Reconstructions of Noisy Digital Contours with Maximal Primitives Based on Multi-Scale/Irregular Geometric Representation and Generalized Linear Programming

PASCAL
université Clermont Auvergne

Antoine Vacavant ${ }^{1}$ Bertrand Kerautret ${ }^{2}$ Tristan Roussillon ${ }^{3}$ Fabien Feschet ${ }^{1}$ ${ }^{1}$ Institut Pascal, UMR6602 CNRS / Université Clermont Auvergne, France ${ }^{2}$ LORIA, UMR7503 CNRS / Université de Lorraine, France䃌 Loria LIRIS ${ }^{3}$ LIRIS, UMR5205 CNRS / INSA-LYON, France

Overview

$>$ Our contribution: novel approach dedicated to noisy contour representations

- An extension of [1] enabling calculation of maximal primitives

\triangleright Straight line segments
$>$ Circular arcs
- Strenghts and originalities:
\triangleright Unsupervised method, without any parameter
$\triangleright 1$-D intervals represent the contour, from multi-scale and irregular-grid-based analyses \triangleright Generalized linear programming (GLP) calculates maximal primitives from intervals
- Tested with synthetic and real images

Multi-scale noise detection

- Detects automatically the local amount of contour noise [2]
- Based on multi-scale profile / asymptotic properties of maximal segments
- Multi-scale output: Large boxes represent large uncertainties

- Meaningful boxes cannot be used directly to reconstruct primitives

Irregular isothetic cyclic representation

- We use irregular isothetic objects
- Composed of cells: adjacent axes-aligned boxes
- Meaningful boxes analyzed along X and Y axes
- Reconstructs 2 k-curves (cyclic set of cells)
- Each k-curve converted into 1-D intervals
-2 sets of segments aligned along X - and Y -axes
- Merged to obtain a single list of 1-D intervals

\qquad

Recognition of Straight Segments and Circular Arcs

- 1-D intervals analyzed by GLP
- Interval endpoints:
- black (external) points
$>\circ$ white (internal) points
- Solving GLP $=$ finding primitives enclosing \circ and not \bullet
- Easy-to-implement, fast and incremental algorithm [3]

Experimental results

- II. Complete pipeline with a scanned character
- Compared with vectorization by MLP (Minimum Length Polyline)

Input image \& meaningful boxes
Vectorization (MLP)

Maximal segments
Input contour
Maximal arcs
- III. Final results with a large image with 2 contours
\triangleright External contour: 1,364 boxes
\triangleright Internal contour: 1,234 boxes

Future works

\checkmark Our next step: exploit tangential cover to compute minimal number of primitives [4]
Enables the calculation of a single contour representation based on maximal arcs and segments

- Compare our contribution to other approaches from state-of-the-art

Evaluate their robustness with datasets of binary shapes (e.g. KIMIA)

- How to reconstruct shapes with other geometrical primitives (B-splines, etc.)?

Maximal segments

MLP

References

