Mining Dynamic and Augmented Graphs

A Constraint-Based Pattern Mining View

Marc Plantevit

MEET THE INDUSTRY DAY,

UNIVERSITY-INDUSTRY WORKSHOP ON SYSTEMS

BIOLOGY

Data Mining and Mining (DM2L) Research Group LIRIS UMR5205

Data: a new "natural ressource"

Potential increase of our knowledge

Viewed as augmented graphs

- Graphs are dynamic with attributes associated to vertices and/or edges.
- Generic techniques to understand the underlying mechanisms.

Mining augmented graphs

Network data brings several questions:

- Working with network data is messy
 - Not just "wiring diagrams" but also dynamics and data (features, attributes) on nodes and edges
- Computational challenges
 - Large scale network data
- Algorithmic models as vocabulary for expressing complex scientific questions
 - Social science, physics, biology, neuroscience

Understanding how network structure and node attribute values relate and influence each other.

• A constraint-based pattern mining view

MEET THE INDUSTRY DAY

Constraint-based pattern mining view

A (local) pattern φ describes a subgroup of the data ${\mathcal D}$

- observed several times
- o or characterized by specific properties

whose cardinality is exponential in the size of the data or infinite MEET THE INDUSTRY DAY

Constraint-based pattern mining view

A (local) pattern φ describes a subgroup of the data ${\mathcal D}$

- observed several times
- or characterized by specific properties

whose cardinality is exponential in the size of the data or infinite

The constraints

 $\ensuremath{\mathcal{C}}$ evaluates the adequacy of the pattern to the data

 $\mathcal{C}(arphi,\mathcal{D})
ightarrow \mathsf{Boolean}$

To express the interest of the end-user

- Taking into account the domain knowledge
- objective interest, statistical assessment

MEET THE INDUSTRY DAY

Constraint-based pattern mining view

A (local) pattern φ describes a subgroup of the data $\mathcal D$

- observed several times
- or characterized by specific properties

whose cardinality is exponential in the size of the data or infinite

The constraints

 $\ensuremath{\mathcal{C}}$ evaluates the adequacy of the pattern to the data

 $\mathcal{C}(\varphi, \mathcal{D})
ightarrow \mathsf{Boolean}$

To express the interest of the end-user

- Taking into account the domain knowledge
- objective interest, statistical assessment

Pattern mining task: Find all interesting subgroups

 $\mathit{Th}(\mathcal{L},\mathcal{D},\mathcal{C}) = \{\varphi \in \mathcal{L} \mid \mathcal{C}(\varphi,\mathcal{D}) \text{ is true } \}$

M. Plantevit $Th(\mathcal{L}, \mathcal{D}, \mathcal{C})$ is an inductive query.

Fully taking into account user preferences

- :-(A constraint \equiv some (too many) thresholds to set !!!
 - A well-known issue in data mining that limits the full use of this paradigm

Let's see the constraints as preferences !

Computing only the patterns that maximize the user preferences

🧆 [Soulet et al., ICDM 2011]

⇒ Skyline Analysis

Δ

to compute only the (sky)patterns that are pareto-dominant w.r.t. to the user's preferences.

Case Study: Discovering Toxicophores

- Skypatterns are useful to discover toxicophores
- background knowledge can easily be integrated, adding aromaticity and density measures

graphs

- What are the node attributes that strongly co-vary with the graph structure?
 - Co-authors that published at ICDE with a high degree and a low clustering coefficient.
 - Prado et al., IEEE TKDE 2013
- What are the sub-graphs whose node attributes evolve similarly?
 - Airports whose arrival delays increased over the three weeks following Katrina hurricane
 - IDesmier et al., ECMLPKDD 2013
- For a given population, what is the most related subgraphs (i.e., behavior)? For a given subgraph, which is the most related subpopulation?
 - People born after 1979 are over represented on the campus.

Talk Outline

O Co-evolution patterns in dynamic attributed graphs

Extensions to hierarchies and skyline analysis

.

MEET THE INDUSTRY DAY

Dynamic Attributed Graphs

A dynamic attributed graph $\mathcal{G} = (\mathcal{V}, \mathcal{T}, \mathcal{A})$ is a sequence over \mathcal{T} of attributed graphs $G_t = (\mathcal{V}, E_t, A_t)$, where:

- ${\scriptstyle \bullet } \ {\cal V}$ is a set of vertices that is fixed throughout the time,
- $E_t \in \mathcal{V} \times \mathcal{V}$ is a set of edges at time t,

▲

• A_t is a vector of numerical values for the attributes of \mathcal{A} that depends on t.

MEET THE INDUSTRY DAY

Co-evolution Pattern

Given $\mathcal{G} = (\mathcal{V}, \mathcal{T}, \mathcal{A})$, a co-evolution pattern is a triplet $P = (V, \mathcal{T}, \Omega)$ s.t.:

• $V \subseteq \mathcal{V}$ is a subset of the vertices of the graph.

▲

- $T \subset T$ is a subset of not necessarily consecutive timestamps.
- Ω is a set of signed attributes, i.e., $\Omega \subseteq A \times S$ with $A \subseteq A$ and $S = \{+, -\}$ meaning respectively a {*increasing*, *decreasing*} trend.

Predicates

A co-evolution pattern must satisfy two types of constraints:

Constraint on the evolution:

- Makes sure attribute values co-evolve
- We propose δ -strictEvol.
- $\forall v \in V, \forall t \in T \text{ and } \forall a^s \in \Omega$ then δ -trend(v, t, a) = s

Constraint on the graph structure:

- Makes sure vertices are related through the graph structure.
- We propose diameter.
- Δ -diameter $(V, T, \Omega) =$ true $\Leftrightarrow \forall t \in T \ diam_{G_t(V)} \leq \Delta$

MEET THE INDUSTRY DAY

Example

$$P = \{(v_1, v_2, v_3)(t_1, t_2)(a_2^-, a_3^+)\}$$

- 1-Diameter(P) is true,
- 0-strictEvol(P) is true.

MEET THE INDUSTRY DAY

Density Measures

Intuition

Discard patterns that depict a behaviour supported by many other elements of the graph. We propose : **vertex specificity**, **temporal dynamic** and **trend relevancy**.

HEET THE INDUSTRY DAY

Algorithm

How to use the properties of the constraints to reduce the search space?

- Binary enumeration of the search space.
- Using the properties of the constraints to reduce the search space
 - Monotone, anti-monotone, piecewise (anti-)monotone, etc.
- Constraints are fully or partially pushed:
 - to prune the search space (i.e., stop the enumeration of a node),
 - to propagate among the candidates.

[™][Cerf et al, ACM TKDD 2009]

• Our algorithms aim to be complete but other heuristic search can be used in a straightforward way (e.g., beam-search) to be more scalable

Top temporal_dynamic trend dynamic sub-graph (in red)

- 71 airports whose arrival delays increase over 3 weeks.
- temporal_dynamic = 0, which means that arrival delays never increased in these airports during another week.
- The hurricane strongly influenced the domestic flight organization.

	V	T	A	density
Katrina	280	8	8	$5 imes 10^{-2}$

Top trend_relevancy (Yellow)

- 5 airports whose number of departures and arrivals increased over the three weeks following Katrina hurricane.
- *trend_relevancy* value equal to 0.81
- Substitutions flights were provided from these airports during this period.
- This behavior is rather rare in the rest of the graph

Brazil landslides

	V	T	A	density
Brazil landslide	10521	2	9	0.00057

Discovering lanslides

- Taking into account expert knowledge, focus on the patterns that involve NDVI⁺.
- Regions involved in the patterns: true landslides (red) and other phenomena (white).
- Compare to previous work, much less patterns to characterize the same phenomena (4821 patterns vs millions).

EET THE INDUSTRY DAY

Overview of our proposal

Experimental results

US flights

(Desmier et al., ECML/PKDD 2013)

2 7 6

21 30 31 8 8 2

MEET THE INDUSTRY DAY

Overview of our proposal

Experimental results

DBLP US flights

- Some obvious patterns are discarded ...
- ... but some patterns need to be generalized

NbFlights

Hierarchical co-evolution patterns

Take benefits from a hierarchy over the vertex attributes to :

- return a more concise collection of patterns;
- discover new hidden patterns;

Talk Outline

Co-evolution patterns in dynamic attributed graphs

2 Extensions to hierarchies and skyline analysis

MEET THE INDUSTRY DAY

Hierarchy

A hierarchy ${\mathcal H}$ on ${\mathcal A}$ is a tree where:

- the edges are a relation is_a,
- the node *All* is the root of the tree,
- ${ullet}$ the leaves are attributes of ${\cal A}$,
- dom(\mathcal{H}) is all the nodes except the root.

M. Plantevit

Hierarchical co-evolution Patterns

Given $\mathcal{G} = (\mathcal{V}, \mathcal{T}, \mathcal{A})$ and \mathcal{H} , a hierarchical co-evolution pattern is a triplet $P = (V, T, \Omega)$ s.t.:

- $V \subseteq \mathcal{V}$ is a subset of the vertices of the graph.
- $\mathcal{T} \subset \mathcal{T}$ is a subset of not necessarily consecutive timestamps.
- Ω is a set of signed attributes, i.e., Ω ⊆ A × S with
 A ⊆ dom(H) and S = {+, -} meaning respectively a {increasing, decreasing} trend.

It must respect the following constraints:

- Constraint on the evolution.
- 2 Constraint on the graph structure.

Evolution Constraint

For an attribute A, its evolution is computed from the evolution of the leaves it covers.

MEET THE INDUSTRY DAY

- 1-Diameter(P) is true,
- 0-strictEvolHierarchical(P) is true.

Purity of the pattern

Is the pattern described with the good level of granularity?

Purity computes the proportion of valid triplet (v, t, a^s) with regard to the number of possible triplets.

Use of hierarchies does not impact other measures/constraints

M. Plantevit • What about attributes discarded because of a too small purity gain?

MEET THE INDUSTRY DAY

Overview

(Desmier et al., ECML/PKDD 2013)

Experimental results

DBLP US flights

- Some obvious patterns are discarded ...
- ullet ... but some patterns need to be generalized \checkmark
- [Desmier et al, IDA 2014]
- Difficulties to set parameters.

MEET THE INDUSTRY DAY

Overview

Experimental results

DBLP US flights

- Some obvious patterns are discarded ...
- ullet ... but some patterns need to be generalized \checkmark
- 🔌 [Desmier et al, IDA 2014]
- Difficulties to set parameters.

▲

M. Plantevit

HEET THE INDUSTRY DAY

Skyline analysis

The skyline operator returns all the skypatterns:

 $sky(\mathcal{P}, M) = \{ P \in \mathcal{P} | \not\exists Q \in \mathcal{P} \text{ s.t. } Q \succ_M P \}$

 $Q \succ_M P$ iff:

- Q is better (i.e., more preferred) than P in at least one measure,
- *Q* is not worse than *P* on every other measure.

We propose to discover skypatterns considering a multidimensional space composed with a subset of the measures:

- sizeV, sizeT, sizeA
- volume
- o purity

- vertexSpecificity
- temporalDynamic

- Times: 8 weeks around the Katrina hurricane.
- Attributes: number of departure/arrival/cancelled/deviated flights, departure/arrival delays and ground times.

RITA "On-Time Performance" database. (http://www.transtats.bts.gov)

Hierarchy impact

- 2 experiments with and without a hierarchy,
- Thresholds: min_V =40, min_T = min_A = ϑ =1, ψ =0.9, κ =0.2, τ =0.4.

▲

Hierarchy impact

- 2 experiments with and without a hierarchy,
- Thresholds: min_V =40, min_T = min_A = ϑ =1, ψ =0.9, κ =0.2, τ =0.4.

Hierarchy impact

- 2 experiments with and without a hierarchy,
- Thresholds: min_V =40, min_T = min_A = ϑ =1, ψ =0.9, κ =0.2, τ =0.4.

▲

Hierarchy impact

- 2 experiments with and without a hierarchy,
- Thresholds: min_V =40, min_T = min_A = ϑ =1, ψ =0.9, κ =0.2, τ =0.4.

Qualitative experiments: Using skyline analysis

- $\vartheta = min_V = 5$, $min_T = min_A = 1$, $\psi = 0.9$
- Skyline dimensions: VS, TD

▲

Qualitative experiments: Using skyline analysis

This behavior is not followed by another node (airport) at this timestamp.

.

Conclusion

Talk Outline

Co-evolution patterns in dynamic attributed graphs

Extensions to hierarchies and skyline analysis

▲

(dynamic) Augmented graphs:

- A powerful mathematical abstraction that makes possible to depict many phenomena
- We have to define a large variety of inductive queries:
 - to focus on the evolution (of the attributes, the graph structure),
 - to take into account the intrinsic richness of the edges and the nodes.
 - Pitarch et al, ASONAM 2014]: triggering attributes.

Multi-level graphs

- find all dense multi-level graphs
- hypothesis elicitation (rare diseases), clustering

Contextualized trajectories

- Find subgraphs that are specific to a subpopulation
- recommendation, link prediction.

3D graphs

- Are there some 3D configurations specific to a class?
- hypothesis elicitation (olfaction)

.

Skyline analysis to support more interaction

Skypattern mining is particularly well suited to interactive research:

- it proposes a *reduced collection* of patterns to the data expert which can quickly analyze it.
- Integration of the user feedbacks to make to foster iterative and interactive process.
 - refining the dominance relation;
 - computing the cube of all possible measures;
 - the skypattern cube exploration will provide a better understanding of the impact of the measures on the problem at hand;
 - Removing some uninteresting skypatterns and recompute the local changes;

A challenging issue, especially with augmented graphs!

.

Conclusion

MEET THE INDUSTRY DAY

Thank you for your attention.

