
Revisiting Numerical Pattern Mining
with Formal Concept Analysis

Mehdi Kaytoue1, Sergei O. Kuznetsov2, and Amedeo Napoli1

1 Laboratoire lorrain de recherche en informatique et ses applications (LORIA)
Campus Scientifique, B.P. 70239 – Vandœuvre-lès-Nancy – France

2 Higher school of economics, State University (HSE)
Pokrovskiy Bd. 11 – 109028 Moscow – Russia

Résumé : In this paper, we investigate the problem of mining numerical data in
the framework of Formal Concept Analysis. The usual way is to use a scaling
procedure –transforming numerical attributes into binary ones– leading either to
a loss of information or of efficiency, in particular w.r.t. the volume of extracted
patterns. By contrast, we propose to directly work on numerical data in a more
precise and efficient way, and we prove it. For that, the notions of closed patterns,
generators and equivalent classes are revisited in the numerical context. More-
over, two original algorithms are proposed and used in an evaluation involving
real-world data, showing the predominance of the present approach.

1 Introduction
In this paper, we investigate the problem of mining numerical data. This problem

arises in many practical situations, e.g. analysis of gene and transcriptomic data in bi-
ology, soil characteristics and land occupation in agronomy, demographic data in eco-
nomics, temperatures in climate analysis, etc. We introduce an original framework for
mining numerical data based on advances in itemset mining and in Formal Concept
Analysis (FCA, [1]), respectively condensed representations of itemsets and pattern
structures in FCA [2]. The mining of frequent itemsets in binary data, considering a
set of objects and a set of associated attributes or items, is studied for a long time and
usually involves the so-called “pattern flooding” problem [3]. A way of dealing with
pattern flooding is to search for equivalence classes of itemsets, i.e. itemsets shared by
the same set of objects (or having the same image). For an equivalence class, there is
one maximal itemset, which corresponds to a “closed set”, and possibly several mini-
mal elements corresponding to “generators” (or “key itemsets”). From these elements,
families of association rules can be extracted [3]. These particular itemsets are also re-
lated to FCA , where a concept lattice is built from a binary context and where formal
concepts are closed sets of objects and attributes.

The present work is rooted both in FCA and pattern mining with the objective of
extracting interval patterns from numerical data. Our approach is based on “pattern

IAF’11

structures” where complex descriptions can be associated with objects. In [4], in the
context of gene expression data mining, we introduced pattern structures for numerical
data, and showed how to extract closed interval patterns : an interval pattern is a vector
of intervals, each dimension corresponding to a range of values of a given attribute ; it
is closed when composed of the smallest intervals characterizing a same set of objects.

We here complete and extend this first attempt. Considering numerical data, some
general characteristics of equivalence classes remain, e.g. one maximal element which
is a closed pattern and possibly several generators which are minimal patterns w.r.t.
a subsumption relation defined on patterns. We show that directly extracting patterns
from numerical is more efficient using pattern structures than working with binary data
and associated scaling procedures. We also provide a semantic to interval patterns in
the Euclidean space, and design and experiment algorithms to extract frequent closed
interval patterns and their generators.

The problem of mining patterns in numerical data is usually referred as quantita-
tive itemset/association rule mining [5]. Generally, an appropriate discretization splits
attribute ranges into intervals maximizing some interest functions, e.g. support, confi-
dence. However, none of these works discusses the notion of equivalence classes, closed
patterns, and generators, and this is one of the originality of the present paper.

The plan of the paper is as follows. In the next section, we introduce the problem
of mining numerical data and interval patterns. Then, we recall the basics of FCA and
interordinal scaling. We pose a number of questions that we propose to answer using
our framework of interval pattern structures. We then detail two original algorithms for
extracting closed interval patterns and their generators that we experiment in the last
section. Finally, we end the paper in discussing related work and giving perspectives to
the present research work. Note also that an extended version of this paper can be found
in [6, 7], along with algorithms pseudo-code and a deeper discussion on the usefulness
of interval patterns in classification problems and privacy preserving data-mining.

2 Problem definition
We propose a definition of interval patterns for numerical data. Intuitively, each ob-

ject of a numerical dataset corresponds to a vector of numbers, where each dimension
stands for an attribute. Accordingly, an interval pattern is a vector of intervals, where
each dimension describes the range of possible values for a given numerical attribute
associated with some objects. We only consider finite intervals and that the set of at-
tributes/dimensions is ordered.

Numerical dataset, interval pattern and support. A numerical dataset is given by a
set of objects G, a set of numerical attributes M , where attribute m ∈ M has for range a
set of real numbers Wm. m(g) = w means that w is the value of attribute m for object g.
An interval pattern is a vector of intervals d = �[ai, bi]�i∈{1,...,|M |} where ai, bi ∈ Wmi ,
and each component corresponds to an attribute following a canonical order on vector
dimensions, and |M | denotes the number of attributes. An object g is in the image of
an interval pattern �[ai, bi]�i∈{1,...,|M |} when mi(g) ∈ [ai, bi], ∀i ∈ {1, ..., |M |}. The
support of d, denoted by sup(d), is the cardinality of the image of d.

Revisiting Numerical Pattern Mining with Formal Concept Analysis

m
1
≤

4

m
1
≤

5

m
1
≤

6

m
1
≥

4

m
1
≥

5

m
1
≥

6

m
2
≤

7

m
2
≤

8

m
2
≤

9

m
2
≥

7

m
2
≥

8

m
2
≥

9

m
3
≤

4

m
3
≤

5

m
3
≤

6

m
3
≤

8

m
3
≥

4

m
3
≥

5

m
3
≥

6

m
3
≥

8

g1 × × × × × × × × × × × × ×
g2 × × × × × × × × × × × × ×
g3 × × × × × × × × × × × × ×
g4 × × × × × × × × × × × × ×
g5 × × × × × × × × × × × × ×

TABLE 2 – Interordinally scaled context encoding the numerical dataset from Table 1.

m1 m2 m3

g1 5 7 6
g2 6 8 4
g3 4 8 5
g4 4 9 8
g5 5 8 5

TABLE 1 – A numerical
dataset.

Running example. Table 1 is a numerical dataset with ob-
jects in G = {g1, ..., g5}, attributes in M = {m1,m2,m3}.
The range of m1 is Wm1 = {4, 5, 6}, and we have
m1(g1) = 5. Here, we do not consider either missing values
or multiple values for an attribute. �[5, 6], [7, 8], [4, 6]� is an
interval pattern in Table 1, where a vector dimension i cor-
responds to an attribute mi ∈ M , with image {g1, g2, g5}
and support 3. The fact that ai, bi ∈ Wmi in the definition
of an interval pattern makes the search space finite.

Interval pattern search space. Given a set of attributes M = {mi}i∈{1,|M |}, the
search space of interval patterns is the set D of all interval vectors �[ai, bi]�i∈{1,...,|M |},
with ai, bi ∈ Wmi . The size of the search space is given by

|D| =
�

i∈{1,...,|M |}(|Wmi |× (|Wmi |+ 1))/2

In our example, all possible intervals for m1 are in {[4, 4], [5, 5], [6, 6], [4, 5], [5, 6],
[4, 6]}. Considering also attributes m2 and m3, we have 6× 6× 10 = 360 patterns.

The classical problem of “pattern flooding” in data-mining is even worst for numeri-
cal data. Indeed, with three attributes, there is only 23 = 8 possible itemsets, compared
to the 360 interval patterns in the example with same amount of attributes. A solu-
tion widely investigated in itemset-mining relies on condensed representations with so
called closed itemsets and generators, e.g. in [3]. Moreover, the analysis of numerical
datasets can be considered within the formal concept analysis framework (FCA) [1],
which is closely related to itemset-mining [8]. Accordingly, we are interested in adapt-
ing the notions of (frequent) closed itemsets and their generators to interval patterns
within the FCA framework, and in providing them with appropriate semantics.

3 Interval patterns in FCA
In their seminal book on FCA, [1] define a discretization procedure turning numerical

data into binary data called interordinal scaling. It allows to encode in binary data any
interval of values from a numerical dataset.
Formal concept analysis. FCA starts with a formal context (G,N, I) where G denotes
a set of objects, N a set of attributes, or items, and I ⊆ G×N a binary relation between
G and N . The statement (g, n) ∈ I , or gIn, means : “the object g has attribute n”. The

IAF’11

two operators (·)� define a Galois connection between the powersets (P(G),⊆) and
(P(N),⊆), with A ⊆ G and B ⊆ N : A� = {n ∈ N | ∀g ∈ A : gIn} and
B� = {g ∈ G | ∀n ∈ B : gIn}. A pair (A,B), such that A� = B and B� = A, is called
a (formal) concept, while A is called the extent and B the intent.

From an itemset-mining point of view, concept intents correspond to closed itemsets,
since (.)�� is a closure operator. For any subset B ⊆ N , B�� is the largest itemset having
the same image. An equivalence class is a set of itemsets with same closure (and same
image). A subset B ⊆ N is a generator iff �C ⊂ B with C � = B�. Generators are the
smallest elements w.r.t. set inclusion in an equivalence class.
Interordinal scaling. Given a numerical attribute m with range Wm, interordinal scal-
ing builds a binary table with 2× |Wm| binary attributes. They are denoted by “m ≤ w”
and “m ≥ w”, ∀w ∈ Wm, and called IS-items. An object g has an IS-item “m ≤ w”
(resp. “m ≥ w”) iff m(g) ≤ w (resp. m(g) ≥ w). Applying this scaling to our example
gives Table 2. It is possible to apply classical mining algorithms to process this table
for extracting itemsets composed of IS-items. These itemsets are called IS-itemsets in
the following.

IS-itemsets can be turned into interval patterns, since an IS-item gives a constraint for
an attribute m on its range Wm. For example, the IS-itemset {m1 ≤ 5,m1 ≤ 6,m1 ≥
4,m2 ≤ 9,m2 ≥ 7} corresponds to the interval pattern �[4, 5], [7, 9], [4, 8]�. We have
here the interval [4, 8] for attribute m3, i.e. covering its whole range, since no constraint
in the itemset involves m3. Therefore, mining interval patterns can be considered after
discretizing numerical data. However, this scaling builds binary data with a very im-
portant amount of binary attributes compared to the original ones, even with our small
example. Hence, when original data are very large, the size of the resulting formal con-
text involves hard computations. Accordingly, this raises the following questions : (i)
Can we avoid scaling and directly work on numerical data instead of searching for IS-
itemsets ? (ii) Can we adapt the notions of condensed representations such as closed
patterns and generators for numerical data, and efficiently compute those patterns ? (iii)
What would be the semantics that could be provided to closed patterns and generators ?

4 Revisiting numerical pattern mining
In this section, we answer those questions. First, we show that a closure operator

can be defined for interval patterns based upon their image. Then, we provide interval
patterns with appropriate semantics for defining the notion of equivalence classes of
patterns, closed and generator patterns. After discussing why working with interordinal
scaling is not acceptable thanks to the semantics of interval patterns, we propose two
efficient algorithms for mining closed interval patterns and generators.

4.1 A closure operator for interval patterns
We use the formalism of pattern structures [2], an extension of formal contexts to

complex data in FCA. It defines a closure operator from any partially ordered set of
object descriptions called patterns.

Revisiting Numerical Pattern Mining with Formal Concept Analysis

Formally, let G be a set of objects, (D,�) be a semi-lattice of object descriptions,
and δ : G → D be a mapping : (G, (D,�), δ) is called a pattern structure. Elements
of D are called patterns, and ordered as follows c � d = c ⇐⇒ c � d. Intuitively,
objects in G have descriptions in (D,�). For example, g1 in Table 1 has description
�[5, 5], [7, 7], [6, 6]� where D is the set of all possible interval patterns ordered with �
which is made precise below. Let the two operators (.)� defined as follows, with A ⊆ G
and d ∈ (D,�)

d� = {g ∈ G|d � δ(g)} A� =
�

g∈A δ(g)

These operators form a Galois connection between (P(G),⊆) and (D,�). (.)�� is a
closure operator, meaning that any pattern d such as d = d�� is closed.

Interval pattern structures. Interval patterns can be ordered within a meet-semi-lattice
when the infimum is defined as follows [4]. Let c = �[ai, bi]�i∈{1,...,|M |}, and d =
�[ei, fi]�i∈{1,...,|M |} two intervals patterns. Infimum is given by c � d = �[min(ai, ei),
max(bi, fi)]�i∈{1,...,|M |}. The ordering relation induced by this definition is : c �
d ⇐⇒ [ei, fi] ⊆ [ai, bi], ∀i ∈ {1, ..., |M |}.

Consider now a numerical dataset, e.g. Table 1. (D,�) is the finite ordered set of all
interval patterns. δ(g) ∈ D is the pattern associated to an object g ∈ G. Then :

�[5, 6], [7, 8], [4, 8]�� = {g1, g2, g5}
{g1, g2, g5}� = �[5, 6], [7, 8], [4, 6]�

Hence �[5, 6], [7, 8], [4, 8]� is closed, its closure being �[5, 6], [7, 8], [4, 6]�.

4.2 Semantics
An interval pattern d is a |M |-dimensional vector of intervals and can be represented

by a hyper-rectangle (or rectangle for short) in Euclidean space R|M |, whose sides are
parallel to the coordinate axes. This geometrical representation provides a semantics for
interval patterns. In formal terms, this interpretation is given by I = (R|M |, (.)I) where
R|M | is the interpretation domain, and (.)I : D → R|M | the interpretation function.
Figure 1 gives four interval pattern representations in R2, with only attributes m1 and
m3 of our example. The image of d1 is given by all objects g whose description δ(g) is
included in the rectangle associated with d1, i.e. the set {g1, g3, g4, g5}. We can interpret
the closure operator (.)�� according to this semantics. The first operator (.)� applies to
a rectangle and returns the set of objects whose description is included in this rectangle.
The second operator (.)� applies to a set of objects and returns the smallest rectangle
that contains their descriptions, i.e. the convex hull of their corresponding descriptions.

4.3 Closed interval patterns and generators
Now, we can revisit the notion of equivalence classes of itemsets [3] : an equivalence

class of interval patterns is a set of rectangles containing the same object descriptions
(based on all rectangles in the searchspace given in Section 2). This enables to define
the notions of (frequent) closed interval patterns ((F)CIP) and (frequent) interval pattern
generators ((F)IPG), adapted from classical case.

IAF’11

3

4

5

6

7

8

3 4 5 6

δ(g1)

δ(g2)

δ(g3)

δ(g4)

δ(g5)

m1

m3

d1

d2

d1

d2

d3

d4

d1 = �[4, 5], [5, 8]�
d�1 = {g1, g3, g4, g5}
d2 = �[4, 5], [4, 5]�
d�2 = {g3, g5}
d3 = �[5, 6], [4, 4]�
d�3 = {g2}
d4 = �[6, 6], [4, 8]�
d�4 = {g2}

FIGURE 1 – Interval patterns in the Euclidean space.

Equivalence class, (frequent) closed interval pattern and generator. Two interval
patterns c and d with same image are equivalent, i.e. c� = d� : we write c ∼= d. ∼=
is an equivalence relation, i.e. reflexive, transitive and symmetric. The set of patterns
equivalent to a pattern d is denoted by [d] = {c|c ∼= d} and called the equivalence class
of d. A pattern d is closed, and noted CIP, if there does not exist any pattern e such as
d � e with d ∼= e. Dually, a pattern d is a generator, and noted GIP, if there does not
exist a pattern e such as e � d with d ∼= e. Finally, a pattern d is frequent if its image
has a higher cardinality than a given minimal support threshold minSup.

We illustrate these definitions with two dimensional interval patterns and their repre-
sentation in Figure 1, considering attributes m1 and m3. �[4, 5], [6, 8]� ∼= �[4, 6], [6, 8]�
with image {g1, g4}. �[4, 6], [6, 8]� is not closed as �[4, 6], [6, 8]� � �[4, 5], [6, 8]�, and
both patterns have same image, i.e. {g1, g4}. �[4, 5], [5, 8]� is closed. �[4, 6], [5, 8]� and
�[4, 5], [4, 8]� are the generators of the closed interval pattern d1 = �[4, 5], [5, 8]� with
image {g1, g3, g4, g5}. Among the four patterns in Figure 1, d1 is the only frequent
interval pattern with minSup = 3.

Based on the above semantics, an equivalence class is a set of rectangles containing
the same set of object descriptions, with a (unique) closed pattern corresponding to the
smallest rectangle, and one or several generator(s) that are largest rectangle(s).

4.4 IS-itemsets versus interval patterns
Recall that interordinal scaling allows to build binary data encoding all interval of

values from a numerical dataset. Therefore, one may attempt to mine classical closed
itemsets and generators in these data with existing data-mining algorithms. Here we
show why this should be avoided.

Local redundancy of IS-itemsets. Extracting all IS-itemsets in our example (from
Table 2) gives 31, 487 IS-itemsets. This is surprising since there are 360 possible inter-
val patterns. In fact, many IS-itemsets are locally redundant. For example, {m1 ≤ 5}
and {m1 ≤ 5,m1 ≤ 6} both correspond to interval pattern �[4, 5], [7, 9], [4, 8]� : the
constraint m1 ≤ 6 is redundant w.r.t. m1 ≤ 5 on the set of values Wm1 . Hence there
is no 1-1-correspondence between IS-itemsets and interval patterns. However, there is
a 1-1-correspondence between closed IS-itemsets and CIP only [4]. Later we show that
local redundancy of IS-itemsets makes the computation of closed sets very hard.

Revisiting Numerical Pattern Mining with Formal Concept Analysis

Global redundancy of IS-itemset generators. Since IS-itemset generators are the
smallest itemsets, they do not suffer of local redundancy. However, we remark another
kind of redundancy, called global redundancy : it happens that two different and incom-
parable IS-itemset generators correspond to two different interval pattern generators,
but one subsuming the other. In Table 2, both IS-itemsets N1 = {m1 ≤ 4,m3 ≤ 5}
and N2 = {m1 ≤ 4,m3 ≤ 6}, with same image {g3} are generators, i.e. there does not
exist a subset of these itemsets with same image. However, their corresponding interval
pattern are respectively c = �[4, 4], [7, 9], [4, 5]� and d = �[4, 4], [7, 9], [4, 6]� and we
have d � c, while c� = d�, hence c is not an interval pattern generator.

4.5 Algorithms

We detail a depth-first enumeration of interval patterns, starting with the most fre-
quent one. Based on this enumeration, we design the algorithms MinIntChange and
MinIntChangeG for extracting respectively frequent closed interval patterns (FCIP) and
frequent interval pattern generators (FIPG).

[4,4] [5,5] [6,6]

[4,5] [5,6]

[4,6]

m1 ≤ 4 3

2 5

4m1 ≥ 5

9

8m1 ≥ 6

1

m1 ≤ 5 6

10

7m1 ≥ 5

FIGURE 2 – Depth-first traversal
of (Dm1 ,�).

Interval pattern enumeration. The basic idea of
pattern generation lies in minimal changes for gen-
erating the direct subsumers of a given pattern. For
example, two minimal changes can be applied to
[4, 6]. The first consists in replacing the right bor-
der with the value of Wm1 immediately lower that
6, i.e. 5, for generating the interval [4, 5]. The sec-
ond consists in repeating the same operation for the
left border, generating the interval [5, 6]. Repeating
these two operations allows to enumerate all ele-
ments of (Dm1 ,�). A right minimal change is defined formally as, given a, b, v ∈ Wm,
a �= b, mcr([a, b]) = [a, v] with v < b and �w ∈ Wm s.t. v < w < b while a left mini-
mal change mcl([a, b]) is formally defined similarly. Minimal changes give direct next
subsumers and implies a monotonicity property of frequency, i.e. support of [a, v] is less
than or equal to support of [a, b]. To avoid generating several times the same pattern,
a lectic order on changes, or equivalently on patterns, is defined. After a right change,
one can apply either a right or left change ; after a left change one can apply only a
left change. Figure 2 shows the depth-first traversal (numbered arrows) of diagram of
(Dm1 ,�). Backtrack occurs when an interval of the form [w,w] is reached (w ∈ Wm1),
or no more change can be applied. Each minimal change can be interpreted in term of
an IS-item. For example, if [a, b] corresponds to the IS-itemsets {m ≥ a,m ≤ b} then
mcr([a, b]) = [a, v] corresponds to {m ≥ a,m ≤ b,m ≤ v}, i.e. adding m ≤ v
to the original IS-itemset. The same applies dually to left minimal changes. These IS-
items characterizing minimal changes are drawn on Figure 2. This figure accordingly
represents a prefix-tree, factoring out the effort to process common prefixes or minimal
changes, and avoiding redundancy problems inherent in interordinal scaling. The gen-
eralization to several attributes is straightforward. A lectic order is classically defined
on numerical attributes as a lexicographic order, e.g. m1 < m2 < m3. Then changes
are applied as explained above for all attributes respecting this order, e.g. after applying

IAF’11

a change to attribute m2, one cannot apply a change to attribute m1.
Extracting FCIP with MintIntChange. The pattern enumeration starts with the mini-
mal pattern w.r.t � and generates its direct subsumers with lower or equal support. The
next problem now is that minimal changes do not necessarily generate patterns with
strictly smaller support. Therefore, we should apply changes until a pattern with dif-
ferent support is generated to identify a closed interval pattern (FCIP) but this would
not be efficient. We adopt the idea of the algorithm CloseByOne [9] : before applying
a minimal change, the closure operator (.)�� is applied to the current pattern, allow-
ing to skip all equivalent patterns. Indeed, the minimal pattern d w.r.t. � is closed as
it is given by d = G�. Applying a minimal change returns a pattern c with strictly
smaller support, since d � c and d is closed. If c is frequent, we can continue, apply
the closure operator and next changes in lectic order, allowing to completely enumer-
ate all FCIP. Since a FCIP may have several different associated generators, it can be
generated several times. Still following the idea of CloseByOne, a canonicity test can
be defined according to lectic order minimal changes. Consider a pattern d generated
by a change at attribute mj ∈ M . Its closure is given by d��. If d�� differs from d for
some attributes mh ∈ M such as mh < mj , then d�� has already been generated : it
is not canonically generated, hence the algorithms backtracks.
Extracting FIPG with MintIntChangeG. We now adapt MinIntChange to extract
FIPG, following a well-known principle in itemset-mining algorithms [10]. For any
FCIP d, a minimal change implies that the support of the resulting pattern c is strictly
smaller than the support of d. Therefore, c is a good generator candidate of the next
FCIP. Accordingly, at each step of the depth-first enumeration a FGIP candidate c is
generated from the previous one b, by applying a minimal change characterized by
b��. Then, each candidate c has to be tested to be a true generator or not. We know that
the candidate has no subsumers in its branch with same support. However, it could exist
a branch with another FGIP e with same image and resulting from less changes. Con-
sidering the lectic order on minimal changes, we use a reverse traversal of the tree (see
Figure 2 : 7,8,9,10,1,4,5,2,3,6), as already suggested in the binary case in [10]. Since
generators correspond to largest rectangles, i.e. on which the fewest minimal changes
have been applied, if c is not a generator, a generator e associated to its equivalence
class has already been generated, and c is discarded. To check the existence of e, we
look up in an auxiliary data-structure storing already extracted FGIP. Precisely, if the
data structure contains a FGIP e with same support than candidate c, such that e � c,
c is discarded, and the algorithm backtracks. Otherwise c is declared as a FIPG and
stored. We have experimented the MinIntChangeG algorithm with two well-known and
adapted data structures, a trie and a hashtable.

5 Experiments

We evaluate the performances of the algorithms designed in Java : MinIntChange,
MinIntChangeG-h with auxiliary hashtable and MinIntChangeG-t with auxiliary trie.
Recalling that closed IS-itemsets and CIP are in 1-1-correspondence, we compare the
performance for mining interordinal scaled data with the closed-itemset-mining algo-

Revisiting Numerical Pattern Mining with Formal Concept Analysis

rithm LCMv2
1. For studying the global redundancy effect of IS-itemset generators,

we use the generator-mining-algorithm GrGrowth
2. Both implementations in C++ are

available from the authors. All experiments are conducted on a 2.50Ghz machine with
16GB RAM running under Linux 2.6.18-92.e15. We choose dataset from the Bilkent
repository 3, namely Bolts (BL), Basketball (BK) and Airport (AP), AP being worst
case where each attribute value is different.

Dataset minSupp MinIntChange LCMv2 |FCIP |
BL 80% < 50 < 50 1,130

50% 252 100 32,107
25% 1,215 1,060 171,192
10% 1,821 1,950 268975

1 1,905 2,090 272,223
AP 80% 4,595 1,470 346,741

50% 143,939 149,580 16,214,345
25% 413,805 899,180 58,373,631
10% 506,985 6,810,125 80,504,566

1 517,548 6,813,591 82,467,124

FIGURE 3 – Execution time for extracting FCIP

First experiments compare
MinIntChange for extracting
FCIP and LCMv2 for extract-
ing equivalent frequent closed
IS-itemsets in Table 3. Sec-
ond experiments consist in ex-
tracting frequent interval pat-
tern generators (FIPG) with al-
gorithms MinIntChange-h and
MinIntChange-t. We also ex-
tract frequent itemset genera-
tors (FISG) in corresponding binary data after interordinal scaling with GrGrowth for
studying the global redundancy effect in Table 3.

In both cases, using binary data is better when the minimal support is high (e.g. 90%).
For low supports, a critical issue, our algorithms deliver better execution times. Most
importantly, the global redundancy effect discards the use of binary data, e.g. only 1.6%
of all FISG are actually FIPG in dataset BL. Finally, the algorithm MinIntChangeG-

t outperforms MinIntchangeG-h. MinIntChangeG-t however needs more memory : it
stores each closed set of objects as a word in the trie with associated associated FIPGs.

It is very interesting to analyse the compression ability of closed interval patterns and
generators. For that, we compare in each dataset the number of those patterns w.r.t. to
all possible interval patterns. It gives the ratio of closed (generators) in the whole search
space. In both cases, ratio varies between 10−7 and 10−9. This means that the volume
of useful interval patterns, either closed or generators, is very low w.r.t. the set of all
possible interval patterns, justifying our interest in equivalence classes.

1. http://research.nii.ac.jp/~uno/codes.htm
2. http://www.comp.nus.edu.sg/~wongls/projects/pattern-spaces/grgrowth-v1/
3. http://funapp.cs.bilkent.edu.tr/

Dataset minSupp GrGrowth MinIntChangeG-h MinIntChangeG-t |FIPG| |FISG| |FIPG|
|FISG|

BL 90% < 50 < 50 < 50 176 194 90%
80% < 50 < 50 < 50 1,952 2,823 69%
50% 150 1,212 529 66,350 222,088 29%
25% 3,432 27,988 3,893 411,442 3,559,419 11%
1 123,564 438,214 24,141 1,165,824 69,646,301 1.6%

BK 90% < 50 1,268 1,207 67,737 75,058 84%
85% 4,565 26,154 12,139 554,956 799,574 69%
80% Untractable 512,126 107,700 2,730,812 NA NA

TABLE 3 – Execution time for extracting FIPG and global redundancy evaluation.

IAF’11

6 Concluding remarks
We discussed the important problem of pattern discovery in numerical data with an

original formalization of interval patterns. The classical FCA/itemset-mining settings
are adapted accordingly : from a closure operator naturally rise the notions of equiva-
lence classes, closed and generator patterns, and we designed corresponding algorithms.
An appropriate semantics of interval patterns shows from a theoretical (redundancy) and
practical (computation times) points of view that mining equivalent binary data (encod-
ing all possible intervals) is not acceptable. This is due to the fact the interval patterns
are provided with a stronger partial ordering than IS-itemsets (classical set inclusion),
hence pattern structures yield significantly less generators w.r.t. their semantics.

In data-mining, closed patterns and their generators are crucial for extracting valid
and informative association rules [3], while generators can be preferable to closed pat-
terns following the minimum descriptions length principle. How these notions can be
shifted to interval patterns is an original perspective of research rising questions con-
cerning missing values, fault-tolerant patterns, and interestingness measures that are
critical issues even in classical itemset mining : although the compression ability of
closed interval patterns and generators is spectacular, the number of patterns remains
too high for large datasets. However, bringing the problem of numerical pattern mining
into well known settings may enable these perspectives of research.

References
[1] B. Ganter and R. Wille. Formal Concept Analysis. Springer, 1999.
[2] B. Ganter and S. O. Kuznetsov. Pattern structures and their projections. In 9th Int.

Conf. on Conceptual Structures, LNCS (2120), pages 129–142. Springer, 2001.
[3] Y. Bastide, R. Taouil, N. Pasquier, G. Stumme, and L. Lakhal. Mining frequent

patterns with counting inference. SIGKDD Expl., 2(2) :66–75, 2000.
[4] M. Kaytoue, S. O. Kuznetsov, A. Napoli, and S. Duplessis. Mining gene

expression data with pattern structures in formal concept analysis. Inf. Sci.,
181(10) :1989–2001, 2011.

[5] R. Srikant and R. Agrawal. Mining quantitative association rules in large relational
tables. In ACM SIGMOD Int. Conf. on Management of Data. ACM, 1996.

[6] M. Kaytoue, S. O. Kuznetsov, and A. Napoli. Pattern Mining in Numerical Data :
Extracting Closed Patterns and their Generators. Research Report RR-7416, IN-
RIA, 2010.

[7] M. Kaytoue, S. O. Kuznetsov, and A. Napoli. On pattern discovery in numerical
data with formal concept analysis. In International Joint Conference on Artificial

Intelligence (IJCAI), 2011. To appear.
[8] G. Stumme, R. Taouil, Y. Bastide, N. Pasquier, and L. Lakhal. Computing iceberg

concept lattices with titanic. Data Knowl. Eng., 42(2), 2002.
[9] S. O. Kuznetsov and S. A. Obiedkov. Comparing performance of algorithms for

generating concept lattices. J. Exp. Theor. Artif. Intell., 14(2-3) :189–216, 2002.
[10] T. Calders and B. Goethals. Depth-first non-derivable itemset mining. In SIAM

International Conference on Data Mining, 2005.

