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Abstract—In the domain of decentralized machine learning,
enhancing privacy often comes at the cost of reduced efficiency
or utility, and vice versa. Striking a balance between privacy,
efficiency, and utility remains a challenge. In this paper, we
present the Secure Group-Based Model Aggregation (SGBMA)
framework for decentralized learning. SGBMA introduces a
novel approach by dividing the set of participants into small
groups and employing an efficient secure multiparty computation
protocol to aggregate models within the groups. The adoption of a
balanced binary tree topology of groups facilitates the seamless
combination of models computed in the groups into a unified
global model. At each training round, SGBMA achieves equal
participation from each user in the global model, equivalent to
federated learning. The privacy-efficiency balance can be ad-
justed with the size of the groups with no impact on model utility.
By leveraging SGBMA, decentralized learning can be executed
while ensuring privacy and making it applicable to large-scale
scenarios. Our experiments show that SGBMA produces higher
model utility for Independent and Identically Distributed data
(IID) and comparable results as federated learning in non-IID.

Index Terms—Decentralized machine learning, artificial neural
networks, privacy-preserving machine learning, secure multi-
party computation

I. INTRODUCTION

The vast amount of data that is generated every day has
driven the adoption of machine learning techniques for solving
complex real-world problems. However, concerns regarding
user privacy have arisen alongside these advancements. To
address these challenges, privacy-preserving machine learning
(PPML) was proposed as a way to leverage data while
respecting privacy.

Privacy is a wide term that has different definitions in
different domains. In PPML context, privacy refers to the
protection of sensitive and personally identifiable information
during the process of training machine learning models. It
involves implementing techniques and protocols that prevent
unauthorized access or disclosure of private data while still

allowing the model to learn from it. According to Xu et
al. [1], a PPML solution asserts data-oriented privacy if an
adversary cannot learn private information directly from input
data samples or associate private information with a specific
person’s identification. Similarly, a PPML solution is said
to provide a model-oriented privacy guarantee if and only
if an adversary cannot derive any private information from
a given model by querying it several times. In this work,
we are interested in the model-oriented privacy guarantee
because the studied PPML solutions do not share data samples.

One of the most popular PPML approaches is federated
learning [2], a framework for training machine learning
models directly on remote devices, enabling collaborative
model development without sharing raw data. In federated
learning, a central server distributes a global model to
multiple devices, such as smartphones or edge devices, which
then train the model using their local data. The devices only
share with the central server the updated model parameters,
not the raw data. These parameters are aggregated by the
central server, which combines the knowledge from all the
devices to create an improved global model. That new version
of the global model is shared with the devices to train again
with their local data. This process is repeated until a given
number of iterations is reached or convergence is achieved.

Distributing the computational cost among all the devices
and avoiding data sharing is possible by training on remote
devices. Despite its advantages, federated learning relies on a
central trusted server for model coordination and aggregation
(Fig. 1a), leading to communication bottlenecks and potential
privacy risks because of the influence the central entity has
over all the devices [3].

The limitations of federated learning motivated the
development of fully decentralized learning (or simply



decentralized learning), where there does not exist a central
coordinator entity. Instead, each device communicates directly
with a subset of devices, its neighbors, with whom it will
share its model update and will receive theirs (Fig. 1b). In
this way, not only the model update is distributed among
the devices but also the aggregation task. For this reason,
decentralized learning is more efficient than federated learning
because it requires much less communication on the busiest
node [4]. This approach offers potential advantages, such as
scalability and increased privacy guarantees that arise from
full decentralization [5], [6].

Fig. 1. (a) Federated learning architecture. (b) Decentralized learning archi-
tecture.

Recent studies by Geiping et al. [7], Boenisch et al. [3],
Wang et al. [8], have shown that even though raw data is
not shared in both federated and decentralized learning, it
can be reconstructed from model updates that are shared
with others. Local updates on the model’s parameters can
leak more information about the data used to train [9] which
compromises model-oriented privacy.

The first state-of-the-art proposals in federated and
decentralized learning were mainly intended to improve
efficiency and/or utility [10]–[12], that is, the convergence
in optimization is achieved with fewer iterations and the
final model has high accuracy. When novel attacks on the
local model updates were proposed, subsequent studies also
focused on protecting model aggregation [6], [13], [14], but
each time it is shown that there is a trade-off between privacy,
utility, and efficiency.

Increasing privacy comes with a cost in efficiency or even
in utility. That is the reason why Pasquini et al. [15], after
extensive experiments of different novel attacks on modern
decentralized frameworks, mention that current decentralized
proposals do not offer any security advantage over federated
learning. Strong privacy guarantees in decentralized learning
would require denser connected networks, losing any
practical advantage over the federated setup on large scales,
and therefore completely defeating the objective of the
decentralized approach.

In this paper, we propose a decentralized learning
framework that uses an efficient Secure Multiparty
Computation protocol [14] for model aggregation in
small groups of nodes. This protocol enables model-oriented
privacy with low computational costs. The groups are
arranged in a balanced binary tree topology so that models
of the groups can be combined in a global model efficiently.
The balanced binary tree topology takes advantage of the
parallelization nature of the problem and is used to combine
the models from leaf nodes to root node. With this framework,
decentralized learning does not require a dense topology to
offer model-oriented privacy in the training process.

A. Contributions

The main contributions of this work are summarized below:

• This paper is an extended version of our previous work
published in the Blockchain Computing and Applications
(BCCA) conference [16]. This paper extends the original
paper by significantly more than 50% in contributions as
well as length.

• A new decentralized learning framework flexible enough
to configure the privacy-efficiency trade-off with no im-
pact on model utility. This is a completely new contribu-
tion and considers the original contribution of the BCCA
paper as a case study.

• We conduct a comprehensive privacy analysis of the
proposed framework, assessing its ability to preserve data
privacy and mitigate potential data leakage risks.

• We provide an example that demonstrates the variation
of data leakage risk with different values of the only
parameter in the framework. This analysis offers valuable
insights into the framework’s sensitivity to parameter
settings and informs best practices for ensuring data
security in decentralized settings.

• Experiments on a state-of-the-art benchmark dataset to
evaluate the model utility of our approach over existing
methods.

B. Outline

This paper is structured as follows: Section II introduces the
related literature, Section III addresses the proposal, Section
IV explains the experiments conducted to evaluate the pro-
posal, Section V presents the results, Section VI examines a
case of study, Section VII addresses the discussion, and finally,
in Section VIII, the conclusions are presented.

II. RELATED WORK

One of the earliest works in privacy-preserving machine
learning using deep neural networks was by McMahan et al.
[2]. This paper introduced the concept of federated learning
and proposed the FedAvg algorithm for training deep neural
networks using decentralized data. In FedAvg, the aggregation
of different deep neural network models is done by averaging



the synaptic weights of all models.

Similarly, Lian et al. [4] introduced the Decentralized
Parallel Stochastic Gradient Descent (D-PSGD) algorithm,
which preserves the main ideas of FedAvg but without the
central coordinator entity. In D-PSGD, each node in the
network aggregates the models received from its neighbors.
The aggregation is also performed taking the average of the
synaptic weights. Both federated and decentralized learning
have been focused on training deep neural networks, but
applications with different machine learning algorithms have
been proposed too [17], [18]. We only consider deep neural
networks in this work.

Even though data is not shared, private information can
be reconstructed or inferred from model updates. Geiping et
al. [7] show that is possible to faithfully reconstruct images
at high resolution from the knowledge of their parameter
gradients. They demonstrate that such a break of privacy is
possible even for trained deep networks. Another popular
attack is the membership inference attack by Shokri et al.
[9]: given a data record and black-box access to a model,
determine if the record was in the model’s training dataset.
The experiments show that even commercial models can be
vulnerable to membership inference attacks. These two types
of attacks can be considered passive attacks because the
attacker does not interfere with the protocol, he only uses the
information received from model updates. There are several
study cases where active attackers are evaluated, for example,
Boenisch et al. [3]. They study the case of an active malicious
central server in federated learning who modifies the shared
model weights before users compute model gradients. That
allows the central server to recover complete user data and
exploits the influence of the central server over all nodes.

As new vulnerabilities have been found, new protection
mechanisms have been proposed. The vast majority of them
try to preserve model-oriented privacy because no data is
shared among participants by definition. In Tran et al. [14],
for example, a secure aggregation protocol is proposed
for decentralized learning based on Secure Multiparty
Computation. The protocol solves the privacy problem for
the honest-but-curious scenario even with n − 2 malicious
users. However, it suffers from not being useful in large-scale
scenarios because it practically emulates the topology of
federated learning and overloads one of the nodes. They
achieve privacy with high costs in efficiency.

Another popular approach involves the use of differential
privacy which adds controlled noise to model updates so that
the original data is masked and therefore protected. Guo et
al. [19] uses differential privacy in a decentralized learning
context. They enhance a stochastic gradient descent algorithm
with differential privacy and topology-aware noise reduction
integrating a time-aware noise decay technique. As with
other differential privacy solutions, model-oriented privacy is

achieved, but it comes with a high cost on model utility. The
authors emphasize the importance of identifying the minimal
amount of noise that can provide desired privacy protection
while maintaining acceptable model performance.

Both differential privacy and secure multiparty computation
provide model-oriented privacy in PPML, but differential
privacy is most widely used due to its strong information-
theoretic guarantees, algorithmic simplicity, and relatively
small systems overhead [20]. Secure multiparty computation
does not protect against membership inference attacks over
the aggregated model, but differential privacy does. The main
caveat with differential privacy is that it reduces model utility.
The more noise is included in model updates, the more model
utility is reduced.

In our proposal, we opted for the use of secure multiparty
computation for ensuring model-oriented privacy. Even
though this solution is vulnerable to membership attacks,
attacks for reconstructing training data can only be performed
on aggregated models, so data cannot be directly linked to
users. We focus on the honest but curious scenario and leave
the investigation of active malicious parties to future work.
Our proposal provides privacy under these assumptions, with
a configurable impact on efficiency, and an equivalent model
utility as federated learning.

While secure aggregation techniques, including secure mul-
tiparty computation protocols, are applicable in both federated
and decentralized learning settings, it is important to note that
these protocols are particularly well-suited for small subsets
of nodes. This choice helps mitigate potential increases in
computational or communication costs, making them efficient
solutions within such contexts. Moreover, our framework
stands out by efficiently distributing computational aggrega-
tion costs, resulting in minimal propagation times. In contrast,
these protocols can become prohibitively expensive in terms of
computation and communication when applied to large-scale
networks, as often encountered in federated learning scenarios.

III. OUR PROPOSAL

A. Motivations

Previous decentralized learning solutions that include
privacy mechanisms end up having a significant impact on
efficiency and/or utility, which does not provide security
advantages over more practical approaches such as federated
learning [15]. Our proposal shows that decentralized learning
can provide model-oriented privacy with a reasonable and
adjustable impact on efficiency, and no reduction of model
utility.

There have been studies [4], [21] that show that
decentralized learning achieves faster convergence than
federated learning, mainly because each node is connected
with a small subset of neighbors and not to the whole network
as federated learning. For this reason, we expect decentralized



learning topologies with nodes having low degrees to be
more efficient. It is assumed the network consists of similar
devices with similar computational power, so the node with
the highest degree becomes the bottleneck in the network.
The computational complexity of the privacy mechanisms for
model aggregation has also an impact on the efficiency of
the training process, so mechanisms with low computational
complexity are preferred. Our proposal uses a low degree
topology and an efficient model aggregation protocol based
on secure multiparty computation [14].

In decentralized learning, when less dense topologies are
used, the model updates of a node are more influenced by its
local data and the updates from its neighbors. That brings the
disadvantage of making more difficult model-oriented privacy,
due to local generalization [15]. Additionally, the neighbors of
an honest node could collude and learn its raw model updates,
even if a secure multiparty computation protocol is used. The
model utility could be also compromised because the influence
of model updates of a node decreases the further away it
is from other nodes [12]. The fewer direct neighbors it has,
the more prone to local generalization is [15]. Our proposal
involves dividing the nodes into groups of approximately equal
size. This division aims to minimize the likelihood of colluded
nodes becoming neighbors with honest nodes. We also include
a mechanism that enables model aggregation equivalent to
federated learning, so the updates of each node participate
equally in the global model at each training round.

B. Secure Group-Based Model Aggregation (SGBMA)

Our proposal, Secure Group-Based Model Aggregation
(SGBMA), is a decentralized learning framework that as
its name suggests, performs model aggregation in small
groups of nodes. In table I, we introduce the notation used in
algorithm 1 to describe SGBMA.

TABLE I
SGBMA ALGORITHM NOTATION

Notation Description
n number of nodes
k size of the groups
t total number of training rounds
d depth of the tree
G set of groups where each group is a set with k elements
V set of all nodes
A set of aggregation nodes
AH aggregation node of group H
r root node in the tree

L(i) set of nodes in level i in the tree
σ1(i), σ2(i) left and right children of node i, in the tree, respectively

Xi local dataset of node i
Θi vector of parameters of the global model at time i
Θi

v vector of the model’s parameters of node/group v at time i
η learning rate

The idea behind group-based aggregation is to take
advantage of the Efficient Secure Sum Protocol (ESSP),

proposed by Tran et al. [14]. The main problem with the
original use of ESSP is that at each round, it requires a
central aggregation node and other k randomly selected nodes
to update the global model. The k selected nodes update the
model with their local data and after that, the aggregation
node combines all k models for the next iteration. The
aggregation node is overloaded at each iteration, so a low
value of k is desirable, but in large-scale scenarios, a small
value of k may slow convergence or impact the final model
utility. Consequently, in SGBMA, the nodes are divided into
groups of size k (algorithm 1, line 1), and an aggregation
node within each group is selected (line 2). Instead of training
one group at a time, all the groups work in parallel at each
training round using the ESSP (lines 8-10), so aggregation
within groups is performed privately. In this way, we can
use small values of k even in large-scale scenarios. ESSP
combines model updates using addition, not averaging,
something useful to our framework that is discussed below.

Isolated training groups would not share the knowledge of
their models, so aggregation nodes are randomly arranged in
a balanced binary tree aggregation graph to ensure a global
connected graph (see Fig. 2). When training nodes finish
updating the models with their local data, they share the
update with their associated aggregation node using ESSP
(line 14). The aggregation node combines its model with
the models of the rest of the nodes in the group (line 15),
and then, the global aggregation phase begins (lines 20-27).
Leaf nodes in the tree share the aggregated models, which
include information from the nodes in the groups, with
their parent nodes (line 23). Parent nodes then aggregate the
models received from their two children with theirs (line
24) and share the resulting model with their parents, going
up a level in the tree. Aggregation in intermediate levels
is done using addition, without the ESSP protocol. This
process finishes when the root node is reached and it makes
the last combination by averaging (lines 30-31). That will
be the model to optimize in the next training round. The
global model is sent back among aggregation nodes using the
balanced binary tree, but this time from up to bottom (lines
34-40). Aggregation nodes have the responsibility to share
this global model with the nodes in their groups (line 37).

Thanks to this aggregation method, SGBMA achieves
equal user participation in the global model update, similar to
federated learning. It employs a balanced binary tree structure
for aggregation, which leverages the inherent parallelization
of the problem. Assuming that the time required to send one
user update to another is constant, combining the models
and propagating them takes only 2 log (n/k) units of time,
where n is the number of participants and k the size of
the groups. This is due to the presence of n/k groups
and aggregation nodes in the tree. At each level l in the
tree, 2l participants simultaneously share their updates,
aggregating only three models: two from their children
and their own. The time needed for update propagation is



Fig. 2. Secure Group-Based Model Aggregation (SGBMA) diagram. Training
nodes, in blue, only update the model with their local data and share their
updates with the aggregation node in their group using ESSP. Aggregation &
training nodes, in yellow, update the model with their local data and, receive
and combine the models of their respective groups. They also receive the
aggregated models from their two children in the binary tree and combine
them with the model of their group. Then, they send this combined model to
their parents in the tree.

equal to the depth of the balanced binary tree, which, as
we know, is log (m), where m is the number of nodes.
The propagation involves sending models twice, once for
aggregation and once to share the updated global model,
resulting in a total time of 2 log (n/k) units. Even in a case
with approximately one billion aggregation nodes (≈ 230),
only 2 log (230) = 2×30 = 60 units of time would be required.

Employing addition for combining models in intermediate
levels avoids decreasing the influence of models of deeper
nodes in the global model. ESSP is only used for aggregation
within groups. In the balanced binary tree, the raw aggregated
models are shared. Attacks on aggregated models do not leak
information about specific users but optimal group sizes have
to be investigated.

SGBMA sacrifices a little efficiency, giving more work to
some nodes, to improve privacy. We can see this protocol as
many small and secure federated learning problems that work
together to improve a global model.

C. Privacy analysis

As mentioned early, SGBMA uses the Efficient Secure
Sum Protocol (ESSP) [14], in the aggregation nodes to ensure
model-oriented privacy. This protocol has a low computational
complexity and is intended to be used in small subsets of
participants to keep it low. Moreover, it ensures privacy even
with k− 2 parties colluding, where k is the number of nodes
in a group.

Our framework uses ESSP in parallel in different and
small instances of the problem, so in each of these subsets
of nodes, data leakage may occur if all nodes but one

Algorithm 1 Secure Group-Based Model Aggregation
1: Randomly divide the nodes into groups of size k
2: Within each group randomly select one node as aggregator
3: Randomly arrange aggregation nodes in a balanced binary

tree
4: Initialize the model parameters Θ0

5:
6: for each i ∈ [1, 2, . . . , t] do
7: // Update of the global model with local data
8: for each v ∈ V in parallel do
9: Θ

i+ 1
4

v = Θi
v − η∇Θi

v
(Xv,Θ

i
v)

10: end for
11:
12: // Secure aggregation by groups
13: for each H ∈ G in parallel do
14: Using ESSP, ∀v ∈ H share Θ

i+ 1
4

v with AH

15: AH aggregates models into Θ
i+ 2

4

H

16: end for
17:
18: // Aggregation of groups’ aggregated models
19: // by levels through the tree, from bottom to top
20: j ← d− 1
21: while j > 0 do
22: for each v ∈ L(j) in parallel do
23: Receive aggregated models from σ1(v), σ2(v)

24: Θ
i+ 3

4
v ← Θ

i+ 2
4

v +Θ
i+ 3

4

σ1(v)
+Θ

i+ 3
4

σ2(v)
25: end for
26: j −−
27: end while
28:
29: // Aggregation with the average in root node
30: Receive aggregated models from σ1(r), σ2(r)

31: Θi+1 ← 1
n

(
Θ

i+ 2
4

r +Θ
i+ 3

4

σ1(r)
+Θ

i+ 3
4

σ2(r)

)
32:
33: // Propagation of the global model, from top to bottom
34: while j ≤ d do
35: for each v ∈ L(j) in parallel do
36: v sends Θi+1 to σ1(v), σ2(v)
37: v sends Θi+1 to ∀u ∈ Gv

38: end for
39: j ++
40: end while
41: end for
42:
43: return Θt



are colluding. In this framework, the risk of data leakage
is a probabilistic problem subject to how groups are generated.

Let n be the total number of participants, and k ≪ n,
the number of nodes associated with each aggregation node
(counting the aggregation node), k can be considered the only
framework’s parameter and controls the privacy-efficiency
trade-off. A larger value of k overloads aggregation nodes
reducing efficiency, but it reduces data leakage risk because
reduces the probability that colluded nodes belong to the
same aggregation group.

Since the groups and the balanced binary tree are generated
at random, the probability that at least one user is at risk,
that is, an honest user belongs to a group with exactly k − 1
malicious participants is:

Let m be the number of malicious participants, where k −
1 ≤ m ≤ n − 1, h the number of honest users, where n =
h+m and, Ei the event that the ith user is at risk, then:

P (E1 ∪ · · · ∪ Eh) =

h∑
i=1

(−1)i−1

(
h

i

)
P (E1 ∩ · · · ∩ Ei) (1)

To find the probability of at least one of the events in
E1, E2, . . . , Eh occurring, we use the inclusion-exclusion
principle to account for the overlapping nature of these events.
According to this principle, in equation 1 we subtract the
probabilities of odd i’s and add the probabilities of even i’s
(−1)i−1. We count the number of possible combinations of
taking i honest users

(
h
i

)
, and then we multiply it by the

probability that all i users are at risk. It is easy to see that
the probability that all i users are at risk is:

P (E1∩· · ·∩Ei) =

(
m

k−1

)(
n−1
k−1

)× (
m−(k−1)

k−1

)(
n−1−k
k−1

) ×· · ·× (
m−(i−1)(k−1)

k−1

)(
n−1−(i−1)k

k−1

)
(2)

The probability that the first honest user is at risk is ( m
k−1)
(n−1
k−1)

.

This is because there are
(

m
k−1

)
ways to choose k−1 malicious

users to be in the group with that honest user, out of a total
of

(
n−1
k−1

)
to choose k − 1 other users to be in that group.

Conditional on the first honest user being at risk, the

probability that the second honest user is at risk is (m−(k−1)
k−1 )

(n−1−k
k−1 )

.

This is because there are now only m − (k − 1) malicious
users to choose from, and only n− 1− k other remaining in
total, and so on. Expanding equation 1, we have:

h∑
i=1

(−1)i−1

(
h

i

)(
m

k−1

)(
n−1
k−1

) × (
m−(k−1)

k−1

)(
n−1−k
k−1

) × · · · × (
m−(i−1)(k−1)

k−1

)(
n−1−(i−1)k

k−1

)
(3)

Using equation 3, we can see the probabilities of risk with

a small example. Let n = 100, in figure 3 we show the
probability that at least one user is at risk for different numbers
of malicious users and different group sizes (k).
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Fig. 3. Probability at least one user is at risk with n = 100 for different
values of group size (k) and number of malicious users (m).

In figure 3, it can be appreciated that groups of size 5
have a high probability of data leakage. However, increasing
the group size to 10 significantly lowers this probability. For
example, even with 50 malicious nodes, the probability is
only 0.0714. With a group size of 20, the probability of data
leakage is only 0.000014 with 50 malicious nodes. This makes
SGBMA feasible to be used in large real scenarios.

IV. EXPERIMENTS

In this section, we present the experimental setup to
evaluate the proposed decentralized learning framework,
SGBMA. The objective is to compare the model utility, in
terms of accuracy and the loss value on the testing set, with
two different reference frameworks:

1) Federated learning, using the FedAvg algorithm [2],
which employs a central server to orchestrate the training
process. In this algorithm, during each round, the central
coordinator dispatches the current global parameters to
all participants. Subsequently, participants update their
models locally and transmit these updates back to the
coordinator, who aggregates them into a global model
for the next iteration.

2) Conventional decentralized approach, using D-PSGD
algorithm [4], which does not require a central coor-
dinator. In this algorithm, every node establishes con-
nections with a specific subset of nodes for sharing and
receiving updates. During each round, after receiving
these updates, each node aggregates the models from its
connected neighbors and then proceeds to conduct local
training using its own dataset. We evaluated D-PSGD
with two different topologies: A ring graph (DecRing),
where each node has two neighbors forming a ring, and
a random regular graph of degree four (DecRegular4),



where each node has four randomly assigned neighbors
maintaining a connected graph.

The four frameworks, SGBMA, FedAvg, DecRing and
DecRegular4, were evaluated in similar scenarios with 100
nodes each.

A. Experimental data

We used the well-studied MNIST dataset [22]. This dataset
consists of images of handwritten digits from 0 to 9. It is
composed of two main parts, a training set and a testing set.
The training set contains 60,000 images, while the testing
set contains 10,000 images. Each image is a grayscale,
28x28-pixel square, resulting in a total of 784 pixels per
image. We respected the partitioning of the MNIST dataset,
consequently, we used the 60,000 images as the training
set. The 10,000 images of the testing set were only used to
monitor the loss and accuracy at each training round.

MNIST is widely used as a benchmark dataset in federated
and decentralized learning [2], [4], [14], [15], [23], and
therefore suitable to evaluate our framework.

We conducted experiments for the four frameworks with
two different methods of partitioning data:

1) Independent and Identically Distributed (IID), where
data is distributed uniformly and independently among
all nodes. Each node possesses a similar data distribu-
tion, mimicking a homogeneous setup. MNIST training
data set was randomly divided into 100 chunks with 600
images each, 60 images of each digit from 0 to 9.

2) Non-Independent and Identically Distributed (non-IID),
where data is distributed unevenly among nodes, leading
to varying data distributions across different nodes.
This setup emulates a more realistic and heterogeneous
scenario where nodes may have different data character-
istics. MNIST training set was divided into 200 chunks
with 300 images of the same digit each, then two chunks
were assigned to each user so they only have data of two
different digits.

B. Setup

We conducted experiments to compare the model utility
of the aforementioned frameworks for the classification
problem of the MNIST dataset. Given a 28x28 pixels image,
we want to know which number represents. Based on the
results reported by McMahan et al. [2], we used the same
multilayer-perceptron to evaluate the four frameworks with
the hyperparameters presented in table II.

Finally, for the evaluation of SGBMA, we considered groups
(k) with 5 nodes, so the balanced binary tree has 100/5 = 20
nodes and log(20) ≈ 3 depth.

TABLE II
EVALUATED MULTILAYER-PERCEPTRON HYPERPARAMETERS

Hyperparameter Value
Number of hidden layers 2
Number of units in hidden layers 200
Activation function in hidden layers ReLU
Loss function Sparse categorical cross entropy
Number of training rounds 250
Learning rate 1.47
Batch size 10
Number of epochs of local training 5
Number of training rounds 250

C. Experimental environment

Our experiments were conducted on a single computer
with an AMD A12-9700P Radeon 4-core processor (up to
2500 MHz) and 16GB of RAM. We implemented the four
frameworks in the R [24] programming language using the
Keras library [25]. Source code can be consulted on GitHub
in this link.

V. RESULTS

We evaluated model utility in terms of accuracy and the
loss value (for the sparse categorical cross entropy function).
At the end of each training round, we compute both metrics
over the testing set using the global model. Figure 4 shows
the accuracy and loss values obtained by the four evaluated
settings.

As expected, the four frameworks perform well on the
IID partitioning. They reach their highest accuracy in a few
training rounds, but SGBMA has a slightly higher accuracy
than the other three. In terms of the loss value, all but
SGBMA seems to overfit data after round 100 increasing
the loss value in the testing set. Just SGBMA does not
increase. On the other hand, for the non-IID partitioning,
the performance of the four frameworks was affected. We
can appreciate a clear negative impact in both metrics in the
DecRing setting, especially in the first training rounds.

SGBMA and FedAvg outperform the two decentralized
settings evaluated and they are practically overlapped during
the 250 training rounds. We can also see that there is a big
improvement in the conventional decentralized approach just
by increasing the number of neighbors of each node. DecReg-
ular4 produces noticeably higher accuracy than DecRing and
lower loss values.

VI. A CASE STUDY

The Secure Group-Based Model Aggregation (SGBMA)
framework, originally designed for decentralized machine
learning scenarios, can potentially be adapted to address other
kinds of decentralized problems as well. The adaptability
of SGBMA to different domains relies on the fundamental
principles and techniques it employs. In this section, we
present a case study, outside of machine learning, where the
ideas of decentralization of SGBMA can be applied to.

https://github.com/brandon-mosqueda/SGBMA
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Fig. 4. Accuracy and loss values over the 250 training rounds with the four
evaluated settings: decentralized with ring topology (DecRing), decentralized
with random regular topology (DecRegular4), federated learning (FedAvg),
and Secure Group-Based Models Aggregation (SGBMA). On the left side are
the results for the Independent and Identically Distributed (IID) partitioning,
and on the right side are the results for non-IID.

A. Background

In our previous work [16], we presented the personal
lending platform model based on the borrower’s
trustworthiness score called LAPS (Loan Risk score,
Activity score, Profile score, and Social Recommendation
score).

Today, banks and financial institutions provide loans with
terms and conditions that are not easy for borrowers to fulfill
these conditions [26]. Banks or Lending marketplaces offer
loans and still require collateral to guarantee that borrowers
return their loans. Collateral can be in the form of assets that
are easier to become money. A guarantor is a person who gives
some guarantees to borrowers while applying for some loans.
Types of debt financing and approval percentages are shown
in Table III below. Borrowers’ approval rates in Cash Advance
Lenders (90%) are higher because of fast processing about 1-
3 days approval, next followed by Alternative Lenders reach
70% loan processing environs 5-7 days, Traditional Banks
about 45%, and Large Banks about 25%. The time processing
of these two last options is around 14-30 days. Table III shows
the scale of ratio and time processing impacts borrowers’
proposal of some loans [27]. Table III also describes that it
is still difficult to obtain some loans from traditional lending
systems. The percentage approval was assumed from 100
borrowers. Of the Large Banks, 25 were approved, and 75
are denied in proposed loans.

TABLE III
APPROVAL RATES

Type of Debt Percentage (%)
Traditional Banks 45

Cash Advance Lenders 90
Alternative Lenders 70

Large Banks 25
Source:https://gudcapital.com/types-of-business-loans/

We provide the LAPS formula as a solution to the problem
above. It contains the Loan Risk, Activity, Profile, and
Social Recommendation score as a borrower’s trustworthiness
score. The borrower has confidence after receiving the
trustworthiness score, with this score, the borrower does not
need any more collateral. From the lender/investor side, they
get assurance that the borrower can repay the loan, and the
recommender bridges the gap between the borrower and the
lender. With LAPS, all users will get incentives that can be
applied safely.

Some existing solutions can be further improved. For
example, the BLockchain-Enabled Social credits System
(BLESS) applied in the system leverages the decentralized
architecture of the blockchain network, which allows
grassroots individuals to participate in the rating process of
a social credit system (SCS) and provides tamper-proof of
transaction data in the trustless network environment. The
anonymity in blockchain records also protects individuals
from being targeted in the fight against powerful enterprises.
A smart contract-enabled authentication and authorization
strategy prevent unauthorized entities from accessing
the credit system. The BLESS scheme offers a secure,
transparent, and decentralized SCS. However, they have
difficulty implementing technology in social aspects such as
public acceptance and mass adoption [28].

Conversely, other solutions such as [29], use machine learn-
ing models to estimate a credit score. They trained a model
using logistic regression and a multivariate discriminant on the
Moroccan Financial Institutions (MFIs). The model combines
behavioral and descriptive data related to the borrowers (age,
activity, level of education, number of unpaid debts, number
of loans, etc.) and (amount of credit, duration of credit,
number of concluded loans per portfolio manager, etc.). The
weaknesses are required a more extensive data sample, a deep
enough history of the behavior of the customer, and also more
information about variables related to the client’s activity and
its performance to predict the default better.

B. LAPS Splitting Formula

We define the trustworthiness score in terms of four
variables [30], namely LAPS (Loan Risk, Activity, Profile, and
Social Recommendation) as borrower trustworthiness score
[31], see Equation 7.



1) Loan Risk score is the component for measuring if the
borrower candidate has another loan such as housing,
car, etc. If there is any other loan it is risky to allow
getting another loan. That decreases the trustworthiness
score, see Equation 4.

Loan Risk score =

n∑
i=1

(wi ∗ Li) (4)

where:

w = Weight for each variable {w ∈ R | w ≤ 1}, that
able to be defined by user.
i = Sequence of weight and variable.
L = Variables (loan, housing), where {L ∈ Z | L ≤
100}, and scale of values are between 0 to 100.

2) Activity score describes the borrower’s occupation such
as a job or business activity. It is used to measure
the ability to pay and to consider the credit limit that
corresponds with his activity, if a borrower candidate
has a good occupation they will get the highest value
of Activity score, see Equation 5.

Activity score =
∑

(A) (5)

where:

A = Variable (Job activity), where {A ∈ Z | A ≤ 100},
and scale of values are between 0 to 100.

3) Profile score is the personal data of borrower candidates
such as age, education level, and marital status.
These variables support the trustworthiness score. For
example, the borrower should be older than 18 years
old and 88 years old maximum [32], have an education
level, and have marital status to consider the family
dependent. All the variables are summarised as Profile
score. The formula to get the Profile score is shown in
Equation 6:

Profile score =

n∑
i=1

(wi ∗ Pi) (6)

where:

w = Weight for each variable {w ∈ R | w ≤ 1}, that
able to be defined by user.
i = Sequence of weight and variable.
P = Variables (age, education, marital), where
{P in Z | 0 ≤ P ≤ 100}.

4) The social recommendation score is the primary
variable the borrower gets support directly from the

other users to add recommendation value. This value
act as a guarantor for borrowers to get some loans
from lenders/investors through the lending platform,
see Equations 7 and 8. Social Recommendation
score = variables S (Social Recommendation), where
{S ∈ Z | 0 ≤ S ≤ 100}

The borrowers’ trustworthiness score has a default value for
the first time. It will change with the borrowers’ activity in the
lending platform. The recommenders can give excellent rec-
ommendations to borrowers who propose a loan. An essential
part of the personal lending simulation is a recommendation
that aims to reduce dependence on collateral. The borrowers’
trustworthiness score is computed as:

Trustworthiness Score = Loan Risk score +

Activity score +

Profile score +

Social Recommendation score
(7)

where:

• Trustworthiness Score: Borrower trustworthiness score.
• Loan Risk score: Information of the record from another

loan of Borrower.
• Activity score: Business activity or job information of

Borrower.
• Profile score: Personal information of Borrower.
• Social Recommendation score: The recommendation

value of Borrowers from Recommender.

The LAPS formula is a commitment between borrowers,
lenders/investors, and recommenders set by the smart contracts
management so that all parties understand each other’s obli-
gations and risks that will be accepted. We add a positive
weight for each variable to make LAPS flexible to adjust the
importance of each score in the final value as expressed in the
following equation:

LAPS = (wl ∗ Loan Risk score) +

(wa ∗Activity score) +

(wp ∗ Profile score) +

(ws ∗ Social Recommendation score)

(8)

where {w ∈ R | 0 ≤ w ≤ 1, wl + wa + wp + ws = 1}.
The weights of the trustworthiness attributes are predetermined
based on their priority value that can modify by consensus. For
example, using wl = 0.25, wa = 0.2, wp = 0.25, ws = 0.3,
the social recommendation is given the highest percentage, and
activity is given the lowest value. The social recommendation
is the priority to measure the eligible borrower candidate.
Equation 8 is the complete formula for the trustworthiness
score.



C. LAPS with SGBMA

By adapting the privacy foundations of SGBMA to improve
LAPS, the computation of a trustworthiness score can benefit
from enhanced privacy protection while also leveraging a
decentralized network to make more informed decisions
about borrowers’ creditworthiness. Below it is described how
SGBMA can be applied to enhance LAPS.

Integration of machine learning models
• Comprehensive trustworthiness assessment: LAPS can

leverage the decentralized network structure introduced
by SGBMA to enhance trustworthiness assessment. This
involves training a machine learning model on data from
all participants, including their trustworthiness scores and
historical interactions within the network.

• Incorporating historical context: The machine learning
model, when trained on the combined data, can provide
a more comprehensive assessment of a borrower’s
creditworthiness. It considers not only trustworthiness
scores but also historical behaviors and relationships
within the network.

Improved decision-making
• Enhanced credit assessments: The trained machine

learning model equips lenders with better tools for
making loan approval decisions. It allows lenders to
assess borrowers’ trustworthiness scores in the context
of their social connections and historical interactions,
resulting in more accurate credit assessments.

Data privacy and confidentiality
• Privacy foundations: Adapting SGBMA’s privacy prin-

ciples to LAPS ensures that sensitive borrower data is
securely processed and aggregated. This minimizes the
risk of data exposure or privacy breaches during the
computation and aggregation processes.

• Group-based privacy: Users and recommenders can be
grouped based on commonalities like social connections
or geographic location. Within these groups, secure multi-
party computation protocols, such as the Efficient Secure
Sum Protocol (ESSP), can be also applied to calculate the
social recommendation score without exposing individual
user data.

• User confidence: By employing decentralized
computation techniques, LAPS can build trust among its
participants. Users can have confidence that their data
remains confidential throughout the assessment process.

By applying the SGBMA framework to LAPS in these
ways, the platform can enhance privacy protection, provide
more accurate credit assessments, and improve operational
efficiency. This, in turn, empowers lenders to make better-
informed loan approval decisions, ultimately benefiting both
borrowers and lenders within the lending marketplace. LAPS
is suitable as application problem for the proposed SGBMA

framework for several compelling reasons:

Decentralization of data: SGBMA’s core principle of
decentralized learning aligns seamlessly with the LAPS
framework. In LAPS, borrower data, trustworthiness scores,
and social connections are inherently distributed among users
and recommenders. SGBMA allows this decentralized data to
be harnessed effectively, without the need for centralization
or data pooling.

Privacy-preserving approach: LAPS places a high
premium on user privacy, especially in the context of
social recommendation scores. SGBMA’s focus on privacy
through secure multiparty computation protocols ensures
that individual user data remains confidential during both
local training and the aggregation process. This approach is
well-suited to protect sensitive borrower information in LAPS.

Local training and model building: SGBMA encourages
local training and model building within smaller groups of
users and recommenders. This concept is highly applicable to
LAPS, where trustworthiness scores and historical interactions
are user-specific. Local training allows for the consideration
of user-level nuances and ensures that the resulting machine
learning models are tailored to the unique characteristics of
each group.

Scalability and efficiency: LAPS, like any lending
platform, may have a large user base. SGBMA’s decentralized
approach enhances scalability and efficiency by breaking down
computations into smaller, manageable groups. This reduces
the computational burden and ensures that the integration of
machine learning remains efficient even as the platform scales.

Integral creditworthiness assessment: The integration of
machine learning using SGBMA allows LAPS to provide a
more integral assessment of borrowers’ creditworthiness. By
considering a wide range of features, including trustworthiness
scores, social connections, and historical interactions, the
resulting models can offer lenders a more comprehensive
view, leading to more informed loan approval decisions.

VII. DISCUSSION

Overall, the SGBMA framework yields the highest
accuracy and the lowest loss value, the same as FedAvg
in the non-IID partitioning. The results showed that these
frameworks reach the highest accuracy with fewer training
rounds, but decentralized learning can achieve similar results
with denser topologies. More extensive experiments are
required to evaluate the model utility of SGBMA compared
with other PPML solutions. New datasets have to be used to
compare the performances on different machine learning tasks.

While the current evaluation provides valuable insights into
the model utility of the four frameworks under consideration,



it is important to acknowledge the limitations of our
study and identify avenues for further research. First and
foremost, the experiments were conducted on relatively
modest datasets, which might not fully reflect the challenges
and complexities of large-scale scenarios. Therefore, more
extensive experiments should be conducted with significantly
larger datasets to assess SGBMA’s performance under real-
world, large-scale conditions. Scaling up the dataset size can
provide a better understanding of SGBMA’s ability to handle
more substantial data volumes and its potential advantages in
terms of scalability and efficiency.

Furthermore, exploring SGBMA’s performance in a
parallel environment could be a promising direction for
future investigations. By leveraging parallel processing
capabilities, SGBMA might demonstrate enhanced efficiency
in handling distributed data and computation, leading to
reduced training times and improved overall performance.
Conducting experiments in a parallel computing environment
would allow us to evaluate the full potential of SGBMA
and better understand its advantages in scenarios with a high
degree of parallelism.

In addition to the scalability and efficiency aspects, it
would be beneficial to explore SGBMA’s robustness and
generalization capabilities across various domains and
datasets. Evaluating its performance on diverse datasets from
different sources and domains can provide insights into its
adaptability and reliability in a broader range of applications.

In the context of privacy-preserving techniques, it is
noteworthy to consider the potential adaptability of SGBMA
to incorporate well-established methodologies such as
differential privacy. The principles of differential privacy
can be readily integrated into the SGBMA framework to
enhance privacy protection during the training process. By
introducing noise or perturbations to the model updates on
the group aggregated models, SGBMA can achieve a level
of privacy guarantee, ensuring that no individual participant’s
data can be inferred from the shared model. This adaptation
would enable SGBMA to strike a delicate balance between
collaborative learning and data privacy, making it an appealing
option for applications that require strict privacy protection
while capitalizing on the advantages of decentralized learning.

Similar to SGBMA, federated learning frameworks that
distribute model aggregation have been proposed. Indeed,
Bonawitz et al. [33] address the distribution of computational
operations in federated learning. The authors proposed an
architecture involving various actors to distribute computa-
tionally expensive tasks such as coordination and aggregation.
While this approach offers some advantages, it still relies on a
central orchestrator entity to handle these tasks. As the number
of participants increases, the computational demands on the
orchestrator entity become substantial, and accommodating
additional actors (servers) incurs additional costs. Scalability is

limited to the amount of resources available. The novelty in our
proposal lies in the fully decentralized nature of aggregation
and model sharing that is carried out by the participants
themselves. Once the parameter k, representing the size of
aggregation groups, is defined, our framework can effortlessly
scale by adding more nodes to the aggregation tree. This scal-
ability feature prevents overburdening specific nodes, ensuring
a balanced distribution of computational tasks. Moreover, our
balanced binary tree aggregation structure mitigates the impact
on model propagation time as the tree grows. The logarithmic
growth of propagation time with the number of aggregation
nodes ensures efficient and scalable decentralized learning.

VIII. CONCLUSION

The results of this study show that SGBMA is an
effective framework for decentralized learning. It has the best
performance in terms of accuracy and loss value on both
IID and non-IID partitioning, compared to the benchmarked
approaches. Contrary to DecRing and DecRegular4 settings,
SGBMA’s final model utility is not affected by the number
of neighbors each node has.

While the present study has provided valuable findings
regarding the performance of different frameworks under
certain conditions, there is still significant room for
improvement and exploration. More extensive experiments,
involving larger datasets and parallel computing environments,
are essential to fully assess SGBMA’s potential in large-scale
scenarios and its efficiency advantages. Nevertheless, SGBMA
is a promising framework for decentralized learning that can
be used to train accurate and robust models in a distributed
setting.

The case of study described in Section VI, is one of the
many areas where decentralized learning can be successfully
applied. In an increasingly interconnected world, decentralized
learning is gaining importance due to robustness, scalability,
and privacy guarantees, making it particularly suitable for
resource-constrained settings like edge computing and the
Internet of Things (IoT).
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