightarrow pass token to left neighbor with probability $\frac{1}{2}$ token $=\bigcirc$ no token $=\bigcirc$

Temporal Scheduling token \rightarrow pass token to left neighbor with probability $\frac{1}{2}$ token $=\bigcirc$ no token $=\bigcirc$

Temporal Scheduling

Temporal Scheduling

A Map of Daemons

A Map of Daemons

Self-stabilization

A Map of Daemons

Population Protocols

Population Protocols

Dana Angluin, James Aspnes, Zoë Diamadi, Michael J. Fischer, René Peralta: Computation in networks of passively mobile finite-state sensors. Distributed Computing 18(4): 235-253 (2006)

Population Protocols

Population Protocols

Population Protocols

Definition

- A Population Protocol is a 6-tuple ($\mathbf{X}, \mathbf{Y}, \mathbf{Q}, \mathbf{I}, \mathbf{O}, \mathbf{T}$)
- X: Set of inputs
- \mathbf{Y} : Set of outputs
- Q: Set of states
- I: Input mapping function, $\mathrm{X} \longrightarrow \mathrm{Q}$
- O: Output mapping function, $\mathrm{Q} \longrightarrow \mathrm{O}$
- \mathbf{T} : Transition function, $\mathrm{Q} \times \mathrm{Q} \longrightarrow \mathrm{Q} \times \mathrm{Q}$

Example 1b

Example 2

Example 2

$$
\begin{array}{llllll}
0 & 0 & 0 & 0 & 0 & 0 \\
0-0 & 0 & 0-0 & 0 & 0
\end{array}
$$

$$
\begin{array}{lllllll}
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0-0 & 0 & 0 & 0-0 & 0 & 0
\end{array}
$$

$$
00
$$

$$
\bigcirc
$$

$$
\bigcirc 0
$$

$$
\begin{array}{llllll}
0 & 0 & 0 & 0 & 0 & 0 \\
0-0 & 0 & 0-0 & 0 & 0
\end{array}
$$

$$
\begin{array}{ccccccc}
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & & & & & & \\
0 & & & & & & \\
0 & & & & & &
\end{array}
$$

Example 3

- Inputs: 0123
- Outputs: 032303
- Sum mod 4 ?

(0)
(1)
(2)
(3)

Example 3

(3)

$$
\begin{aligned}
& \text { (0) (0) } \\
& \begin{array}{ll}
\text { (1) } & 3 \\
(2) \\
3
\end{array} \\
& \text { (3) (3) }
\end{aligned}
$$

Population Protocols

\& morcanscharool muminns

New Models for Population Protocols

Othon Michail
 Ioannis Chatzigiannaki

Paul G. Spirakis

Time-varying Graphs

- A time-varying graph (TVG) is a 5 -tuple ($\mathbf{V}, \mathbf{E}, \mathbf{T}, \mathbf{p}, \mathbf{I}$)
- V: set of nodes
- E: (labelled) set of edges
- $\mathbf{T}:$ lifetime, $\mathbf{T} \subseteq \mathcal{T}$
- $\mathbf{p}:$ presence function, $\mathbf{E} \times \mathbf{T} \longrightarrow\{0,1\}$
- I: latency function, $\mathbf{E} \times \mathbf{T} \longrightarrow \mathcal{T}$

Time-varying Graphs

- A time-varying graph (TVG) is a 5 -tuple ($\mathbf{V}, \mathbf{E}, \mathbf{T}, \mathbf{p}^{\prime}, \mathbf{I}^{\prime}$)
- V: set of nodes
- E: (labelled) set of edges
- \mathbf{T} : lifetime, $\mathbf{T} \subseteq \mathcal{T}$
- \mathbf{p} ': node presence function, $\mathbf{V} \times \mathbf{T} \longrightarrow\{0,1\}$
- l': node latency function, $\mathbf{V} \times \mathbf{T} \longrightarrow \mathcal{T}$

Evolving Graphs

Time-varying Graphs

Example

Journeys from C to A

(C)

Shortest Journey

Fastest Journey

Condition for Broadcast?

There exists a node (\mathbf{C}) from which a journey reaches every other node

Condition for Election?

Condition for Election?

There exists a node (C) such that there exists a journey from every other node to it

Condition for Global Calculus?

There exists a node (Center) such that there exists a journey from every other node to it and back

- There exists a node r from which a journey reaches every other node $1 \rightsquigarrow *$
- There exists a node r such that there exists a journey from every other node to it $* \rightsquigarrow 1$
- There exists a node r such that there exists a journey from every other node to to and back

More Classes

- There exists a journey between any two nodes $* \rightsquigarrow *$
- There exists a roundtrip journey between any two nodes *~* $_{3}^{*} *$
- There exists a journey between any two nodes infinitely often
* ${ }_{\rightsquigarrow}^{\mathcal{R}}$ *
- Every edge appears infinitely often

Arnaud Casteigts, Paola Flocchini, Walter Quattrociocchi, Nicola Santoro: Time-varying graphs and dynamic networks. IJPEDS 27(5): 387-408 (2012)

More Classes

- At any time, the graph is connected
- Every spanning subgraph lasts at least T time units
- Every edge appears infinitely often, and the underlying graph is a clique

$$
* \frac{\mathcal{R}}{-} *
$$

More Classes

- Every edge appears infinitely often, and there is an upper bound between between two occurrences
- Every edge appears infinitely often with some period p

A Classification

A Classification

A Classification

Actively Mobile Networks

Mobile Agents

Problems to Solve

- Exploration (perpetual or with stop)
- Mapping
- Rendez-vous
- Black hole search
- Capturing an intruder

Models

- Network (anonymous vs. ID based)
- Agents (anonymous vs. ID based)
- Synchrony
- Initial (structural) knowledge
- Communications (none, peebles, whiteboards)
- Agent memory (infinite, bounded, constant)

Rendez-vous

- Two (or more) mobile agents must meet in a graph
- They start on distinct locations
- Computability?
- Complexity?

Rendez-vous in A

Anonymous Graphs with Known ID (1,2) Agents

Black Hole Search

Black Hole Search

- A single black hole in the graph
- The black hole does not disconnect the graph
- Identify each adjacent edge
- Minimize \#agents, \#moves

Synchronous Agents

Synchronous Agents

Asynchronous
Black Hole Search

Asynchronous
Black Hole Search

Mobile Robots

Mobile Robots

- Autonomous (no central control)
- Homogeneous (run same algorithm)
- Identical (indistinguishable)
- Silent (no explicit communication)

Robot Life Cycle

Robot Life Cycle

Multiplicity Detection

How many robots do you see?

- No detection
- Weak multiplicity detection
- Strong multiplicity detection

Multiplicity

Multiplicity

Oblivious Robot Memory

Algorithm

Volatile Memory

Oblivious Robot Life Cycle

Scheduling

$$
\begin{gathered}
\cup \text { Look } \rightarrow \text { Compute } \rightarrow \text { Move } \\
\text { SSYNC }
\end{gathered}
$$

	1	2	3	4	5	6
r_{1}	U		U	U	U	U
r_{2}	U	U		U	U	
r_{3}	U		U			U

Scheduling

Two Axes
Direction and Orientation

Two Axes
Direction

One Axis
Direction and Orientation

Chirality

No Agreement

Scattering

No two robots should occupy the same position

- No deterministic solution

- No termination without multiplicity detection

$$
O(1) \text { rounds }
$$

Julien Clément, Xavier Défago, Maria Potop-Butucaru et al The cost of probabilistic agreement in oblivious robot networks. Information Processing Letters, 2010, vol. 110, no 11, p. 431-438

Optimal Speed

With strong multiplicity detection:
Algorithm with optimal \#tosses terminates in $O(1)$ rounds
Without strong multiplicity detection:

$O(1)$ rounds scattering of n robots is impossible How fast can we go?

Scattering

	Scattering	Scattering +MD
FSYNC	Yes $O(f(n))$ rounds	Yes $O(1)$ rounds
SSYNC	Yes $O(f(n))$ rounds	Yes $O(1)$ rounds
ASYNC		

Quentin Bramas and Sébastien Tixeuil. The Ramdom Bit Complexity of Mobile Robot Scattering. Int. J. Found. Comput. Sci. 28(2): 111-134 (2017)

Scattering

Scattering	Scattering + FSD	
SSYNC	Yes $O(f(n))$ rounds	Yes (1) rounds
ASYNC	Yes	Yes
O(f(n)) rounds	O(1) rounds	

Gathering

Gathering

Gathering

Impossible for two robots

A bivalent configuration

Gathering

-

Gathering vs. Convergence

- Gathering: robot must reach the same point in finite time
- Convergence: robots must get closer at time goes by

Center of Gravity

$$
\vec{c}[t]=\frac{1}{n} \sum_{i=1}^{n} \overrightarrow{r_{i}}[t]
$$

Center of Gravity

$$
\vec{c}[t]=\frac{1}{n} \sum_{i=1}^{n} \overrightarrow{r_{i}}[t]
$$

FSYNC Gathering

$$
\vec{c}[t]=\frac{1}{p} \sum_{i=1}^{p} \vec{p}_{i}[t]
$$

FSYNC Gathering

$$
\vec{c}[t]=\frac{1}{p} \sum_{i=1}^{p} \overrightarrow{p_{i}}[t]
$$

SSYNC Gathering?

SSYNC Gathering?

Convergence \& Gathering

| | Convergence | 2-Gathering | n-Gathering | n-Gathering
 + MD | n-Gathering
 + MD+WF |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| FSYNC | Yes | Yes | Yes | Yes | Yes |

Convergence \& Gathering

$\left.\begin{array}{ccccccc} & \text { Convergence } & \text { 2-Gathering } & \text { n-Gathering } & \begin{array}{c}\text { n-Gathering } \\ + \text { MD }\end{array} & \begin{array}{c}\text { n-Gathering } \\ + \text { MD }\end{array} \\ \text { FSYF }\end{array}\right]$

Reuven Cohen and David Peleg. Convergence Properties of the Gravitational Algorithm in Asynchronous Robot Systems. SIAM J. Comput. 34(6): 1516-1528 (2005)

Convergence \& Gathering

| | Convergence | 2-Gathering | n-Gathering | n-Gathering
 +MD | n-Gathering
 +MD+WF |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| FSYNC | Yes | Yes | Yes | Yes | Yes |
| SSYNC | Yes | No | No | Yes | Yes |
| ASYNC | Yes | No | No | Yes | $?$ |

Guiseppe Prencipe. Impossibility of gathering by a set of autonomous mobile robots.

Convergence \& Gathering

| | Convergence | 2-Gathering | n-Gathering | n-Gathering
 + MD | n-Gathering
 +MD+WF |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| FSYNC | Yes | Yes | Yes | Yes | Yes |
| SSYNC | Yes | No | No | Yes | Yes |
| ASYNC | Yes | No | No | Yes | ? |

Thibaut Balabonski, Amélie Delga, Lionel Rieg, Sébastien Tixeuil, Xavier Urbain: Synchronous Gathering Without Multiplicity Detection: A Certified Algorithm. SSS 2016: 7-19

Convergence \& Gathering

Quentin Bramas, Sébastien Tixeuil. Wait-Free Gathering Without Chirality. SIROCCO 2015: 313-327

Convergence \& Gathering

	Convergence	2-Gathering	n-Gathering	n-Gathering +MD	n-Gathering + MD + WF
FSYNC	Yes	Yes	Yes	Yes	Yes
SSYNC	Yes	No	No	Yes	Yes
ASYNC	Yes	No	No	Yes	?

Mark Cieliebak, Paola Flocchini, Giuseppe Prencipe, Nicola Santoro. Distributed Computing by Mobile Robots: Gathering. SIAM J. Comput. 41(4): 829-879 (2012)

Pattern Formation

Pattern Formation

Initial configuration
-

The goal is to form the pattern, and then stay stationary

Pattern Formation

Initial configuration

No, so from now, we assume the initial configuration does not have points of multiplicity

Pattern to form \quad Initial configuration P

NO

Guiseppe Prencipe. Impossibility of gathering by a set of autonomous mobile robots. Theor. Comput. Sci. 384(2-3): 222-231 (2007)

Pattern Formation

Initial configuration

Is it possible?

YeS, if robots agree on a common North and a common Right Yes, if robots agree on a common North and n is odd

Pattern Formation

Initial configuration P

- -

.assuming a common chirality, and F does not have multiplicity points

$$
\begin{array}{ll}
\text { Yes, if } \rho(P) \mid \rho(F) & \begin{array}{l}
\text { where } \rho(P) \text { is the symmetricity of } P, \\
\text { the maximum integer such that the rotation by } \quad 2 \pi / \rho(P) \\
\text { is invariant for } P
\end{array} \\
\text { No, otherwise } &
\end{array}
$$

Nao Fujinaga, Yukiko Yamauchi, Hirotaka Ono, Shuji Kijima, Masafumi Yamashita: Pattern Formation by Oblivious Asynchronous Mobile Robots. SIAM J. Comput. 44(3): 740-785 (2015)

Pattern Formation

Initial configuration P

Is it possible?
-
-
..assuming a common chirality, and F does not have multiplicity points
Yes, if $\rho(P) \mid \rho(F)$
where $\rho(P)$ is the symmetricity of P the maximum integer such that the rotation by $2 \pi / \rho(P)$ is invariant for P
No, otherwise

Nao Fujinaga, Yukiko Yamauchi, Hirotaka Ono, Shuji Kijima, Masafumi Yamashita Pattern Formation by Oblivious Asynchronous Mobile Robots. SIAM J. Comput. 44(3): 740-785 (2015)

Pattern Formation

Initial configuration P

Is it possible?
assuming a common chirality, and F does not have multiplicity points
Yes, if $\rho(P) \mid \rho(F) \quad$ where $\rho(P)$ is the symmetricity of P, the maximum integer such that the rotation by $2 \pi / \rho(P)$ is invariant for P

Nao Fujinaga, Yukiko Yamauchi, Hirotaka Ono, Shuji Kijima, Masafumi Yamashita:
Pattern Formation by Oblivious Asynchronous Mobile Robots. SIAM J. Comput. 44(3): 740-785 (2015)

Pattern Formation

```
Initial configuration P
- -
- - 
P
nitial configuration \(P\)
```

 -
 -
    ```
- -
```

.assuming a common chirality, and F does not have multiplicity points
Yes, if $\rho(P) \mid \rho(F) \quad$ where $\rho(P)$ is the symmetricity of P, the maximum integer such that the rotation by $2 \pi / \rho(P)$ is invariant for P
No, otherwise
Nao Fujinaga, Yukiko Yamauchi, Hirotaka Ono, Shuji Kijima, Masafumi Yamashita: Pattern Formation by Oblivious Asynchronous Mobile Robots. SIAM J. Comput. 44(3): 740-785 (2015)

Pattern Formation

Initial configuration P

- - -

Pattern to form F

.assuming a common chirality, and F does not have multiplicity points
Yes, with a randomized algorithm
... assuming robots do not "pause" while moving
... and using infinitely many random bits per activation

Pattern Formation

Pattern to form F

- -

No, otherwise
Nao Fujinaga, Yukiko Yamauchi, Hirotaka Ono, Shuji Kijima, Masafumi Yamashita: Pattern Formation by Oblivious Asynchronous Mobile Robots. SIAM J. Comput. 44(3): 740-785 (2015)

Pattern Formation

Initial configuration P

Pattern to form F

Is it possible?

..assuming a common chirality, and F does not have multiplicity pointes
Yes, with a randomized algorithm
F is not a point
... assuming robots do not "pause" while moving really asynchronous . and using infinitely many random bits per activation only one random bit Arbitrary Pattern Formation. PODC 2016: 443-445

| ASY F¢@ | | | |
| :---: | :---: | :---: | :---: |
| Pattern | Agreement | Chirality | Randomization |
| Point | Yes | No | ? |
| Divide Symmetricity | Yes | Yes | Yes |
| No Multiplicity | Yes | No | Yes |
| Not a Point | Yes | No | Yes |
| Arbitrary | Yes | No | ? |

Mobile Robots

\& morgan\&chatpot munishios

Distributed Computing by
Oblivious Mobile Robots

```
Paola Flocchini Giuseppe Prencip
``` Nicola Santoro

SDsuxss Lmenesav

\section*{Static Networks}
- Fundamental, well established model
- Space-centric, complexity results
- Time-centric, computability results

\section*{Mobility as an Adversary}
- Can corrupt the distributed state of a network
- Can reduces communication capacity
- Can increase uncertainty
- Can increase protocol complexity

\section*{Mobility as a Friend}
- Mobility can be the solution to the problem
- Mobility can improve efficiency
- Mobility can promote simplicity

\section*{Thank You}```

