
Information flow in logic programming
Ali Awada1, Philippe Balbiani2, Antoun Yaacoub2

1 Lebanese University
2 Institut de Recherche en Informatique de Toulouse

Abstract : This paper proposes a theoretical foundation of what could be an in-
formation flow in logic programming. Several information flow definitions (based
on success/failure, substitution answers, bisimulation between resolution trees of
goals) are stated and compared. Decision procedures are given for each definition
and complexity is studied for specific classes of logic programs.
Keywords : Logic programming, Information flow, Computational complexity

1 Introduction
Data security is the science and study of methods of protecting data in computer and

communication systems from unauthorized disclosure and modification. One of the as-
pects of data security is the control of information flow in the system. In some sense, an
information flow should describe controls that regulate the dissemination of informa-
tion. These controls are needed to prevent programs from leaking confidential data, or
from disseminating classified data to users with lower security clearances. The theory
of information flow is well defined for imperative programming. Different models of
information flow were proposed, namely, the Bell-LaPadula Model (Bell & LaPadula,
1973), nonlattice and nontransitive models (Foley, 1989; Denning, 1976) of informa-
tion flow, and nondeducibility and noninterference (Goguen & Meseguer, 1982). Each
model has rules about the conditions under which information can move throughout
the system. For example, in the Bell-LaPadula Model which describes a lattice-based
information flow policy, information can flow from an object in security level A to a
subject in security level B if and only if B dominates A. Both compile-time mecha-
nisms (Denning & Denning, 1977) and runtime mechanisms (Fenton, 1974) supporting
the checking of information flows were also proposed.

Intuitively, information flows from an object x to an object y if the application of a
sequence of commands causes the information initially in x to affect the information in
y. For example, the sequence tmp := x; y := tmp; has information flowing from x to
y because the value of x at the beginning of the sequence is revealed when the value of
y is determined at the end of the sequence. Several studies (Denning, 1982) addressed
information flow in imperative programming, but none were concerned to bring ans-
wers of what could be an information flow in security systems for logic programming.
In fact, logic programming is a well-known declarative method of knowledge repre-
sentation and programming based on the idea that the language of first-order logic is



JIAF 2011

well-suited for both representing data and describing desired outputs. Logic program-
ming was developed in the early 1970s based on work in automated theorem proving,
in particular, on Robinson’s resolution principle.

In this paper, we propose three definitions of information flows in logic programs.
These definitions correspond to what can be observed by the user when a query ←
G(x, y) is run on a logic program P . In section 2 of this paper, we will present some
basic notions about logic programming, syntax and semantics. In section 3, several
definitions of information flow in logic programming are proposed relatively for a logic
program P and a goal ← G(x, y) of arity 2, (which stipulates the existence of a flow that
passes from the variable x to the variable y in the goal ← G(x, y)). The implications
between these definitions are then studied. Decision procedures are then given in section
4 for each of the previous definitions and computational issues studied for some types
of logic programs.

2 Syntax and semantics
In this section, we introduce basic concepts of logic programming. See (Lloyd, 1984;

Baral & Gelfond, 1994) for more details. In this article, we will use p, q, · · · for predi-
cate symbols, x, y, z, · · · for variables, f , g, h, · · · for function symbols, and a, b, c, · · ·
for constants.The language L considered here is essentially that of first order predicate
logic. It has countable sets of variables, function symbols and predicate symbols, these
sets being mutually disjoint. Each function and predicate symbol is associated with a
unique natural number called its arity ; a (function or predicate) symbol whose arity is
n is said to be an n-ary symbol. A 0-ary function symbol is referred to as a constant. A
term is a variable, a constant, or a compound term f(t1, · · · , tn) where f is an n-ary

function symbol and the ti are terms, 1 ≤ i ≤ n. A term is ground if no variable occurs
in it. The Herbrand universe of L, denoted UL, is the set of all ground terms that can
be formed with the functions and constants in L. An atom is of the form p(t1, · · · , tn),
where p is an n-ary predicate symbol and the ti are terms, 1 ≤ i ≤ n. An atom is ground

if all ti are ground. The Herbrand base of a language L, denoted BL, is the set of all
ground atoms that can be formed with predicates from L and terms from UL. A clause

is an expression of the form A ← B1, · · · , Bn where A,B1, · · · , Bn are atoms. A is
called the head of the clause and B1, · · · , Bn is called its body. A goal is an expression
of the form ← B1, · · · , Bn. A clause r of the form A ← (i.e., whose body is empty)
is called a fact, and if A is a ground atom, then r is called a ground fact. The empty
goal is denoted �. A predicate definition is assumed to consist of a finite set (possibly
ordered) of clauses defining the same predicate. A logic program consists of a finite set
of predicate definitions. With each logic program P , we associate the language L(P )
that consists of the predicates, functions, and constants occurring in P . If no constant
occurs in P , we add some constant to L(P ) to have a nonempty domain. A substitution

is an idempotent mapping from a finite set of variables to terms. The identity substitu-
tion will be denoted �. A substitution σ1 is said to be more general than a substitution
σ2 if there is a substitution θ such that σ2 = θσ1. Two terms t1 and t2 are said to be
unifiable if there exists a substitution σ such that σ(t1) = σ(t2) ; in this case σ is said
to be a unifier for the terms. If two terms t1 and t2 have a unifier, then they have a most



Information flow in logic programming

general unifier mgu(t1, t2) that is unique up to variable renaming. In this paper, we
will be interested in

– Datalog programs, i.e. logic programs without function symbols and where each
variable appearing in the head of the clause, must also appear in its body.

– Binary programs, i.e. logic programs such that, the body of every program state-
ment is composed of at most one atom.

– Hierarchical programs, i.e. logic program having a level mapping such that, in
every program statement A(t1, · · · , tn) ← B, the level of every predicate symbol
in B is less than the level of A.

Note that the level mapping of a program is a mapping from its set of predicate
symbols to the non-negative integers. We refer to the value of the predicate sym-
bol under this mapping as the level of that predicate symbol. The operational be-
havior of logic programs can be described by means of SLD-derivations. An SLD-
derivation for a goal G =← A1, · · · , An with respect to a program P is a sequence
of goals G0, · · · , Gi, Gi+1, · · · , such that G0 = G, and if Gi =← B1, · · · , Bm, then
Gi+1 =← θB1, · · · , θBi−1, θB

�
1, · · · , θB�

k, θBi+1, · · · , θBm such that 1 ≤ i ≤ m ;
B ← B

�
1, · · · , B�

k is a variant of a clause in P that has no variable in common with
any of the goals G0, · · · , Gi ; and θ = mgu(Bi;B). The goal Gi+1 is said to be obtai-
ned from Gi by means of resolution step, and Bi is said to be the resolved atom. Let
G0, · · · , Gn be an SLD-derivation for a goal G with respect to a program P , and let
θi be the unifier obtained when resolving the goal Gi−1 to obtain Gi, 1 ≤ i ≤ n. If
this derivation is finite and maximal, i.e., one in which it is not possible to resolve the
goal Gn with any of the clauses in P , then it corresponds to a terminating computation
for G : in this case, if Gn is the empty goal then we say that P?G succeeds and the
computation is said to succeed with answer substitution θ, where θ is the substitution
obtained by restricting the substitution θn · · · θ1 to the variables occurring in G ; if Gn

is not the empty goal, then the computation is said to fail. We say that P?G fails if
all computations from G in P fail. If the derivation is infinite, the computation does
not terminate. Given a program P and a goal G, let Θ(P?G) be the set of all answer
substitutions of G in P .

3 Information flow
As the theory of information flow is well studied for imperative programming, it is

tempting to see what could be an information flow in logic programming, especially
given the fact that there are no notions of assignment, or variable of a program. In fact,
variables in logic programs behave differently from variables in conventional program-
ming languages. They stand for an unspecified but single entity rather than for a store
location in memory. The following three definitions for information flow in logic pro-
gramming are based on the following principle. The information flow that occurs when
the user ask a goal to logic programs depends mainly on what parts of the computation
the user sees. In the first definition, the user only sees whether goals succeed or fail. In
the second definition, the user has access to the set of substitution answers computed by
the program. In the third definition, the user obtains the shape of the computation trees
produced by the program.



JIAF 2011

3.1 Successes and failures
Let P be a logic program, and G(x, y) be a two variables goal. We shall say that there

is a flow from x to y in G(x, y) with respect to successes and failures in P (in symbols

x
SF−→

P

G y) iff there exists a, b ∈ UL(P ) such that P?G(a, y) succeeds and P?G(b, y)
fails.
Example 1 Let P1 be the following program : p(a, b) ← and let G1(x, y) be the
following goal : ← p(x, y). Since P1?G1(a, y) succeeds and P1?G1(b, y) fails, then

x
SF−→

P1

G1
y.

3.2 Substitution answers
Let P be a logic program, and G(x, y) be a two variables goal. We shall say that there

is a flow from x to y in G(x, y) with respect to substitution answers in P (in symbols

x
SA−→

P

G y) iff there exists a, b ∈ UL(P ) such that Θ(P?G(a, y)) �= Θ(P?G(b, y)).
Example 2 Let P2 be the following program : p(a, y) ←, and let G2(x, y) be the
following goal : ← p(x, y). Since Θ(P2?G2(a, y)) = {�} and Θ(P2?G2(b, y)) = ∅,

then x
SA−→

P2

G2
y.

3.3 Bisimulation
Our third definition of flow is based on the notion of bisimulation between goals. Let

P be a logic program and Z be a binary relation between goals. We shall say that Z is
a P − bisimulation iff for all goals G,H , if GZH then :

– for all goals G� ∈ succP (G), there exists H � ∈ succP (H), such that G�ZH
�.

– for all goals H � ∈ succP (H), there exists G� ∈ succP (G), such that G�ZH
�.

– G = � iff H = �.
Above, succP (G) denotes the set of all goals obtained from a goal G by means of a
resolution step in the program P . Obviously,

Lemma 1 The relation identity Id between goals is a P − bisimulation.
Lemma 2 If Z is a P − bisimulation, then Z−1 is also a P − bisimulation.
Lemma 3 If Z1, Z2 are two P − bisimulations, then the composition Z1Z2 defined
by Z1Z2 = {(G,H)/∃I,GZ1I and IZ2H} is also a P − bisimulation.
Lemma 4 Let (Zi)i∈I be a family of P − bisimulations, then ∪

i∈I
Zi is also a

P − bisimulation.

By lemma 4, there exists a maximal P − bisimulation, denoted Zmax.

Example 3 Let P be the following program formed of :
p(a, y) ← q(y) , p(b, y) ← r(y) and p(b, y) ← s(y)
and let G,H be respectively the following goals ← p(a, y) and ← p(b, y)
Let Z be the binary relation between goals such that :

– ← p(a, y) Z ← p(b, y)



Information flow in logic programming

– ← q(y) Z ← r(y)
– ← q(y) Z ← s(y)
Obviously, Z is a P − bisimulation. Since G Z H , then G Zmax H .

By lemmas 1, 2 and 3, we have
Lemma 5 Zmax is an equivalence relation.

Let P be a logic program, and G(x, y) be a two variables goal. We shall say
that there is a flow from x to y in G(x, y) with respect to the bisimulation in P (in

symbols x BI−→
P

G y) iff there exists a, b ∈ UL(P ) such that not G(a, y)ZmaxG(b, y).

Example 4 Let P3 be the following program : p(x, a) ← and p(a, b) ← q(a)
and let G3(x, y) be the goal : ← p(x, y). Let us prove not ← p(a, y)Zmax ← p(b, y).
Suppose that ← p(a, y)Zmax ← p(b, y). Since ← q(a) ∈ succP3(← p(a, y)), then
there should be G3 ∈ succP3(← p(b, y)) such that ← q(a)ZmaxG3. The problem is
that the only goal in succP3(← p(b, y)) is the empty goal, which cannot be bisimilar to

← q(a). Hence, not ← p(a, y)Zmax ← p(b, y). Therefore x
BI−→

P3

G3
y.

3.4 Links between the definitions of information flow
The existence of a flow with respect to substitution answers does not entail the

existence of a flow with respect to successes and failures. To see this, it suffices to
consider the following example.
Example 5 Let P be the following program : p(a, b) ← and p(Z, c) ← and
let G(x, y) be the goal : ← p(x, y). Since Θ(P?G(a, y)) = {y/b, y/c} and

Θ(P?G(b, y)) = {y/c}, then x
SA−→

P

G y. Since P?G(a, y) and P?G(b, y) both

succeed, then x

SF
�−→

P

G y.

However, one can establish the following result.

Lemma 6 Let P be a logic program and G(x, y) be a two variables goal. If

x
SF−→

P

G y then x
SA−→

P

G y.

Proof 1 Suppose that x SF−→
P

G y, then there exists a, b ∈ UL(P ) such that P?G(a, y)
succeeds and P?G(b, y) fails. Therefore, Θ(P?G(a, y)) �= ∅ and Θ(P?G(b, y)) = ∅.

Consequently, x SA−→
P

G y. �

The existence of a flow with respect to bisimulation does not entail the existence of a
flow with respect to successes and failures. The next example explains why.
Example 6 Let P3 and G3 be the program and goal considered in example 4. We know

that x BI−→
P3

G3
y. Nevertheless, since all the goals of the form G3(a, y), with a ∈ UL(P ),

succeed, thus x
SF
�−→

P3

G3
y.



JIAF 2011

Nevertheless, it is worth noting at this point the following.

Lemma 7 Let P be a logic program and G(x, y) be a two variables goal. If

x
SF−→

P

G y then x
BI−→

P

G y.

Proof 2 Suppose that x SF−→
P

G y. Thus, there exists a, b ∈ UL(P ) such that P?G(a, y)
succeeds and P?G(b, y) fails. Suppose that G(a, y)ZmaxG(b, y). Since P?G(a, y)
succeeds, then there exists an SLD-refutation G0, · · · , Gn of G(a, y) in P . That is to
say, G0 = G(a, y), Gn = � and Gi is a successor of Gi−1 in P for i = 1 · · ·n.
Since G(a, y)ZmaxG(b, y) in P , thus P?G(b, y) succeeds : a contradiction. Thus, not

G(a, y)ZmaxG(b, y) and x
BI−→

P

G y. �

4 Decidability / Complexity
We now study the computational complexity of the following decision problems :

πSF

�
Input : A logic program P , a two variables goal G(x, y)

Output : Determine whether x SF−→
P

G y

πSA

�
Input : A logic program P , a two variables goal G(x, y)

Output : Determine whether x SA−→
P

G y

πBI

�
Input : A logic program P , a two variables goal G(x, y)

Output : Determine whether x BI−→
P

G y

4.1 Undecidability
In the general setting, our decision problems are undecidable.

Proposition 1 The three decision problems above are undecidable.
Proof 3 (πSF ) We will reduce the following undecidable decision problem π1

(Devienne et al., 1996) to πSF :

π1

�
Input : A logic program P , a ground goal q(a)
Output : P?q(a) succeeds

Let (P, q(a)) be an instance of π1 and let (P �
, G(x, y)) be the instance of πSF defined

by : P � = P ∪ {G(a, y) ← q(a)}, where G is a new predicate symbol of arity 2. We

need to show that, P?q(a) succeeds iff x SF−→
P �

G y.
(⇒) Suppose that P?q(a) succeeds. Thus P

�?G(a, y) succeeds and P
�?G(b, y) fails,

consequently x
SF−→

P �

G y.

(⇐) Suppose that x SF−→
P �

G y, then there exists a
�
, b

� ∈ UL(P ) such that P �?G(a�, y)
succeeds and P

�?G(b�, y) fails. Thus, a� = a and b
� �= a. Thus, P?q(a) succeeds.



Information flow in logic programming

(πSA) A similar proof applies here.
(πBI ) We will reduce the following undecidable decision problem (Devienne et al.,
1993) to πBI :

π2

�
Input : A binary logic program P , a ground goal q(a)
Output : The SLD-tree of P?q(a) contains a failure branch

Let (P, q(a)) be an instance of π2 and let (P �
, G(x, y)) be the instance of πBI defined

by :

P
� = P ∪






G(a, y) ← q(a)
G(b, y) ← G(b, y) for all b in L(P ) such that a �= b

G(f(x1, · · · , xn), y) ← G(f(x1, · · · , xn), y) for all f in L(P )

Remark that for all a� ∈ UL(P ), the computation tree of P
�?G(a�, y) consists of a

unique infinite branch. We need to show that the SLD-tree of P?q(a) contains a failure

branch iff x BI−→
P �

G y.
(⇒) Suppose that the SLD-tree of P?q(a) contains a failure branch. Thus the SLD-
tree of P �?G(a, y) will eventually contains this failure branch while the SLD-tree of

P
�?G(b, y) will have infinite branche(s). Consequently x

BI−→
P �

G y.

(⇐) Suppose that x
BI−→

P �

G y, then there exists a
�
, b

� ∈ UL(P ) such that not

P
�?G(a�, y)ZmaxP

�?G(b�, y). Hence, either a� or b� is equal to a. Thus (in the case
of a� = a) the SLD-tree of P?q(a) contains a failure branch. �

4.2 Decidability
If one restricts the language to Datalog programs and goals then determining

existence of information flows becomes decidable.

Proposition 2 πSF is EXPTIME-complete for Datalog programs.
Proof 4 (Membership) The following algorithm decides the existence of the information
flow in Datalog programs.
Require: A Datalog program P , a goal ← G(x, y), finite Herbrand Universe UL(P ) =

{a1, · · · , an}

Ensure: x
SF−→

P

G(x,y) y for the Datalog program P and the goal g
1: answer = false ; i = 0 ;
2: while i < n and not answer do
3: i = i+ 1 ; j = i ;
4: while j < n and not answer do
5: j = j + 1 ;
6: if (p?G(ai, y) succeeds and p?G(aj , y) fails) or (p?G(ai, y) fails and

p?G(aj , y) succeeds) then
7: answer = true ;
8: end if



JIAF 2011

9: end while
10: end while
11: return answer ;
This algorithm is deterministic and using the fact that Datalog is program complete
for EXPTIME (Vardi, 1982; Immerman, 1986), it follows that it can be executed in
EXPTIME.
(Hardness) In order to prove EXPTIME-hardness, we consider the following decision
problem known to be EXPTIME-hard (Vardi, 1982) :

π3

�
Input : A Datalog program P , a ground atom A

Output : P?A (A is a logical consequence of P )

Let (P,A) an instance of π3 and let (P �
, g(x, y)) be the instance of πSF defined by

P
� = P ∪{g(a, y) ← A}, where g is a new predicate symbol. Thus P?A iff x SF−→

P �

g y.
(⇒) Suppose that A is a logical consequence of P , thus P

�?g(a, y) succeeds and

P
�?g(b, y) fails. Consequently x

SF−→
P �

g y.

(⇐) Suppose that x SF−→
P �

g y. Then there exists a
�
, b

� ∈ UL(P ) such that P �?g(a�, y)
succeeds and P

�?g(b�, y) fails. Hence, it follows that a� = a and b
� �= a. Thus, P?A. �

Proposition 3 πSA is EXPTIME-complete for Datalog programs.
Proof 5 A proof similar to the previous one applies here. �

Concerning πSF , determining existence of flows is even in Σ2P if one considers
binary hierarchical Datalog programs.

Proposition 4 πSF is in Σ2P for binary hierarchical Datalog programs.
Proof 6 Let us consider the following nondeterministic algorithm with oracle :
Procedure SF(P,G(x, y))
Require: A binary hierarchical Datalog program P , a goal G(x, y).

Ensure: x
SF−→

P

G y

1: choose a, b in UL(P )

2: if (P?G(a, y) ∈ SUCCESSES and P?G(b, y) ∈ FAILURES) then
3: Accept
4: else
5: Reject
6: end if

The oracle SUCCESSES consists in the set of all pairs (P,G) such that G succeeds
in P . Restricting P to binary hierarchical programs, one can show that SUCCESSES
belongs to NP. The oracle FAILURES consists in the set of all pairs (P,G) such that G
fails in P . Restricting P to binary hierarchical programs, one can show that FAILURES
belongs to co-NP. Hence πSF is in Σ2P . �

At the time of writing, we do not know if πSA is in Σ2P too for binary hierarchical
programs. Now, let us address the complexity of deciding the existence of flows with



Information flow in logic programming

TABLE 1 – Complexity results
General setting Datalog programs Binary hierarchical Datalog programs

πSF Undecidable EXPTIME-complete in Σ2P

πSA Undecidable EXPTIME-complete in EXPTIME
πBI Undecidable ? in EXPTIME

respect to our third definition.

Proposition 5 πBI is in EXPTIME for hierarchical binary Datalog programs.
Proof 7 Since EXPTIME = APSPACE, then it suffices to demonstrate that
πBI is in APSPACE for binary hierarchical Datalog programs. In this respect, we
consider the following alternating algorithm :
Procedure bisim(P,G1,G2)
Require: A hierarchical Datalog program P , two goals G1 and G2.
Ensure: Deciding whether G1ZmaxG2

1: case (succ(P,G1), succ(P,G2))
2: - (true, true) :
3: (∀) choose i, j ∈ {1, 2} such that i �= j

4: (∀) choose a successor G�
i of Gi in P

5: (∃) choose a successor G�
j of Gj in P

6: (.) call bisim(P,G�
i, G

�
j)

7: - (true, false) : reject
8: - (false, true) : reject
9: - (false, false) :

10: if (G1 = � iff G2 = �) then
11: accept
12: else
13: reject
14: end if
15: endcase
The subprocedure succ(., .) produces, given a program P and a goal G a Boolean value.
More precisely, succ(P,G) is true iff there exists a goal G� such that G� is derived from
G and P . Obviously, succ(., .) can be implemented in deterministic linear time. Concer-
ning the procedure bisim, seeing that P is hierarchical, it accepts its inputs P,G1, G2

iff G1ZmaxG2. Moreover, seeing that P is binary, bisim can be implemented in poly-
nomial space. �

5 Conclusion
In this paper, we have proposed three definitions of information flow in logic pro-

grams. As proved in section 4.1, determining whether there exists an information flow
is undecidable in the general setting. Hence, a natural question was to restrict the lan-
guage of logic programming as done in section 4.2. Table 1 contains the results we



JIAF 2011

have obtained so far. Much remains to be done. Firstly, in the setting of Datalog pro-
grams, the main difficulty concerning πBI comes from loops or infinite branches in
SLD-refutation trees. Therefore, in order to determine, given a Datalog program P and
two Datalog goals G1 and G2, whether G1ZmaxG2, one can think about using loop
checking techniques and considering either restricted programs, or nvi programs or
svo programs. See (Bol, 1995) and (Bol et al., 1991) for details. Secondly, conside-
ring the unfold/fold transformations introduced by Tamaki and Sato (Tamaki & Sato,
1984) within the context of logic programs optimization, one can ask whether these
transformations introduce or eliminate information flows. Obviously, since folding or
unfolding clauses in logic programs change neither its successes, nor its failures (Ta-
maki & Sato, 1984), nor its substitution answers (Kawamura & Kanamori, 1990), the
information flows based either on successes and failures or on substitution answers are
preserved after applying the transformations of Tamaki and Sato. The same cannot be
said for information flows based on bisimulation. For example, let P0 be the logic pro-
gram containing the following clauses :
C1 : p(a, y) ← q(y) C4 : r(y) ← C7 : p(a�, y) ← s

�(y)
C2 : q(y) ← r(y) C5 : s(y) ← C8 : r�(y) ←
C3 : q(y) ← s(y) C6 : p(a�, y) ← r

�(y) C9 : s�(y) ←

and let G be the goal ← p(x, y). It is easy to verify that x BI−→
P0

G y. To see this, we
sketch, by omitting the different substitutions, the SLD-refutation trees corresponding
to the two goals ← p(a, y) and ← p(a�, y).

← p(a, y)

← q(y)

← r(y) ← s(y)

← p(a�, y)

← r
�(y) ← s

�(y)

SLD-tree(P0? ← p(a, y)) SLD-tree(P0? ← p(a�, y))

Obviously, as not ← p(a, y)Zmax ← p(a�, y), x BI−→
P0

G y. By unfolding C1, the pro-
gram P1 is obtained from P0 by replacing C1 with the following clauses :
C10 : p(a, y) ← r(y) C11 : p(a, y) ← s(y)
In the new transformed program P1, the two SLD-refutation trees of the goals
← p(a, y) and ← p(a�, y) are bisimilar as shown in the figure on the next page.

Thus x � BI−→
P1

G y. Hence, a general question concerns the definition of trans-
formations of logic programs that never introduce or eliminate information flows.



Information flow in logic programming

← p(a, y)

← r(y) ← s(y)

← p(a�, y)

← r
�(y) ← s

�(y)

SLD-tree(P1? ← p(a, y)) SLD-tree(P1? ← p(a�, y))

Références
BARAL C. & GELFOND M. (1994). Logic programming and knowledge representa-

tion. Journal of Logic Programming, 19-20, 73–148.
BELL D. & LAPADULA L. (1973). Secure computer systems : Mathematical founda-

tions and model. The MITRE Corporation Bedford MA Technical Report M74244,
1(M74-244), 42.

BOL R. (1995). Loop Checking in Logic Programming. Amsterdam, the Netherlands :
Dissertation of the CWI (Centre for Mathematics and Computer Science).

BOL R., APT K. & KLOP J. (1991). An analysis of loop checking mechanisms for
logic programs. Theoretical Computer Science, 86, 35–79.

DENNING D. (1976). A lattice model of secure information flow. Commun. ACM, 19,
236–243.

DENNING D. (1982). Cryptography and Data Security. Addison-Wesley.
DENNING D. & DENNING P. (1977). Certification of programs for secure information

flow. Commun. ACM, 20, 504–513.
DEVIENNE P., LEBÈGUE P., PARRAIN A., ROUTIER J.-C. & WÜRTZ J. (1996). Smal-

lest Horn clause programs. The Journal of Logic programming, 27, 227–267.
DEVIENNE P., LEBÈGUE P. & ROUTIER J.-C. (1993). Halting problem of one binary

Horn clause is undecidable. STACS 93, 665, 48–57.
FENTON J. (1974). Memoryless subsystems. The Computer Journal, 17, 143–147.
FOLEY S. (1989). A model for secure information flow. In Security and Privacy, 1989.

Proceedings., 1989 IEEE Symposium on, p. 248–258 : IEEE Computer Society.
GOGUEN J. & MESEGUER J. (1982). Security policies and security models. Security

and Privacy, IEEE Symposium on, 0, 11.
IMMERMAN N. (1986). Relational queries computable in polynomial time. Information

and Control, 68, 86–104.
KAWAMURA T. & KANAMORI T. (1990). Preservation of stronger equivalence in

unfold/fold logic program transformation. Theoretical Computer Science, 75, 139–
156.

LLOYD J. (1984). Foundations of logic programming. Springer-Verlag.
TAMAKI H. & SATO T. (1984). Unfold/fold transformations of logic programs. In

In S.-Å. Tärnlund, editor, Proceedings of The Second International Conference on

Logic Programming, p. 127–139.
VARDI M. Y. (1982). The complexity of relational query languages (extended abstract).

In Proceedings of the fourteenth annual ACM symposium on Theory of computing,
STOC ’82, p. 137–146 : ACM.


