
A Context-Sensitive Search Mechanism

Omar Hasan1, Michael E. Atwood2, Jim Waters2, and Bruce W. Char1
Department of Computer Science1 / College of Information Science and Technology2

Drexel University
Philadelphia, PA 19104, USA

oh23@drexel.edu, atwood@acm.org, jw65@drexel.edu, charbw@drexel.edu

Abstract

Collaborative help systems are a widely used type
of information systems. Users seeking information,
post questions on a collaborative help system, which
are answered by other users who possess the
requested information. Collaborative help systems
often contain domains of information that are
significantly disparate. There may exist several
questions in a collaborative help system, which have
similar wording but dissimilar context and therefore
each one of them has completely different answers.
When searching the collaborative help system for a
certain question, it is quite possible that a regular
search mechanism would return some question that is
not in the context that the user wanted. A search
mechanism that is sensitive to context, however, would
produce the correct result. In this paper we present
our context-sensitive search mechanism. The
mechanism uses the recent activity of a user as the
context of their questions and searches. The
mechanism has been implemented in our collaborative
help system called Knowledge Exchange.

1. Introduction

Collaborative help systems are a common type of
information systems. We use the term collaborative
help systems to denote those information systems that
have the following characteristics:
1) The information is primarily in the form of

questions and answers. Users are permitted to post
new questions, which are answered by human
sources. The human sources may be individuals
explicitly designated as experts or they may be
peer users.

2) The information is stored in a knowledge base that
“grows” with time as new questions and answers
get posted. In addition to posting new questions,

users may also benefit from the information
previously collected in the knowledge base.
Collaborative help systems are described by

Ackerman [2] as “…those help systems that use
people as information sources…”. Our description
further qualifies this definition. Collaborative help
systems are also sometimes referred to as “ask an
expert systems”, “collaborative learning systems” and
“discussion board systems”.

Collaborative help systems are widely used.
Examples of collaborative help systems include
Google Answers [8], Experts Exchange [7], Math
Forum [13], USENET [10] and Answer Garden [1].

Collaborative help systems usually have a very
broad main subject (for example, computer
technology) and several sub-topics which are subjects
in their own right (for example, game programming,
software engineering, wireless networking etc.). This
leads to domains of information in the knowledge base
that are significantly different from each other. In this
kind of knowledge base there may exist many
questions, which are similar but have completely
different answers because of dissimilar contexts.

Consider the question “What are arrays?”. Arrays
are a common theme in the subject of computer
programming as well as in telecommunications. In
each of these subjects, arrays have a very different
meaning. In computer programming an array refers to
a contiguous collection of data variables whereas in
telecommunications an array refers to a series of
antennas.

Suppose that an instance of a collaborative help
system holds the topics computer programming and
telecommunications, and the same or a similar
question has been asked under each of the topics. It is
quite possible that a user searching for the question
“What are arrays?” might find the question that is not
in the context that the user wanted.

The user might be able to restrict the search to a
specific subject but even one subject may contain

questions that have different contexts. For example the
question “Should I use ‘++i' or ‘i++’?” is often asked
in C++ programming courses. The correct answer to
this question depends on the context in which it is
asked. If a student is iterating a ‘for’ loop, both will
have the same effect. However, if a student is using it
in an arithmetic expression, it is important to know
that ‘i++’ would not increment the value of ‘i’ until
after the expression has been evaluated.

A context-sensitive search mechanism would
clearly be very helpful in this kind of environment.
The value of context in information systems has been
discussed in several publications ([4], [5], [6], [11],
[12], [14]).

Google [9] is a popular search engine with a very
successful search mechanism. Google’s approach is to
rank results in terms of popularity. Results that are
more popular receive a higher rank. This approach,
however, would not always be best for our problem. If
a user is looking for the answer to the question “What
are arrays?” in the context of telecommunications, and
the same question in the context of computer
programming happens to be more popular, the user
would not receive the correct result. On the contrary, a
context-sensitive search mechanism would produce
the correct result.

In this paper we present our context-sensitive
search mechanism. The mechanism has been
implemented in our collaborative help system called
Knowledge Exchange.

2. The Knowledge Exchange
collaborative help system

Knowledge Exchange is primarily intended for
supporting teaching-learning settings, such as courses
taught at colleges and universities. However its use is
not limited to teaching-learning settings; it can be used
in other environments as well where the roles of those
who impart knowledge and those who seek knowledge
exist (for example, help desks etc.).

In Knowledge Exchange, questions are posted by
students. The questions can be answered by instructors
as well as peer students.

The information posted on Knowledge Exchange is
stored in a knowledge base and remains available for
future reference (until removed by an instructor).

2.1. Organization of information

In Knowledge Exchange information is organized
under a tree-structured hierarchy of topics. The topic
hierarchy can be created and modified over time by
the instructors.

The main subject is represented by the root topic,
which is the ancestor of the rest of the information in
the tree.

Figure 1. Structure of information under the
root topic (the main subject).

Figure 2. Structure of information under any
topic.

Each question ideally exists under the most relevant
topic. One way to accomplish this is to encourage the
users to post a question under the topic they consider
the most relevant to that question. The instructors have
the ability to move a question from one topic to
another topic when they feel that it is not under the
most relevant topic.

A question contains three folders: ‘Answers from
Experts’, ‘Answers from Peers’ and ‘Follow-Up
Questions’.

Figure 3. Folders under a question.

The ‘Answers from Experts’ folder contains any
answers to the question that have been posted by the
instructors. The ‘Answers from Peers’ folder contains
any answers to the question that have been posted by
the students. The ‘Follow-Up Questions’ folder
contains questions that are spawned in response to the
answers to the original question. The questions in the
‘Follow-Up Questions’ folder are themselves full-
fledged questions.

2.2. Using Knowledge Exchange

2.2.1. Finding information. Users have the option
of using three different methods for finding the
information that they need:
1) By browsing the knowledge base.
2) By looking under the specialized folder ‘Recently

Posted Questions’ which contains links to the
questions that have been posted in the past seven
days (the number of days may be adjusted).

3) By using the context-sensitive search. As with a
regular search mechanism, the user only provides
keywords. The context is obtained implicitly by the
system.

Figure 4. A screen from Knowledge Exchange
showing the contents of the root folder.

2.2.2. Asking a new question. If the information
that a student needs is not available in the knowledge
base, he/she can ask a new question.

If the instructor’s answer does not satisfy the
student, he/she can also ask a follow-up question to the
previously posted question.

2.2.3. Answering a question. Both instructors and
students can post answers to a question. The ‘Answers
from Experts’ folder of a question holds the answers
given by the instructors. The ‘Answers from Peers’
folder holds the answers posted by students.

2.3. Architecture and technology used

Knowledge Exchange is a web-based multi-tiered
system built with Java, JSP, JavaScript, HTML and
SQL. Extreme programming [3] practices were used
for its development.

3. The context-sensitive search
mechanism

Our context-sensitive search mechanism is based
on the premise that the behavior of a user in the recent
past often depicts the current behavior of the user. For
example in Knowledge Exchange, if a user was
recently browsing information on music, it is more

likely that their current search is related to music,
rather than some other subject.

The information that a user was looking at in
Knowledge Exchange before posting a question or
search is taken as its context.

The mechanism comprises of the following key
steps:
1) When a user posts a new question, its context is

determined and saved in the knowledge base along
with it.

2) When a search is submitted, a list is made of all the
questions in the knowledge base that contain those
keywords. Additionally, the context of the search
is also determined.

3) For each of the questions in the list, it is
ascertained how much its context is similar to the
context of the search.

4) The search results are presented in descending
order such that the question, whose context has the
highest similarity with the context of the search, is
listed first.
The following sections describe the mechanism in

detail.

3.1. Maintaining a nodes-visited history

As a user navigates through the knowledge base, a
history of the nodes that are visited is maintained
(topics and questions are considered as nodes). This
history is a record of where the user has looked for
information. The nodes-visited history is limited to the
recently visited nodes. In the current implementation
the limit is 20 last nodes. This number can be
experimented with in future work.

3.2. Construction of a nodes-visited weights
table

When a question is posted, a nodes-visited weights
table is derived from the nodes-visited history existing
at that point. The derived table is captured in the
knowledge base along with the question.

Similarly when a search is requested a nodes-
visited weights table is also derived from the nodes-
visited history. This nodes-visited weights table is
submitted to the Knowledge Exchange search-engine
along with the keywords.

The nodes-visited weights table is used as the
context of a question or search (details will be given in
the following section). In this section we discuss the
construction of this table.

The table has two columns: node and weight. To
derive the table from the current nodes-visited history,
each of the nodes in the history as well as all the

ancestors of each of those nodes are listed in the node
column. There are no recurrences.

A weight is assigned to each node and is listed
against it in the weight column of the table. The
weight assigned to a node depends on two factors:
number of times visited and depth in the knowledge
base tree hierarchy.

Number of times visited: Each time a node is
visited, all its ancestors are also considered visited. For
example if a user follows the path A(ROOT) → B →
C → D → C, the number of times visited of each node
would be as follows: A: 5, B: 4, C: 3, D: 1.

Depth factor: Each depth of the knowledge base
tree hierarchy has a pre-assigned constant value called
the depth factor. The value assigned to each depth is
2.5depth, for example the value assigned to depth 0 (the
root) is 2.50 = 1, to depth 1 is 2.51 = 2.5, to depth 2 is
2.52 = 6.25 and so on. The idea is that the further down
the tree, the more specific a user is as to what
information he/she wants. For this reason the depth
factor, which is used to calculate the weight of nodes
is higher for deeper nodes. The formula used to
calculate the depth factor has been derived
empirically. The condition however is that the depth
factor of each depth should be significantly greater
than the depth factor of shallower depths. Further
experimentation may lead to a more optimal formula.
This formula, however, has so far done well in our
studies of the system.

The formula for calculating the weight of a node
for inclusion in the nodes-visited weights table is as
follows:

weight = (number of times visited) x (depth factor)

Table 1 would be the nodes-visited weights table
for the example given above.

Table 1. Nodes-visited weights table
(example).

Node Weight
A 5
B 10
C 18.75
D 15.625

A nodes-visited weights table tells us what nodes

the user had visited. The weight assigned to a node
represents the interest of the user in that node. High
weight means high interest.

Shallow nodes represent a broad domain of
information (for example, science). Deeper nodes
represent more specific information (for example,
physics, kinematics, first law of motion). If a user is

looking at a node and then drills down into a deeper
node, it implies that he/she is interested in more
specific information contained in that deeper node
rather than the broad information contained in the
shallower node. This is the reason why deeper nodes
are assigned higher weights.

3.3. Calculation of Context Overlap Factor
(COF)

When a search is submitted, the Knowledge
Exchange search engine first selects all those
questions from the knowledge base that contain the
given keywords. Second, the search engine ranks each
of the selected questions according to its relevance to
the user’s search in terms of context. The most
relevant question receives the highest rank.

The relevance is measured in terms of a variable
called the Context Overlap Factor (COF), which is
calculated for each of the questions. The COF is
calculated by determining the overlap between the
nodes-visited weights table of the originally asked
question and the nodes-visited weights table of the
search. High overlap results in a high COF value. The
procedure for calculating the COF value is as follows:
1) Initialize the COF value to zero.
2) Create a list of the nodes that are common to both

the nodes-visited weights table of the originally
asked question and the nodes-visited weights table
of the search.

3) For each node in this list, select its weight from the
table in which its value is the smallest (if the
weight is equal in both tables, then it may be
selected from either table). This is the overlap
value for that particular node.

4) Add this overlap value to the COF value. When
this operation has been performed for each of the
nodes in the list, the final COF value has been
obtained.
The following example illustrates the calculation of

COF (refer to Table 2 for nodes-visited weights table
of question and Table 3 for nodes-visited weights table
of search).

Table 2. Nodes-visited weights table of
question (example).

Node Weight
A 5
B 10
C 18.75
D 15.625

Table 3. Nodes-visited weights table of search
(example).

Node Weight
A 6
B 15
E 25
F 46.875
G 78.125
H 97.656

Overlap: A: 5, B: 10
� COF = 5 + 10 = 15

3.4. Illustration of the search mechanism
with the help of an example

We illustrate our context-sensitive search
mechanism using the ‘Arrays’ example given earlier in
Section 1.

Suppose that an instance of Knowledge Exchange
holds the topics computer programming and
telecommunications.

Student A follows the following path prior to
asking “What are arrays?”

Information Technology → Computer
Programming → Java → Data Structures

Student B however follows the following path prior
to asking the same question.

Information Technology → Telecommunications
→ Wave Propagation Theory → Antennas

The two questions along with their individual
nodes-visited weights tables are stored in the
knowledge base. The nodes-visited weights table of
the first question would be as Table 4 and that of the
second question would be as Table 5.

Table 4. Nodes-visited weights table of
student A’s question.

Node Weight
(formula: times

visited
x depth factor)

Information
Technology

4
(4 x 1)

Computer
Programming

7.5
(3 x 2.5)

Java 12.5
(2 x 6.25)

Data Structures 15.625
(1 x 15.625)

Table 5. Nodes-visited weights table of
student B’s question.

Node Weight
Information
Technology

4
(4 x 1)

Telecommunications 7.5
(3 x 2.5)

Wave Propagation
Theory

12.5
(2 x 6.25)

Antennas 15.625
(1 x 15.625)

Let’s say that in the future, a third student (Student

C) wants to find the question “What are arrays?” in the
context of telecommunications. The student may
browse the knowledge base looking for the question
taking the following path:

Information Technology → Telecommunications
→ Wireless

The nodes-visited weights table of the search would
be as Table 6.

Table 6. Nodes-visited weights table of the
search.

Node Weight
Information
Technology

3
(3 x 1)

Telecommunications 5
(2 x 2.5)

Wireless 6.25
(1 x 6.25)

Unable to find the question, the student submits a

search using the string “Arrays” or any other string
containing the keyword “Arrays”. According to a strict
keyword match, either stored question would match
Student C’s search. However, calculating the COF for
each of the matched questions reveals a higher
relevance value for one of them, the one in the
telecommunications hierarchy. The student therefore
finds the correct information.

Overlap of search and student A’s question (the
question with programming as context):
Information Technology: 3
� COF = 3

Overlap of search and student B’s question (the
question with telecommunications as context):
Information Technology: 3, Telecommunications:
5
� COF = 3 + 5 = 8

It should be noted that this mechanism is useful
when a user takes a two-step approach to finding
information, first browse then search.

4. Conclusion

In this paper we presented a context-sensitive
search mechanism that can be used in collaborative
help systems. The mechanism considers the recent
activity of a user as the context of their questions and
searches. With the help of examples we have
demonstrated how our context-sensitive search
mechanism can be advantageous over search
mechanisms that are not context-sensitive.

5. Acknowledgments

This research was carried out at Drexel University,
PA, USA and was sponsored in part by National
Science Foundation (NSF) (Award DUE-0085713).

6. References

[1] Ackerman, M., and Malone, T.W., “Answer Garden: A
Tool for Growing Organizational Memory”, In
Proceedings of the ACM Conference on Office
Automation Systems, New York: ACM Press, 1990, pp.
31-39.

[2] Ackerman, M., and McDonald, D., “Answer Garden 2:
Merging Organizational Memory with Collaborative
Help”, In Proceedings of the ACM Conference on
Computer-Supported Cooperative Work, New York:
ACM Press, 1996, pp. 97-105.

[3] Beck, K., Extreme Programming Explained: Embrace
Change, Addison-Wesley Professional, 1999.

[4] Chaiklin, S., and Lave, J., Understanding Practice:
Perspectives on Activity and Context, Cambridge:
Cambridge Press, 1996.

[5] Dey, A.K., and Abowd, G.D., “Towards a Better
Understanding of Context and Context-Awareness”,
Technical report GIT-GVU-99-32, College of
Computing, Georgia Institute of Technology, 1999.

[6] Dumas, S.T., Cutrell, E., and Chen, H., “Bringing Order
to the Web: Optimizing Search by Showing Results in
Context”, In Proceedings of the CHI’2001 Conference
on Human Factors in Computing Systems, New York:
ACM Press, 2001, pp. 277-283.

[7] Experts Exchange, retrieved March 3, 2004 from
http://www.experts-exchange.com/.

[8] Google Answers, retrieved April 29, 2004, from
http://answers.google.com/answers/.

[9] Google, retrieved April 29, 2004,
http://www.google.com/.

[10] Horton, M., and Adams, R., “Request for Comments
(RFC) 1036 – Standard for Interchange of USENET
Messages”, Network Working Group, 1987.

[11] Klemke, R., “Context Framework: An Open Approach
to Enhance Organizational Memory Systems with
Context Modeling Techniques”, In Proceedings of the
Third International Conference on Practical Aspects of
Knowledge Management (PAKM 2000), Basel,
Switzerland, October 2000.

[12] Lin, J., Quan, D., Sinha, V., Bakshi, K., Huynh, D.,
Katz, B., and Karger, D.R., “The Role of Context in
Question Answering Systems”, In Extended Abstracts
of the CHI’2003 Conference on Human Factors in
Computing Systems, New York: ACM Press, 2003, pp.
1006-1007.

[13] Math Forum, retrieved March 3, 2004, from
http://www.mathforum.org/.

[14] Matwin, S. and Kubat, M., “The Role of Context in
Concept Learning”, In Proceedings of the 13th
International Conference on Machine Learning, Bari,
Italy, 1996.

	Introduction
	The Knowledge Exchange collaborative help system
	Organization of information
	Using Knowledge Exchange
	Architecture and technology used

	The context-sensitive search mechanism
	Maintaining a nodes-visited history
	Construction of a nodes-visited weights table
	Calculation of Context Overlap Factor (COF)
	Illustration of the search mechanism with the help of an example

	Conclusion
	Acknowledgments
	References

