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ABSTRACT

We formalize the data mining process as a process of infor-
mation exchange, defined by the following key components.
The data miner’s state of mind is modeled as a probability
distribution, called the background distribution, which rep-
resents the uncertainty and misconceptions the data miner
has about the data. This model initially incorporates any
prior (possibly incorrect) beliefs a data miner has about the
data. During the data mining process, properties of the
data (to which we refer as patterns) are revealed to the data
miner, either in batch, one by one, or even interactively.
This acquisition of information in the data mining process
is formalized by updates to the background distribution to
account for the presence of the found patterns.
The proposed framework can be motivated using concepts

from information theory and game theory. Understanding
it from this perspective, it is easy to see how it can be ex-
tended to more sophisticated settings, e.g. where patterns
are probabilistic functions of the data (thus allowing one to
account for noise and errors in the data mining process, and
allowing one to study data mining techniques based on sub-
sampling the data). The framework then models the data
mining process using concepts from information geometry,
and I-projections in particular.
The framework can be used to help in designing new data

mining algorithms that maximize the efficiency of the infor-
mation exchange from the algorithm to the data miner.

Categories and Subject Descriptors

H.2.8 [Database Management]: Database applications—
Data mining
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1. INTRODUCTION
Loosely speaking, we would define data mining as the pro-

cess of extracting patterns present in data that are ideally
interesting to a user, the data miner. There has been consid-
erable debate about the difference and added value of data
mining when compared to related disciplines. We believe
the distinctiveness of the field of data mining is hidden in
the word interesting : at its heart is the task of quantifying
how interesting patterns are. This has proved to be a hard
problem, and attempts to solve it wholly or partially are nu-
merous. For example, the number of clustering objectives is
practically uncountable. The number of measures of interest
used in frequent pattern mining and association analysis is
in the order of a hundred. Even in a setting as well-defined
as supervised classification, the accuracy objective can be
meaningfully quantified in a large number of ways. The
practitioner trying to find her way in this jungle is not to be
envied.

Partly in recognition of this problem, and to define the
boundaries of this relatively young field, efforts have been
made to come up with theoretical frameworks for data min-
ing. A very insightful paper [22] on this topic suggested a
list of properties such a theoretical framework for data min-
ing should satisfy. In particular, the paper argues it must
encompass all or most typical data mining tasks, have a
probabilistic nature, be able to talk about inductive gener-
alizations, deal with different types of data, recognize the
data mining process as an interactive and iterative process,
and account for background knowledge in deciding what is
an interesting discovery.

In [22] various attempts at achieving subsets of these cri-
teria are surveyed, such as reducing data mining to multi-
variate statistics or to machine learning; regarding it as a
probabilistic modeling or as a compression effort; formal-
izing it from a microeconomic viewpoint with an externally
defined utility function; or regarding data mining research as
the development of a query language on so-called inductive
databases.

The purpose of this paper is to suggest a new framework
that usefully defines the boundaries of data mining as dif-
ferent from statistics, machine learning, and probabilistic
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modeling.1 In particular, the subject of our framework is
data mining as defined as follows.

Definition 1.1 (Data Mining). Data mining is a pro-
cess of information transmission from an algorithm (called
the data mining algorithm) that has access to data, to a data
miner who is interested in understanding the data but who
has an information processing capacity that is too limited to
access it directly. The information transmitted is in the form
of patterns of a type or syntax specified by the data miner.
Here, pattern is broadly defined, as a quantifiable property
of the data. The transmission of a pattern results in a re-
duction of the data miner’s uncertainty and misconceptions
about the data, and the stronger this reduction, the more in-
teresting the pattern is deemed to be. The data mining pro-
cess can be iterative, such that patterns are communicated
one by one. It can also be interactive, allowing the data
miner to influence the data mining algorithm in the course
of the process, e.g. steering it toward patterns of a certain
syntax or complexity.

From this definition, it should be clear that we focus on the
data miner as much as on the data. Indeed, we contend
that postulating which patterns are interesting and which
ones are not in an ‘objective’ way, as is common practice,
is bound to be of limited practical use. Instead, we believe
that what makes a pattern interesting should be part of the
object of study of data mining research. The framework
we propose in this paper will serve that goal: studying the
interaction between the data and the data miner in order
to quantify the subjective level of interest in a pattern (see
[28, 25] for remarkably early and significant steps in this
direction).
Before we embark on the details of our framework for data

mining defined in this way, let us point out what our frame-
work is not, and which questions it does not attempt to
answer. In doing this, we contrast our framework with the
possible frameworks considered in [22].
Our setting is distinctly different from the machine learn-

ing setting, in that interesting patterns in data may allow
one to predict, but do not need to do so. To derive PAC-style
learning theoretic results [30], statistical assumptions about
the source of the data need to be made. As this is done ade-
quately in the machine learning literature, we would rather
not make these assumptions and leave it to machine learn-
ing studies to do this. Even stronger, in the general setting
we regard the data as a monolithic entity, not necessarily
composed of similar constituent parts typically called data
points. This is important e.g. in relational data mining (if
one wants to avoid using techniques such as propositional-
ization), where such a reduction is often nontrivial and not
unique.
Similarly, our framework is philosophically different from

probabilistic modeling. In particular, we consider situations
where the data miner’s primary concern is understanding the
data itself, rather than the stochastic source that generated

1Note that the purpose of this paper is fundamentally dif-
ferent from the purpose of [9], which introduces a different
kind of framework for data mining. Whereas the purpose of
[9] appears to be the establishment of a common taxonomy
and language to formalize data mining processes as they are
usually implemented today, the purpose of the current pa-
per is to propose a framework for how data mining could
and perhaps sometimes should be done differently from this
standard practice.

it. Whenever we consider a probabilistic model for the data,
this represents the data miner’s belief about what the value
of the data may be, rather than a probability distribution
from which the data might have been sampled.

Our formalism also differs in important respects from the
view of data mining as compression [10, 27]. This popular
and powerful view suffers from a few problems. A theoretical
problem is its philosophical dependence on the Kolmogorov
complexity of the data, which is uncomputable. A more
serious practical problem is that, at least in its common
form, it is ignorant of the user or her prior information or
beliefs about the data.

The microeconomic view of data mining [19] is highly dis-
similar but complementary to our framework. It is useful
in different settings, namely when the data mining utility
function can be formally specified. However, we contend
that in many cases it is impractical to specify such a utility
function.

Also the inductive database view (e.g. [21, 26]) could
possibly be united and lead to synergies with our framework.
However, we will not utilize the terminology common in that
area of research, as we are not concerned with the inductive
learning aspects, nor the query aspects, as much as with the
information theoretic aspects of the data mining process.

Probably the key difference of our framework with all the-
oretical frameworks surveyed by [22] is its primary focus on
the user, rather than on the data. Some early papers have
taken a similar approach, e.g. [28, 25], but unfortunately
the fraction of papers that aim to define interestingness in
a subjective manner is small. Still, we believe this is critical
to the very identity of data mining, as a field concerned with
defining which patterns are interesting, and we consider it
crucial to enhance the successful adoption of data mining in
practice, especially of exploratory data mining techniques.

The present paper results from various ideas that were
published earlier, or are currently under review [11, 12, 4, 5,
6, 8, 20, 7]. Furthermore, relations exist with various prior
work [28, 25, 17, 27, 29, 24, 23, 14], but for space reasons
we postpone a detailed discussion of these connections to a
forthcoming paper. For information theory and information
geometry references related to this paper, see e.g. [15, 3, 1].

2. THE USER’S PERSPECTIVE AND A DATA

MINING FORMALISM

2.1 A bird’s eye view on the framework
We regard data mining as a process that decreases a user’s

uncertainty or misconceptions about the value of the data
x ∈ X (see Def. 1.1). This data mining process can be more
or less efficient, depending on which patterns are being com-
municated and the prior beliefs of the data miner. In this
sense, a pattern that reduces the data miner’s uncertainty
more strongly is subjectively more interesting. A central
component of our framework is thus a representation of the
uncertainty of the data miner about the data (as believed
by the data miner).

In this initial simplified bird’s eye view, let us assume that
the data miner is able to formalize her beliefs in a background
distribution, denoted P ∗. Her interest is to get to know the
data x in as cheap a way as possible. A simple approach
could be to agree a code with the algorithm, and request
the entire data to be sent over encoded in this way. For
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convenience, we will assume the code is an optimal code
where Kraft’s inequality is an equality, which means that
the code lengths can be specified by means of a probability
distribution P as − log(P (x)) for data x. We will also refer
to such code as a Shannon code with respect to P . It is
in the data miner’s interest to design the code lengths in
this code (or equivalently the probability distribution P ) so
as to minimize her expectation of the code length, equal to
EX∼P∗{− log(P (X))}. It is easy to show that this function
is minimized for P = P ∗, and the expected code length
is equal to the entropy H(P ∗) = −EX∼P∗{log(P ∗(X))} of
P ∗. Note that a small entropy does not guarantee that the
code length − log(P ∗(x)) for the actual data x is small: this
depends on the accuracy of the prior beliefs as formalized
in P ∗. The entropy of P ∗ could be small due to the data
miner being overly confident.
The result of the communication of a pattern to the data

miner is that she will update her beliefs about the data, re-
sulting in a new background distribution P ∗′. Correspond-
ingly, to ensure efficient communication of the data, the
data miner may update the code to be used for commu-
nicating the data such that the new code word length for
x ∈ X is equal to − log(P ′(x)) for some distribution P ′

(again, assuming that Kraft’s inequality can be an equal-
ity). A rational choice to determine these new code word
lengths (or equivalently the distribution P ′) would be to
maximize the expected reduction in code length, equal to
EX∼P∗′{log(P ′(X))− log(P ∗(X))}. It is easy to show that
the maximum is achieved for P ′ = P ∗′, and the expected re-
duction in code length is then equal to the Kullback-Leibler
(KL) divergence KL(P ∗′||P ∗) = EX∼P∗′{log(P ∗′(X)) −
log(P ∗(X))} between the initial and updated background
distributions P ∗ and P ∗′. It is quite fitting that the KL-
divergence is also known as the information gain.
Then, good data mining algorithms are those that are able

to pinpoint those patterns that lead to a large information
gain.2 Simultaneously, an interesting pattern needs to be
easy to describe, itself. Describing a pattern requires a code
as well, which should also be defined by the data miner. This
code provides the data miner with a way to steer the search
toward patterns of a certain syntactical complexity or form.
It is then the trade-off between the information gain due to
the revealing of a pattern in the data, and the description
length of the pattern, that should define a pattern’s interest
to the data miner.
We have not touched upon how the background distri-

butions P ∗ and P ∗′ are determined, or how they become
known to the algorithm so that it could work out the Shan-
non code lengths. Typically, the data miner will not be able
to specify these distributions explicitly, as it would be too
laborious or the introspective exercise may be prohibitively
hard. In the rest of this Section we will discuss how this
can be handled, and we will further detail some of the other
aspects of the framework.

2.2 The data miner and prior beliefs
We assume that a data miner is interested in getting to

know as much as possible about the data at hand, at as little

2Note that ideally, rather than the expected reduction in
code length for the data, it should be the actual reduction
that guides the search for patterns. However, we will show
below that focusing on the information gain is equivalent
with focusing on the actual reduction in code length.

a description cost as possible. If the data miner did not have
prior beliefs, this would amount to data compression, e.g.
using a universal compression scheme (such as Lempel-Ziv).
See e.g. [27, 10] for a discussion of the compression view.

Prior beliefs allow one to specify a compression scheme
that reflects the data’s complexity as perceived by the data
miner. Let us assume that the prior beliefs of the data
miner can be summarized using a background distribution
P ∗. Then we have argued that the optimal code to be used
for communicating the data has code word lengths equal to
− log(P ∗(x)) for x ∈ X . The more probable the data miner
judges the data to be, the shorter the code describing it
would be. The code length for x is effectively a measure of
the subjective complexity of the data x.

Ideally, the data miner directly formalizes her prior beliefs
by specifying P ∗. However, while we postulate the existence
of P ∗ somewhere deep in the mind of the data miner, re-
quiring her to fully specify it is bound to be impractical.
More manageable would be to allow the data miner to just
specify (some of) her beliefs in the form of constraints the
background distribution must satisfy, or equivalently a set
P of distributions P ∗ must belong to. For example, the data
miner could state that the expected value of a certain prop-
erty of the data is equal to a given value. The resulting P
would be a convex set, as we will assume in the sequel.

Not knowing the exact background distribution, it is un-
clear then how the code for the data should be designed,
i.e. how to choose the distribution P that defines the code
lengths as − log(P (x)) for x ∈ X . We argue it makes most
sense to choose the distribution P ∈ P of maximum entropy,
and we call this the ME (Maximum Entropy) distribution,
i.e.:

P = argmax
P∈P

−EX∼P {log(P (X))}.

It should be acknowledged that typically P 6= P ∗. However,
as we will argue in two different ways, P is a good surrogate
for P ∗ for the design of a code for the data.

The first argument is that in the absence of any other
constraints, the best estimate for P ∗ is the ME distribution
from P. The motivation of this Maximum Entropy Principle
is that any distribution from P with lower entropy than the
ME distribution effectively injects additional knowledge, re-
ducing the uncertainty in undue ways. After estimating the
background distribution as the ME distribution P , we can
repeat the reasoning from Sec. 2.1 and set the code lengths
equal to − log(P (x)) in order to minimize (an estimate of)
the expected code length.

The second argument is a game-theoretic one. For a Shan-
non code with respect to P , the expected code length accord-
ing to P ∗ is equal to −EX∼P∗{log(P (X))}. Of course, this
quantity cannot be evaluated when P ∗ is incompletely speci-
fied. As fully specifying it is impractical, the data miner and
the data mining algorithm could instead agree to play safe
and choose P so as to minimize the expected code length in
the worst case over all possible P ∗ ∈ P. Then, P is found
as:

P = argmin
P

max
P∗∈P

−EX∼P∗{log(P (X))}.

It is well-known that for convex P the solution P is equal to
the ME distribution from P. Hence, in this argument, we
do not try to estimate P ∗, but instead we design the code
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lengths defined by P in the safest possible way given the
prior beliefs specified by the data miner.
In summary, at the start of the data mining process, the

most sensible way to quantify the subjective complexity of
the data is using the code length in an optimal Shannon
code with respect to the ME model P . We will also refer to
this distribution as the surrogate background distribution.

2.3 Patterns and conditioning
In a data mining process, the data mining algorithm re-

veals a pattern to the data miner (see Sec. 2.6 for pattern
sets). For concreteness, let us narrow down our definition of
a pattern to mean any property of the data that restricts the
set of possible values of the data to a subset of its domain.
Then a pattern can be formalized as a constraint x ∈ X ′ for
some X ′ ⊆ X . Although not fully general, we believe that
many data mining algorithms can be studied using this def-
inition of pattern. Nevertheless, in Sec. 4.2 we will outline
how the framework could be generalized to include other
types of pattern as well.
The result of revealing a pattern to the data miner is that

the data miner’s beliefs adapt, and thus the background dis-
tribution P ∗ turns into an adapted background distribution
P ∗′. To exploit this, also the code describing the data should
be reconsidered to minimize the expected code length.
As is the case for P ∗ at the start of the data mining pro-

cess, the data miner cannot be expected to specify P ∗′. All
we know about it is that P ∗′(x) = 0 for all x 6∈ X ′, as the
pattern has revealed to the data miner that x ∈ X ′. To ex-
ploit this, it should be possible to update the code describing
the data, making it more efficient (at least in expectation,
but it would be even better if it is deterministically more
efficient, irrespective of the actual value of the data).
We argue that the new code should have Shannon code

lengths with respect to a distribution P ′ that is defined as
the distribution P conditioned on the information that the
data x belongs to the new support X ′ ⊆ X . Formally:

P
′(x) = P (x|x ∈ X ′),

=

{

0 for x 6∈ X ′,
1

P (X∈X ′)
· P (x) for x ∈ X ′.

The reduction in code length (and thus also the reduction
in expected description length, called the information gain
in Sec. 2.1) of the data achieved by encoding the data w.r.t.
P ′ instead of P is then equal to − log(P (X ∈ X ′)). We refer
to this quantity as the self-information of the pattern. In
the discussion below, we will refer to the distribution P ′ as
the updated surrogate background distribution.
As for choosing P as the ME distribution, there are again

two arguments for choosing the updated surrogate back-
ground distribution P ′ as the conditional of P on the fact
that x ∈ X ′.
In the first argument, we attempt to estimate the new

background distribution P ∗′ by P ′. In the absence of any
other information, it seems sensible to let P ′ be as similar
to P as possible, while incorporating the new information
that x ∈ X ′. This difference between the updated and orig-
inal distributions P ′ and P can be quantified using the KL
divergence KL(P ′||P ) = EX∼P ′{log(P ′(X)) − log(P (X))}.
Thus, with P ′ the set of distributions that assign zero prob-
ability to the set of all x 6∈ X ′, P ′ can be estimated as:

P
′ = arg min

P ′∈P′

EX∼P ′{log(P ′(X))− log(P (X))}.

This principle of choosing P ′ is known as the Minimum Dis-
crimination Information Principle, and is a generalization of
the Maximum Entropy Principle. For the particular choice
of P ′, it can be shown that the optimum is indeed achieved
for P ′ as the conditioning of P on the new domain X ′, i.e.
P ′(x) = P (x|x ∈ X ′). After estimating P ∗′ as P ′, it is
again easy to show that the shortest code in expectation is
the Shannon code with respect to P ′.3

The second argument is again a game-theoretic one, and
avoids the need to estimate the new background distribution
P ∗′. All we assume about it is that

∑

x 6∈X ′ P
∗′(x) = 0, i.e.

that P ∗′ ∈ P ′, as the pattern revealed to the data miner
specifies that x ∈ X ′. We want to find a distribution P ′ and
the associated Shannon code lengths for describing the data,
for which the data miner’s expectation of the reduction in
description length is maximal. This expected reduction in
description length is equal to the expected value with respect
to P ∗′ of the difference between the code length using P

and using P ′, i.e. EX∼P∗′{log(P ′(X)) − log(P (X))}. It is
impossible to maximize this directly, as P ∗′ is unspecified.
However, we can maximize it in the worst-case over all P ∗′ ∈
P ′:

P
′ = argmax

P ′

min
P∗′∈P′

EX∼P∗′{log(P ′(X))− log(P (X))}. (1)

It can be shown that the optimum P ′ is P conditioned on
the new domain X ′, as suggested (see also Sec. 4.2).

Note that the initial set of prior beliefs may not be true
anymore in the updated background distribution P ∗′, i.e.
it may be that P ∗′ 6∈ P. As a result, also the updated
surrogate background distribution P ′ may not belong to P.
This is desirable, as the revealed patterns may help the data
miner to fine-tune the prior beliefs, or even to correct out-
right misconceptions.

Remark 2.1. Note that although the description length
of the data is reduced by the self-information of the pat-
tern after conditioning the surrogate background distribu-
tion, the expected description length may actually increase.
This is due to more information becoming available, such
that the description length can be estimated more accurately.
Thus, patterns that lead the data miner to revise her back-
ground distribution in such a way that the expected descrip-
tion length increases are not to be avoided for that reason.
We should just be concerned by the amount by which a pat-
tern reduces the description length of the actual data, which
is its self-information.

Data mining could thus be formalized as the process of
revealing aspects of the data in the form of patterns that
allow the data miner to revise her beliefs in such a way
that the data becomes more plausible (i.e. less complex to
describe). For patterns defined as constraints of the form
x ∈ X ′ for some X ′ ⊆ X , this means reducing the set of
possible values of the data to a subset of the domain of the
data. In doing so, the remaining uncertainty of the data
miner is reduced, as reflected in a reduction in the data’s
description length. Without knowing the data x it would

3Note that KL(P ′||P ) is then equal to the expected differ-
ence in coding length using a Shannon code based on P and
a Shannon code based on P ′, where the expectation is taken
with respect to the new estimated P ′. This should corrob-
orate the choice for the KL-divergence as a way to quantify
the difference between P and P ′.
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Figure 1: A schematic illustration of the effect of

the communication of a pattern reducing the set

of possible values for x from X to X ′ ⊆ X . The

surrogate background distribution P used to deter-

mine the code lengths is conditioned on this new

reduced domain, leading to an updated surrogate

background distribution P ′ and associated set of

code lengths. The unknown new background dis-

tribution P ∗′ could be anything consistent with the

requirement that it assigns zero probability to X\X ′.

seem we can only reason about the information gain due to a
pattern, i.e. the expected reduction in code length. However,
it turns out that by defining P ′ as the conditional of P on the
presence of the revealed pattern, the reduction in description
length is independent of the value of the data x, and equal
to the self-information of the revealed pattern. Patterns can
then be considered more interesting if their self-information
is larger. This is equivalent to what we suggested in Sec. 2.1,
considering patterns more interesting if they lead to a larger
information gain.
A schematic illustration of the essential components of the

data mining process is given in Fig. 1. This Figure shows
what may happen to the true (unknown) background back-
ground distribution when it is revealed that the data x be-
longs to X ′ ⊆ X . In particular, all P ∗′ needs to satisfy is
that its domain is restricted to X ′. Also shown is how P ′,
which defines the code lengths for the data after observing

the pattern, is obtained from the ME distribution P , simply
conditioning it on the reduced domain X ′.

2.4 The cost of a pattern
Instead of just being concerned with encoding the data

given that a pattern is known to be present, we should be
concerned with the length of the joint description of the data
and the pattern. Indeed, also with the communication of a
pattern to the data miner a description cost is associated.

The code length of each possible pattern should be speci-
fied in advance by the data miner. It should reflect the sub-
jective complexity of a pattern, and can be used to favour
patterns of a certain syntax or complexity over others by
assigning them a smaller code word.

2.5 Effective data mining as a specific type of
compression, and subjective level of inter-
est of a pattern

The above completes the essence of our framework for
data mining. Given this framework, we can reason about
the efficiency of the process. In particular, we believe it
should be the goal of a data mining algorithm to search for
the pattern that strikes the right balance between the self-
information (and hence the reduction in description length
of the data) on the one hand, and the description cost for
the pattern on the other. There may be various ways to
trade-off these two aspects.

For example, assume that the data miner has a certain
processing capacity, defined as an upper bound on the pat-
tern description length she can cope with. Then the level of
interest of the pattern should be defined by its self-information,
as long as its description length under the user-specified code
(see Sec. 2.4) is smaller than that upper bound.

On the other hand, if the data miner is truly interested in
fully knowing the data (which we believe is less common),
it is the overall compression of the data that is of inter-
est. Then the measure of interest should be defined by the
reduction in overall coding length achieved, taking into ac-
count the need to also encode the pattern. I.e., then the
difference between the self-information (the gain in the de-
scription length of the data) and the description length of
the pattern would be of interest, as it represents the gain in
total description length.

2.6 Pattern set mining, iterative data mining,
and interactive data mining

In the above, we have assumed that only one pattern is
revealed to the data miner. Here, a pattern was defined
as anything that reduces the set of possible values for the
data from the entire domain X down to X ′

i ⊆ X . Note
that we introduced a subscript i here, which is an index
running over the set of patterns of potential interest to the
data miner (i.e. those the data miner assigned a finite code
word length). Obviously, this implies that a pattern set is
a pattern itself—for the discussion below let us call this a
composite pattern (even though this is a rather badly defined
notion). Indeed, a composite pattern defined by a set of
patterns with indices i in a set I, corresponds to a constraint
x ∈ X ′

I with X ′
I =

⋂

i∈I
X ′

i . Clearly, since the intersection
operation is commutative and associative, it does not matter
in which order patterns are revealed.

Note that the conditioning operator applied to distribu-
tions is commutative and associative as well. This means
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that the conditioning of the surrogate background distribu-
tion based on a composite pattern is the same as the iterative
conditioning on the atomic (as opposed to composite) con-
stituent patterns. The framework thus describes pattern set
mining in a sound and natural way. Patterns can be com-
bined, leading to the definition of new (composite) patterns.
As such, the notion of a pattern set becomes theoretically

less relevant as it can be regarded as a single pattern of differ-
ent kind. Indeed, the aim of iterative data mining is simply
to search for a single composite pattern with a maximal self-
information − log(P (X ∈ X ′

I)), while its description should
not be too long. Here, the description length of a composite
pattern is the sum of the description lengths of the atomic
constituent patterns.
However, from a practical algorithmic perspective, pattern

set mining remains important as a concept. Interestingly,
pattern set mining formalized in this way always boils down
to a weighted set coverage problem of some kind. Indeed,
consider the domain X of the data as the universe, each
element x ∈ X of which is assigned a weight P (x) equal
to the probability under the initial surrogate background
distribution. Furthermore, associate with each pattern a
subset of this universe, namely the set X\X ′

i of elements
from the data domain it rides out. Also associate a cost
with each pattern, equal to its description length. Then,
the search for a pattern set with indices I such that the
union of subsets from the data space associated to the pat-
terns in the pattern set have the largest cumulative weight
is equivalent with searching for the pattern set for which
⋃

i∈I
X\X ′

i = X\
⋂

i∈I
X ′

i = X\X ′
I has the largest total

probability under P . This in turn is equivalent to search-
ing for the pattern set with indices I for which X ′

I has the
smallest total probability, i.e. for which P (X ∈ X ′

I) is min-
imal, or hence for which self-information − log(P (X ∈ X ′

I))
is maximal, as we aim to do in pattern set mining under our
framework.
This shows that pattern set mining can be reduced to a

weighted set coverage problem. With an additional upper
bound on the overall description length of the pattern set, it
is a budgeted version of the weighted set coverage problem.
These problems are known to be hard to solve exactly, but
can be approximated well using an iterative greedy search
approach [18]. In the present context, this amounts to using
iterative data mining approaches to pattern set mining.
Ideally, the iterative data mining process should be inter-

active, allowing the data miner to change her ‘prior’ beliefs
(a specific pattern may lead to a more global insight or be-
lief), or to change the focus of the search. Both can easily
be modeled in our framework: the former by updating the
background model (e.g. using I-projections, see below), the
latter by adapting the description lengths assigned to the
atomic patterns in the course of the iterative data mining
process.

2.7 Practical aspects
To allow this framework to be practically useful, algorith-

mic challenges will need to be overcome. We will touch upon
this very briefly in the context of some of the special cases
discussed below.
More fundamentally, the framework would loose most of

its appeal if mechanisms to allow the data miner to specify
prior beliefs, or coding lengths for patterns, were impracti-
cal. We believe, however, that such mechanisms do often

exist. This will also be demonstrated briefly for the special
cases discussed in Sec. 3.

In particular, such prior beliefs and coding lengths can of-
ten be specified at a generic intentional level. Also, in many
typical scenarios the number of prior beliefs could be very
limited (e.g. just on the mean or variance of certain as-
pects of the data). Even when it is impractical to specify all
prior beliefs, the iterative data mining approach would only
initially return uninteresting patterns, until the unspecified
prior beliefs have been covered by the discovered patterns.

With regards to the coding lengths the data miner needs
to specify, let us point out a connection between these cod-
ing lengths and a regularization function in machine learn-
ing. Both bias the search in a certain direction. In machine
learning, the regularizer has been used conveniently and ef-
fectively to bias the search toward certain solutions, e.g. to
ensure sparsity.

3. SPECIAL CASES
In [22] the author argues that a framework for data min-

ing should be able to describe important existing methods.
Equally important is that it provides us with additional in-
sights on such methods, providing an opportunity to improve
their usability. Below we will argue at a high level that this
is indeed the case for a number of important examples.

3.1 Clustering and alternative clustering
An example of a clustering pattern is one that specifies

that the data can be clustered at a certain cost around a
specified set of cluster centres. This cost could for example
be the average squared distance to the nearest cluster cen-
tre, or the likelihood of the maximum likelihood Gaussian
mixture distribution. Alternatively, a cluster pattern can
be specified by the subset of points belonging to the cluster
along with its mean. Clearly, knowing that such a pattern
is present reduces the set of possible values for the data.

The degree to which a clustering is of interest to a data
miner will strongly depend on prior beliefs the data miner
has. For example, for data that is elongated along one di-
mension, K-means clustering will typically return a result
that partitions the data along this dimension. If the data
miner had prior knowledge about the overall data shape, this
would be a pattern of little interest to the user, and indeed
it would have a small self-information.

Recently there has been considerable interest in alterna-
tive clustering (see e.g. [2]). This is the task of generating
a set of different clusterings, each of which reveals differ-
ent aspects of the data. A key challenge here is quantifying
the redundancy between two alternative clusterings. In our
setting, this redundancy could be captured by computing
the self-information of the composite pattern composed of
the two clustering patterns, and comparing it with the self-
information of the two atomic patterns for the two cluster-
ings by themselves. If there is a small difference only, the
clusterings are redundant. Alternatively, we could assess the
self-information of the second clustering under the updated
background model conditioned on the first clustering pat-
tern. If the clusterings are redundant, this self-information
will be small.

Note that the user can inject a preference for a specific
number of clusters, by ensuring that the coding length for
clustering patterns with the specified number of clusters is
small.
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We have not touched upon computational cost, and we
acknowledge that developing practical algorithms to imple-
ment the above may be challenging for some types of pat-
terns. Thus, as a proof of concept and a useful result in its
own right, we have developed an alternative clustering al-
gorithm based on this framework, for cluster patterns that
specify the mean of a specified subset of the data points
belonging to the cluster. After working out the details of
the framework for this type of pattern, we end up with an
algorithm that bears similarities with K-Means clustering
and spectral clustering, while it is more flexible in that it
can take prior beliefs on the data into account to ensure the
clusters are subjectively interesting to the data miner. See
[7] for more details of this application of the framework.

3.2 Dimensionality reduction
Principal Component Analysis (PCA) [16] can be described

as a method implementing our framework. Imagine prior
beliefs of a data miner in the form of the expected value of
each of the features (i.e. the mean of all data points), and
an isotropic variance of say 1. This gives a ME model equal
to an isotropic multivariate normal distribution centred at
the assumed data mean µ. With data matrix X ∈ R

n×d

containing the d-dimensional data points xi as its n rows,
the background distribution is thus:4

P (X) =
1

√

(2π)dn
exp

(

−
1

2

n
∑

i=1

(xi − µ)′(xi − µ)

)

.

In PCA, the type of patterns sought specify the values of
the centered data points’ projections onto a weight vector
w (we assume, without loss of generality, that w′w = 1).
I.e., such patterns are constraints of the form (X−1µ′)w =
z, and there is a possible pattern for each possible weight
vector. Clearly, given a pattern for a certain weight vector,
the set of possible values of the data is reduced. A priori,
none of these patterns is to be preferred, so they should all
be given the same coding cost.5

It can be shown that the probability density of a pattern
(X−1µ′)w = z under the above background model is given
by:

P ((X− 1µ
′)w = z) =

1
√

(2π)n
exp

(

−
1

2
z
′
z

)

.

The self-information of the pattern is thus given by:

− log
(

P ((X− 1µ
′)w = z)

)

=
n

2
log (2π) +

1

2
z
′
z.

Thus, the pattern with the largest self-information is the
one that maximizes the sum of squares of the projections
of the centered data points onto the corresponding weight
vector w—i.e. the one that maximizes the variance of the
projections (assuming mean µ) and thus the PCA objective.
A similar reasoning shows that the k patterns with weight

vectors equal to the k dominant principal components form

4Note that this is a density function as the domain is contin-
uous, while in the exposition of the framework we focused on
distributions on discrete domains. However, the ideas carry
over without serious problems.
5In this case, the set of patterns is uncountable. As usual
in encoding real-valued data, we could therefore discretize
the space, and consider a pattern for each of the discretized
weight vectors.

a set of k patterns with maximal self-information. Inter-
estingly, the marginal probability densities for patterns cor-
responding to orthogonal weight vectors are independent,
as fixing the values of the projections of all data points on
one weight vector does not constrain the possible values of
the projections on an orthogonal weight vector. Thus, the
self-information of a composite pattern consisting of a set
of PCA patterns with orthogonal weight vectors, is equal to
the sum of the self-informations of the individual patterns.
This is the reason that the greedy set coverage approach (i.e.
selecting principal components by a method of deflation of
the covariance matrix) is optimal, as is well-known.

Understanding PCA in this way may shed some new light
on what PCA is doing. However, the true power is in the
framework’s ability to show how to adapt PCA for other
settings where the prior beliefs may be different (e.g. an
anisotropic covariance matrix or an altogether different dis-
tribution).

3.3 Frequent pattern mining
In previous work, we and others have already applied the

ideas from the suggested framework to searching for interest-
ing tiles and interesting sets of tiles in binary databases. We
also pointed out ways to set up ME models for more com-
plex databases and prior beliefs, including for non-binary
databases. We also actually implemented the iterative greedy
data mining approach, and demonstrated its use on a num-
ber of text data sets. For details we refer to the relevant
papers [4, 5, 6, 8, 20].

3.4 Community detection
When networks are represented as binary adjacency ma-

trices, community detection is very similar to frequent pat-
tern mining, in particular to the tile mining discussed above.
The presented framework may be useful in designing com-
munity detection methods that take into account prior knowl-
edge on certain topological properties of the network, such
as an a priori known cluster structure, degree distribution,
etc.

3.5 Variations on the framework: subgroup
discovery and supervised learning

With a minor modification, the framework can be ex-
tended to incorporate subgroup discovery (and in a sense
supervised learning, although we should reemphasize that
investigating generalization is not a goal of our framework).

The modification required is that the background model
should be a distribution for the labels conditioned on the
actual input data. The prior beliefs are beliefs on the labels
conditioned on the input data, such as: “Given that x has
a certain property, the expected value of y is equal to bla”.
Typically, patterns would be expressed in a conditional way
as well, i.e. specifying the label as a function of the value
of the input data (at least for a subset of the data points).
Such a pattern reduces the set of possible values of the set of
the labels for the given input data. The effect of observing
a pattern is similar to the basic framework: it would lead to
a conditioning of the surrogate background distribution.
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4. BROADER CONTEXT AND GENERAL-

IZATIONS OF THE FRAMEWORK

4.1 Significant patterns
In recent years, data mining research, and in particular

(frequent) pattern mining research (with ‘pattern’ defined
narrowly here), has made increasing use of the notion of a
p-value to quantify interest to a data miner (see e.g. [13, 24,
11, 12, 14]. Here, the null hypothesis is taken to be a distri-
bution not unlike our background distribution, representing
any prior beliefs the data miner has.
It is easy to see that this approach is a special case of our

framework, for a special choice of pattern, with ‘pattern’ de-
fined in the general way used in the rest of this paper. In
particular, choose a test statistic (e.g. the support of a spe-
cific itemset), and define a pattern as the fact that this test
statistic in the given data is larger than or equal to a certain
value (typically its actual support). Then the probability
against the background distribution of this pattern being
present in the data is, by definition, equal to the p-value
associated to the value of the test statistic, with the sur-
rogate background distribution as null hypothesis. Hence,
selecting such patterns based on small p-value is equivalent
to selecting them based on large self-information.
We believe it has not been fully clear how to iteratively

mine for low p-value itemsets, and heuristic approaches have
been developed to update the null hypothesis (surrogate
background distribution) to take prior selected patterns into
account (see e.g. [12]). Interestingly, our framework sug-
gests how it should be done in a theoretically meaningful
way, although it must be admitted that it does not guaran-
tee computational feasibility.

4.2 Generalizing the framework
In motivating the choice for conditioning the surrogate

background distribution to take a seen pattern into account,
we made use of a game-theoretic argument, leading to Eq. (1).
We considered patterns that constrain the updated back-
ground distribution P ∗′ to the set P ′ containing distribu-
tions that assign probability zero outside some region X ′ ⊆
X . For such patterns, the solution of Eq. (1), i.e. the up-
dated surrogate background distribution P ′, is equal to the
initial surrogate background distribution P conditioned on
the new domain X ′.
However, in information geometry Eq. (1) is studied more

generally [15, 3, 1]. In particular, it is known that for any
closed convex set P ′, the optimum P ′ of Eq. (1) is the I-
projection of P onto P ′. Thus, our framework also applies
to pattern types that constrain the updated background dis-
tribution to any closed convex set of distributions, not just
to the set of distributions restricted to a specified domain.
In other words, the conditioning of P in Sec. 2.3 is a spe-

cial case of an I-projection. We introduced our framework
for this special case for reasons of clarity, and also because
we believe it is sufficiently general to be applicable to many
data mining settings. However, the more general result can
be of genuine interest. For example, for computational rea-
sons patterns could be searched for by the algorithm on a
subsample of the data, such that they only have a (known)
probabilistic relation with the actual data. Interestingly, if
this is the case, an I-projection amounts to a Bayes update
of the background distribution, rather than a conditioning.
Other pattern types could be imagined, with I-projections

taking into account the presence of such patterns, possibly
amounting to yet different operations on the background
distribution.

4.3 Alternative interpretation
We have set up the framework in terms of prior beliefs.

Then, patterns are more interesting if they contrast more
strongly with these prior beliefs, as quantified using simple
information theoretic concepts.

An alternative interpretation of the background distribu-
tion P ∗ is that it models all aspects of the data the data
miner is not interested in. A special case of an aspect in
which a data miner is not interested is an aspect implied by
a prior belief; hence, this alternative interpretation of the
background model is in a sense more general.

4.4 Data mining and machine learning
To set out we strongly insisted on distinguishing data min-

ing and machine learning, the former being concerned with
identifying interesting patterns, the latter with quantifying
predictive performance and designing algorithms that guar-
antee generalization.

That said, we contend that our framework may be eas-
ily integrated with machine learning paradigms—they would
simply study different aspects of the same practical problem.
For example, we have already highlighted a strong similarity
between the description cost (coding length) of a pattern and
a regularization cost in machine learning. In fact, all that
is needed to add on a learning element would be to make
additional statistical assumptions about the data, such as
i.i.d.-ness.

5. CONCLUSIONS
In this paper, we introduced a general framework for data

mining. It emphatically takes a user perspective, following
and modeling the user’s state of mind throughout the data
mining process, and allowing one to guide the data mining
process so as to maximally reduce the data miner’s uncer-
tainty and misconceptions about the data. The framework
naturally formalizes pattern set mining, iterative data min-
ing, as well as interactive data mining.

By taking a user perspective, fully accounting for any prior
beliefs a user may have, we believe our framework is able to
capture what is truly of interest to a data miner. Consider-
ing the data miner as part of the study object of data mining
research, our framework allows to define subjective level of
interest of patterns in a formal way.

We argued that various existing methods can be regarded
as implementations of this framework, such as PCA, our
prior work related to tile mining in binary databases, and our
recent work on alternative clustering. We also pointed out
that it could be used with great potential in new contexts,
such as in subgroup discovery.

We observed that iterative data mining in this framework
always amounts to a greedy algorithm for a set coverage type
problem attempting to select the best pattern set. However,
importantly we did not go into the algorithmic details. As
such, our framework is mostly a theoretical ideal, with a
few practical instances as indications of its potential. It re-
mains to be investigated if it can be implemented efficiently
for more interesting problems. This, and the further devel-
opment of these ideas for various data mining problems, is
subject of our current research.
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