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Abstract. In this paper, we present an original algorithm to build a
polygonal reconstruction of noisy digital contours. For this purpose, we
first improve an algorithm devoted to the vectorization of discrete ir-
regular isothetic objects. Afterwards we propose to use it to define a
reconstruction process of noisy digital contours. More precisely, we use
a local noise detector, introduced by Kerautret and Lachaud in IW-
CIA 2009, that builds a multi-scale representation of the digital contour,
which is composed of pixels of various size depending of the local amount
of noise. Finally, we compare our approach with previous works, by con-
sidering the Hausdorff distance and the error on tangent orientations
of the computed line segments to the original perfect contour. Thanks
to both synthetic and real noisy objects, we show that our approach
has interesting performance, and could be applied in document analysis
systems.

1 Introduction

The representation of graphical objects (such as symbols, line drawings, char-
acters, etc.) with line segments is an important task for various document and
image analysis applications. This vectorization stage has been widely studied
since the 90’s, and many algorithms have been designed [4, 6, 18]. Discrete or
digital contours are natural outputs of image segmentation algorithms or digi-
tization processes (e.g. document scanning). In most cases, digital contours are
not perfect digitizations of ideal shapes but present noise and irregularities. In
this case, classical approaches of contour detection generally need a parameter,
and the output has to be filtered and post-processed (see Fig. 1 for an example
with the Canny edge detector).

⋆ This work has been supported by the French National Agency for Research with the
reference ANR-10-CORD-005 (REVES project).



2 A. Vacavant, T. Roussillon, B. Kerautret

(a)

(b)

Fig. 1. The Canny edge detector applied on two images with two sets of paremeters.
For image (a), even if we could obtain an interesting result, a post-process is necessary
to filter the output of the detector in order to compute a linear contour. A very noisy
image (b) cannot be efficiently handled by this detector, even with various parameters

Lately, two different approaches have been proposed in the digital geometry
community. (i) The noisy digital contour (or a thick digital curve around it) is
partitioned into thick (or blurred) segments [13, 5]. This last approach requires
a global thickness parameter and thus cannot handle noises that are not uni-
form. (ii) To cope with this problem an adaptive pixel resizing method has been
proposed in [12]. The idea is interesting but its implementation (as described in
[12]) has several drawbacks. Firstly, the resizing function (which is not explic-
itly given) is based on the length of the symmetric tangents computed on the
digital contour at the initial scale. Second, the resized pixels overlap so that the
polygonalization is performed by a complex generalized preimage algorithm. Fi-
nally, the set of resized pixels may not be homotopic to the input digital contour
and the topological control process proposed by the authors requires a skeleton
computation.

In this paper, we propose a novel approach to compute a polygonal recon-
struction from a noisy digital contour. For this purpose, we compute a set of
resized pixels from a noisy digital contour thanks to a local noise detector [7].
The idea is to locally look at the length of the maximal digital straight segments
lying on the input digital contour at decreasing resolutions. The resolution be-
yond which we observe that the evolution of the length of the maximal segments
is similar to the theoretical behavior for digitizations of smooth shapes does not
contain any noise. The pixels at this resolution corresponds to bigger pixels at
the initial resolution so that the higher the amount of noise is, the biggest the
pixels are.

This set of resized pixels is transformed into an irregular isothetic object com-
posed of rectangular cells and whose topology is stored into a Reeb graph [15].
For the reconstruction, each arc is vectorized into a polygonal line. The polygonal
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lines are then linked together so that the resulting polygonal structure reflects
the topology of the irregular isothetic object.

In [15], arcs are vectorized following a visibility cone approach. Even if this
reconstruction method has a linear-time complexity, it is a greedy approach that
may induce an increasing error that leads to some very short segments and very
acute turn angles. In this paper, we segment each arc into straight parts in linear-
time using O’Rourke’s algorithm [10], which is much simpler than the generalized
preimage approach of [12]. We then propose two different reconstructions: (i) the
first one takes into account the shape of the preimage of each straight part so that
the resulting polygon lies within the irregular isothetic object, (ii) the second
one is a simpler method, more convenient for objects that contain straight parts,
but the resulting polygon may not completely lie within the irregular isothetic
object.

In the next section, we recall definitions about irregular isothetic objects, and
the previous work of [15]. We then describe our polygonalization methods and
use it in order to reconstruct a noisy digital contour. Finally, we present several
experiments and comparisons.

2 Preamble and Previous Work

2.1 Definitions

In this section, we first recall the concept of irregular isothetic grids (I-grids) in
2-D, with the following definition [3, 17].

Definition 1 (2-D I-grid). Let R be a closed rectangular subset of R2. A 2-D

I-grid G is a tiling of R with non overlapping rectangular cells whose edges are

parallel to the X and Y axes. The position of each cell R is given by its center

point (xR, yR) ∈ R
2 and its length along X and Y axes by (lxR, l

y
R) ∈ R

∗
+
2.

We say that two cells R1 and R2 are ve-adjacent if they share either a vertex
or an edge, and e-adjacent if they share an edge. In a more general way, we
say that R1 and R2 are k-adjacent, and k may be interpreted as e or ve in
the following definitions. A set of cells E is a k−arc iff for each element of
E = {Ri}1≤i≤n, Ri has exactly two k−adjacent cells, except R1 and Rn. A set
of cells E is a k−object iff for each couple of cells (R1, R2) ∈ E × E , there exists
a k−arc between R1 and R2 in E (Fig. 2, left)).

We consider an order relation based on the cells borders. We denote the left,
right, top and bottom borders of a cell R respectively RL, RR, RT and RB. The
abscissa of RL, for example, is equal to xR − (lxR/2) and for sake of clarity we
write it RL = xR − (lxR/2).

Definition 2 (Order relation on an I-grid). Let R1 and R2 be two cells of

an I-grid G. We define the total order relation �L, based on the cells borders:

∀R1, R2 ∈ G,R1 �L R2 ⇔ RL
1 < RL

2 ∨
(

RL
1 = RL

2 ∧RT
1 ≤ RT

2

)

.

This order relation is of great importance either for the Reeb graph computa-
tion or for the segmentation of each k-arc into straight parts using O’Rourke
algorithm, which requires that the input ranges have increasing x-coordinate.
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2.2 Previous Algorithm for Irregular Object Vectorization

(a)

�L

(b)

Fig. 2. (a) An example of an irregular object E (left), the final recoded structure with
arcs, the obtained polygonalization (right) and the Reeb graph associated to the order
defined on E (bottom) [16]. In (b), we show the recognized k−arcs and the associated
Reeb graph for some iterations of this algorithm, in respect to the �L order.

The work of Vacavant et al. [15] aimed to develop an algorithm that vectorizes
a k-object with line segments. This method is divided into two main steps.

Representation of the Topology of an Irregular Object. The Reeb
graph [11] of the input irregular k-object E is a way of representing the topology
of E . The k-object E is scanned from left to right according to the order induced
by �L, given in Definition 2 (see Fig. 2 for an example).

At the beginning, the intersection between E and the scanning vertical line
has only one connected part and the Reeb graph is created with one edge between
two nodes (b for begin and e for end). If a connected part splits into several parts,
we add a node (s for split) from which start as many edges as there are parts.
Conversely, if two connected parts merge, we link the corresponding edges to a
node (m for merge) (see Fig. 2).

Moreover, the initial set of cells is recoded into a new one (without changing
the shape of the object however) so that each edge of the Reeb graph corresponds
to a k-arc having cells of increasing left border. This is done during the scan.
We merge with the cell having the smallest left border, all its k-adjacent cells
by using the following update procedure.

Update procedure. Let A be a k−arc, and R1 and R2 two adjacent cells of E
such that R1 ∈ A, RL

1 < RL
2 , and R2 adjacent to A (and thus should be added

to A). If RL
2 = RR

1 , one just add R2 to A, else the procedure updates the k−arc
A with R2, and may recode A. For that, it first builds the greatest common

rectangle (GCR) F2 of R1 and R2. This GCR is the greatest rectangle that can
be contained in R1∪R2 [15]. Then, Vacavant et al. consider the rectanglesR1−F2

and R2 − F2. If R
R
1 < RR

2 , they denote R1 − F2 = F1 and R2 − F2 = F3. The
k-arc A is finally updated with respect to five main configurations (see Fig. 3).
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(a) (b) (c) (d) (e)

Fig. 3. Description of rectangles F1, F2 and F3 in the update procedure. When RR

1 <

RR

2 (a and b), R1 − F2 = F1 and R2 − F2 = F3, else R1 − F2 = {F1, F3} (c, d and e).
If RR

1 = RL
2 , F2 = ∅, when RR

1 = RR
2 , F3 = ∅ and finally F1 = ∅ in the case RL

1 = RL
2 .

Polygonal Reconstruction of an Irregular Object. The construction of the
polygonal structure of E is performed by reconstructing each k-arc that recodes
E . This stage is driven thanks to a visibility cone approach inspired from [14]
(see also Fig. 4). Even if this algorithm is linear-time, it is a greedy approach
that could leads to some very short segments and acute angles.

Fig. 4. The visibility cone approach incrementally produces a polygonal reconstruction
with a partial preimage (left). In our contribution, we use the O’Rourke’s algorithm in
order to obtain a complete preimage representation (right). We also show an example
of reconstruction that we describe in the section 3.

3 Unsupervised Polygonalization of Noisy Digital

Contours

3.1 A Novel Approach to Vectorize Irregular Isothetic Objects

The polygonal reconstruction of E is again performed by reconstructing each k-
arc that recodes E . Though, instead of decomposing a given k-arcA into segments
lying into a visibility cone like in [15], we decompose it into straight k-arcs, i.e.
sets of k-adjacent cells that can cover a straight line and whose preimage is thus
not empty. In Fig. 4 (right), we present the result of this kind of process on a
simple k-arc decomposed into four straight parts.

Originally, O’Rourke’s algorithm [10] aimed to solve a linear inequality sys-
tem. Given n ranges {[αk, ωk]}k=1,n ordered by time tk, with t1 < . . . < tn,
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this approach computes all the lines u = mt + b that pass through each range,
i.e. all pairs (m, b) such that αk ≤ mtk + b ≤ ωk. In our case, the input ranges
are the intersections between two successive cells of A. These intersections are
vertical straight segments (possibly degenerated as a point) whose the extrem-
ity of greatest (resp. smallest) y-coordinate is called upper (resp. lower) input
point. Due to the construction of the k-arc, the vertical straight segments are of
increasing x-coordinate and O’Rourke’s algorithm can thus be applied in order
to compute the preimage of each straight part of A.

Even if O’Rourke originally explains its algorithm in the dual plane (m, b)
[10], we can avoid explicit transformations and only work in the primal plane
(u, t). The preimage is implicitely described by some consecutive vertices of the
lower (denoted by L) and upper (denoted by U) convex hull of respectively the
upper and lower input points.

We now describe a first algorithm that takes into account the shape of the
preimage of each straight parts (Algorithm 1-C2, lines 7-25). It computes a
polygonal line that completely lies within the k-arc.

In Fig. 5, we depict several iterations of this algorithm on a straight part.
Points pa and pc are initialized as the first two points of U , while pb and pd as
the ones of L (Fig. 5-(a)). If pc.x > pd.x (i), we move forward pb and pd, whereas
if pc.x < pd.x (ii), we move forward pa and pc. If pc.x = pd.x (ii), we move both
pairs of points. In either case, the middle of the intersection between a vertical
line passing by pc.x in case (i) (Fig. 5-(c)) or pd.x in case (ii) (Fig. 5-(b)) and
the preimage is the new vertex of the polygonal reconstruction. The process is
linear-time and the resulting polygonal line lies inside the k-arc.

(a) (b) (c) (d)

Fig. 5. Illustration of Algorithm 1-C2 on a preimage obtained from O’Rourke process.
(a) is the initialization step, (b) is an update step of the reconstruction implying a
lower input point, (c) a upper one, and (d) is the obtained polygonal reconstruction of
the underlying straight k-arc. Algorithm 1-S2 consists in joining the first and the last
point of this reconstruction.

We also develop an other algorithm (Algorithm 1-S2, lines 4-6) that con-
structs one straight line per k-arc passing through the middle of the first and
last input range. Even if the resulting polygonal line may be partly out of the
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Algorithm 1: Polygonal reconstruction of a straight k-arc based on its preimage.

input : a preimage P computed from a straight k-arc A, represented with its upper convex
hull points U of size nU and the lower convex hull points L of size nL, and the
version selected

output: a polygonal structure computed inside P, stored in the list of points R
u← 0, l← 0 ;1

pa ← U [u], pc ← U [u+ 1], pb ← L[l], pd ← L[l + 1] ;2

d← pc.x− pd.x ;3

if version = S2 then {Version S2: Simple and Straight reconstruction}4

p1 ← middle(L[0],U [0]) ;5

p2 ← middle(L[nL − 1],U [nU − 1]) ;6

R ← {p1, p2} ;7

if version = C2 then {Version C2: Complete and Curved reconstruction}8

do9

while d < 0 ∧ u < nU do {Update R from upper convex hull}10

∆: line of equation x = pc.x, pI ← ∆ ∩ [pb, pd] ;11

R ← R∪middle(pI , pc) ;12

u← u + 1 ;13

pa ← pc, pc ← U [u] ;14

d← pc.x− pd.x ;15

while d > 0 ∧ l < nL do {Update R from lower convex hull}16

∆: line of equation x = pd.x, pI ← ∆ ∩ [pa, pc] ;17

R ← R∪middle(pI , pd) ;18

l← l + 1 ;19

pb ← pd, pd ← L[l] ;20

d← pc.x− pd.x ;21

while d = 0 ∧ u < nU ∧ l < nL do {Update R from upper and lower convex hulls}22

R ← R∪middle(pc, pd) ;23

u← u + 1, l← l + 1 ;24

pa ← pc, pc ← U [u], pb ← pd, pd ← L[l] ;25

d← pc.x− pd.x ;26

while u < nU ∨ l < nL ;27

return R ;28

k-object, this is an interesting way of decomposing an irregular object into a few
line segments.

We show in Fig. 6 an example of the use of our contribution (computation of
the complete preimage and reconstruction into line segments with Algorithm 1-
C2) on an irregular object, result of a quadtree decomposition. In the following,
we show how to use these algorithms to vectorize noisy digital contours.

3.2 Polygonalization of Noisy Contours by an Irregular Discrete
Approach

We now propose to analyze noisy digital contour by using Kerautret and
Lachaud’s local noise detector [7]. This a method for estimating locally if the
digital contour is damaged, what is the amount of noise and what are the high-
est resolution at which a part of the contour should be considered as noise-free.
Depending on the selected resolution, a part of the contour is covered by a pixel
of a given size at the initial resolution. The higher the amount of noise is, the
biggest the pixels are.

In Fig. 7-(b), we show an example of the output of this parameter-free algo-
rithm applied to the noisy digital object depicted in Fig. 7-(a).
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(a) (b) (c) (d) (e)

Fig. 6. Illustration of our contribution on an object digitized with a quadtree (a). (b)
is the complete preimage computed on each k-arc encoding the object. One could note
that the k-arc at the bottom is decomposed into two straight k-arcs. In (c), we present
the reconstruction of a single k-arc, and the associated preimage and upper/lower
convex hull points. We also depict the complete polygonal reconstruction of the object,
constructed inside the preimage (d), and the final contour obtained with our filtering
procedure explained in Section 3.2

As shown in Fig. 7-(b), the resized pixels overlap and thus cannot be viewed
as an irregular isothetic object (Definition 1). However each resized pixel con-
tain a given number of pixels (at the initial resolution) so that the set of resized
pixels cover a subset of the input image. This subset, which is an irregular iso-
thetic object, is the input of our reconstruction method described in the previous
sections.

The input digital contour is always homotopic to a ring (one connected com-
ponent and one hole). However, as in [12], the set of resized pixels may not be
homotopic to the input digital contour. We can imagine that the set of resized
pixels may not contain any hole or may contain more than one hole.

Thanks to the Reeb graph, which encodes the topology of the input object,
we can decide whether we are in a general case (one cycle) or not (none or more
than one cylce).

Moreover, in the general case, we can choose to not process the k-arcs that do
not belong to the cycle so that the polygonal reconstruction is a simple polygon
(Algorithm 2). For instance, only reconstructing the cycle linking nodes s, m,
m, m in Fig. 7-(d) is a way of avoiding extra polygonal lines pointed by arrows
in Fig. 7-(c).

Algorithm 2: Filtering of the k-arcs and the Reeb graph encoding a noisy object.

input : the set of k-arcs recoding it A and its associated Reeb graph G
output: the sets A,G are filtered in order to obtain a polygonal contour
foreach k-arc a ∈ A do1

x: the associated edge of a in G ;2

if x = b − m ∨ x = b − s ∨ x = s − e ∨ x = m − e then
3

remove x from G ;4

remove a from A ;5

return A,G ;6
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(a) (b) (c) (d)

Fig. 7. From a noisy contour (a), we build a set of resized pixels (b). Then, we filter
the result of our vectorization algorithm by removing k-arcs that do not belong to the
polygonal minimal contour (the ones pointed by arrows). To do so, we remove their
associated edges in the Reeb graph (d).

4 Experimental Results

To experiment the quality of the proposed approach, we first consider a polygonal
shape that was perturbed by a Gaussian noise, with different standard deviations
(σ0 = 0, σ1 = 75, σ2 = 125, σ3 = 175). These images were generated with two
different grid sizes h = 1 and 0.5 (Fig. 8 (a,c)). The resized pixels (illustrated
on images of Fig. 8 (b,d)) were obtained from the digital contours extracted by
using a simple threshold (set to 128) (images (e,i)). The quality measures were
given by the total number of points (n), the mean minimal euclidean distance
(Ed) between the source contour points Pi to the resulting polygon, and the
error on tangent orientations (θ2err). The measure Ed was obtained after asso-
ciating each contour points Pi of the initial shape (non noisy) to the nearest
consecutive vertex pair Vk, Vk+1. These associations were also used to determine
the tangent error θ2err where θerr is the angle between the tangent vector defined
from Vk, Vk+1 and the tangent provided by the λ −MST estimator [8] applied
on the source discrete contour.

The experiments confirm the awaited improvements provided by the Algo-
rithm 1-C2 (Alg1-C2 in short) in comparison with the use of the algorithm based
on visibility cone [15] (denoted as Alg-VC). It is visible especially for the tangent
error measure θ2err but also for the distance error Ed. The second variant Al-
gorithm 1-S2 (Alg1-S2 in short) produces a more compact representation while
preserving a moderate tangent error θ2err. However this last algorithm is less
convenient on the point of view of the Ed error.

The Algorithm 1-C2 was also experimented on real images of characters,
acquired from a photographed document. A given threshold was used to extract
the digital contours on which the resized pixels were computed (as illustrated
on the second row Fig. 9). We thus show that our vectorization algorithm could
be applied in document analysis systems.

Finally, we compare our methods with algorithms developed by Nguyen and
Rennesson [9] which are based on a global optimization scheme in association
with the Marji’s criteria (MC) or another one proposed by the authors (NC). In
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(a) source, h = 1 (b) multi-scale levels (c) source, h = 0.5 (d) multi-scale levels

sc
a
le

h
=

1

(e) noisy contour (f) Alg-VC, n = 33 (g) Alg1-C2, n = 60 (h) Alg1-S2, n = 9
n = 544 Ed = 0.80, θ2

err
= 0.12 Ed = 0.83, θ2

err
= 0.06 Ed = 2.73, θ2

err
= 0.07

sc
a
le

h
=

0
.5

(i) noisy contour (j) Alg-VC, n = 69 (k) Alg1-C2, n = 91 (l) Alg1-S2, n = 12
n = 1004 Ed = 0.74, θ2

err
= 0.12 Ed = 0.65, θ2

err
= 0.04 Ed = 2.99, θ2

err
= 0.05

Fig. 8. Illustration of the reconstruction algorithms. The first row shows the multi-
scale levels obtained from the source contours (e,i). The second and third rows show
error measures for algorithms Alg1-VC (that uses previous work), Alg1-C2 and Alg1-S2
described in this article. These results were obtained with resp. the scale h = 1 and 0.5

Fig. 10, we present the polygonal contour obtained from our methods, and from
the NC and MC algorithms which are both parameter free approaches. For each
experiment, we measure the Hausdorff error (δH) and the previously described
errors. The comparisons show that the proposed approaches are less compact
than both the NC or MC but provide better precision for the δH and Ed errors.
On the point of view of the tangent orientation error θ2err our approaches with
Alg1-C2 or Alg1-S2 are comparable with the one of the NC algorithm.

5 Conclusion and Future Works

In this paper, we address the problem of reconstruction of noisy digital con-
tours. We transform the resized pixels obtained by Kerautret and Lachaud’s
algorithm [7] into an irregular isothetic object recoded in a set of k-arcs whose
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Fig. 9. The meaningful boxes extracted from scanned characters (center), and the final
reconstruction we propose with Alg1-C2 (bottom).

(a) source δH = 11.40 (b) Alg-VC δH = 6 (c) Alg1-C2 δH = 6.07
Ed = 0.757, θ2err = 0.130 Ed = 0.713, θ2err = 0.076

(d) Alg1-S2 δH = 8.92 (e)Nguyen Criteria δH = 10.81 (f)Marji Criteria δH = 10.63
Ed = 1.236, θ2err = 0.071 Ed = 1.221, θ2err = 0.062 Ed = 2.878, θ2err = 0.131

Fig. 10. Comparisons of the proposed approaches with others recent parameter free
approaches [9].
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topology is stored into a Reeb graph. We then vectorize it with two different
linear-time methods that improve a previous work of Vacavant et al. [15].

As a future work, we plan to use the Reeb graph to deal with degenerate
cases. We also want to consider the possibility to improve the reconstruction by
using information of flat and curved parts of the processed noisy objects, since
this information can be extracted from the meaningful scale detection [7].
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