Temporal Mining for Interactive Workflow Data Analysis

Michele Berlingerio

Fabio Pinelli

Mirco Nanni Fosca Giannotti

ISTI - CNR Pisa, Italy
{name.surname@isti.cnr.it}

ABSTRACT

In the past few years there has been an increasing interest
in the analysis of process logs. Several proposed techniques,
such as workflow mining, are aimed at automatically de-
riving the underlying workflow models. However, current
approaches only pay little attention on an important piece
of information contained in process logs: the timestamps,
which are used to define a sequential ordering of the per-
formed tasks. In this work we try to overcome these limi-
tations by explicitly including time in the extracted knowl-
edge, thus making the temporal information a first-class cit-
izen of the analysis process. This makes it possible to dis-
cern between apparently identical process executions that
are performed with different transition times between con-
secutive tasks.

This paper proposes a framework for the user-interactive
exploration of a condensed representation of groups of exe-
cutions of a given process. The framework is based on the
use of an existing mining paradigm: Temporally-Annotated
Sequences (ZAS). These are aimed at extracting sequential
patterns where each transition between two events is anno-
tated with a typical transition time that emerges from input
data. With the extracted ZAS, which represent sets of pos-
sible frequent executions with their typical transition times,
a few factorizing operators are built. These operators con-
dense such executions according to possible parallel or pos-
sible mutual exclusive executions. Lastly, such condensed
representation is rendered to the user via the exploration
graph, namely the Temporally-Annotated Graph (ZAG).

The user, the domain expert, is allowed to explore the
different and alternative factorizations corresponding to dif-
ferent interpretations of the actual executions. According
to the user choices, the system discards or retains certain
hypotheses on actual executions and shows the consequent
scenarios resulting from the coresponding re-aggregation of
the actual data.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

KDD’09, June 28-July 1, 2009, Paris, France.

Copyright 2009 ACM 978-1-60558-495-9/09/06 ...$5.00.

109

Categories and Subject Descriptors
H.2.8 [Database Applications]: Data mining

General Terms
Algorithms

Keywords

Workflow mining, temporal sequence mining

INTRODUCTION

In the past few years, many organizations have started

to use information systems to support the execution of their
business processes [16]. With the increasing number of these
available systems, the volume of the available collected pro-
cesses logs is growing rapidly. These logs are very useful in
several fields: in design and production processes, it could
be important to detect the actual state of the process, how
many items have been produced and in how much time; in lo-
gistics, the optimization of times is crucial; every step should
be made strictly on time, and if there are anomalies or prob-
lems, the entire logistic solution should be redesigned.
For such reasons, the interest in analysing process logs has
been increasing rapidly in the last years [23, 21, 6]. How-
ever, such logs are hard to analyse from different points of
view because there is too much data, the original process
diagram is too complex, and there are too many users to
observe. Several techniques, such as workflow mining, have
been proposed to automatically derive the workflow models
originating from the process logs [22, 25, 11]. Their focus is
to derive the process model that was actually followed, and
this can be different from the original one in several ways,
e.g., certain tasks from the original process were never per-
formed or were performed too many times, or the tasks per-
formed were not in the original diagram. In addition, these
techniques answer questions such as:

1.

e Given the logged traces, what is the workflow network?

e Is the mined workflow network equivalent to the orig-
inal design? (Delta Analysis)
e Is the mined workflow network better than the original
design? (Performance Analysis)
However, current approaches mainly use the temporal infor-
mation contained in the logs just for keeping track of the
temporal order of the performed tasks.
Indeed, the temporal information associated with logs in
the form of timestamps conceals knowledge that allows to
distinguish among different temporal behaviours.

For example, suppose we have to execute tasks A, B and
C and that the transition time from A to B is usually 1
minute, and from B to C it is 9 minutes. If we have a tran-
sition time of 9 minutes from A to B and 1 minute from B
to C, we are in the presence of an anomaly during the pro-
cess, even if the sequence of the performed tasks follows the
process workflow. In this case, the usual workflow mining
techniques do not detect the anomaly and therefore treat
the abnormal execution as normal. In addition to anomaly
detection, it could be useful to highlight situations in which
some users are faster (or slower) than others in performing
certain tasks, or situations in which some resources take too
much time to be performed. In this sense, the model re-
turned by the analysis process might be even richer than
the original model, since temporal features of the tasks are
often kept out of the design phase, or at least they are not
explicitly specified in the model.

The contributions of this paper can be summarized in 3
points: (i) a mining method that extensively takes into con-
sideration the time information, i.e., the extracted patterns
representing a group of executions of a given process with
similar execution times; (ii) extracted patterns are summa-
rized by taking into account the semantics of the possible ex-
ecutions, namely parallelism or mutual exclusion; (iii) users
can interact with the extracted and summarized patterns
and explore alternative cases proposed by the system.

The first point is based on Temporally-Annotated Se-
quences (ZAS) mining, a novel mining paradigm equipped
with an efficient algorithm proposed in [7, 9] and recently
successfully applied to biological data [3, 4]. ZAS are se-
quential patterns where each transition between two events
is annotated with a typical transition time that is found fre-
quently in the data. In principle, this form of pattern is
useful in several contexts: for instance, (i) in web log anal-
ysis, different categories of users (experienced vs. novice,
interested vs. uninterested, robots vs. humans) might react
in similar ways to some pages - i.e., they follow similar se-
quences of web access - but with different reaction times; (ii)
in medicine, the relationship in time between the onset of pa-
tients’ symptoms, drug consumption, and response to treat-
ments; (iii) in workflow logs, the typical data is a sequence
of operations performed with specific moments. From this,
it could be interesting to extract frequent sequences con-
taining frequent temporal annotations. ZAS patterns have
been also used as building blocks for a truly spatio-temporal
trajectory pattern mining framework [8]. In all these cases,
enforcing fixed time constraints on the mined sequences is
not a solution. It is desirable that typical transition times,
when they exist, emerge from the input data.

In summary we propose a methodology for helping the
domain expert in the analysis of process logs. This method-
ology aims at understanding which possible models might
have generated such logs, and whether such models might
also contain temporal constraints. The methodology can be
broken down in 4 main pieces described later in section 4.

This framework has been applied to a real-world system:
a manufacturing company. We collected the logs of 3 mil-
lion transactions on 9 tasks for a total of about 1 million
performed tasks processing the access to the design of var-
ious mechanic components to be put into production. This
factory is located worldwide and therefore the tasks are ex-
ecuted by different users at different locations. The results
are encouraging, and indeed unexpected behaviours emerge.

110

The rest of the paper is organized as follows. Section 2
summarizes work related to workflow mining and ZAS. Sec-
tion 3 introduces the technical details of the ZAS paradigm
and how it can be used for mining time-annotated data.
Section 4 is the core of the paper that presents the original
contributions of our work. It describes the overall method-
ology: the formal definition of the factorization operators,
the exploration graph ZAG, and the algorithm for the inter-
active workflow analysis. Section 5 presents a case study in
which we applied the framework to a real dataset of process
logs. Section 6 summarizes the contributions and the results
of this paper and draws some future lines of research.

2. RELATED WORK

In this section we summarize some literature strictly rele-
vant to the topics of this paper. We first start with works re-
lated to workflow mining, and then we present papers where
the ZAS mining paradigm is applied to different contexts.

2.1 Workflow Mining

In the past few years, research has been performed on
discovering a process model from a set of process instances.
Most of them assume the existence of a process model un-
derlying the given set of process instances. Several differ-
ent approaches have been proposed to solve such a prob-
lem: in [2, 13] directed graphs are used, and in both papers,
the researchers consider tasks that can be executed in par-
allel. However, in [13] the notion of parallelism between
tasks is more sophisticated, i.e. they go beyond the sim-
ple temporal dependency between tasks that was treated in
[2]: they define overlapping and disjointed activities. Finite
state machines are proposed in [5], and Petri-nets are used
in [24] for representing process instances. In [12] the authors
define the concept of temporal graphs, which help in mod-
eling the dependencies among the performed tasks during
specific instances of the processes. They propose three dif-
ferent algorithms that work with temporal graphs, itemsets
or sequences. These algorithms solve the temporal pattern
discovery problem, defined as the discovery of the maximal
temporal graphs among all frequent temporal graphs. In
this work, the authors consider the starting and ending time
of each task to explicitly detect situations of parallelism or
choice between pairs of tasks. However, they do not look for
frequent transition times or execution times of the tasks, i.e.
they use the temporal dimension only to detect the temporal
dependencies between tasks. In [10] the authors deal with
the problem of mining unconnected patterns in workflows,
i.e. detecting sets of activities that are frequently executed
together and do not exhibit explicit dependent relationships.
They present two different algorithms for solving the prob-
lem. This paper uses the concept of frequency of a pattern,
which we employ as well.

For a survey on workflow mining please refer to [22, 25].

All of the above works explore only on the temporal de-
pendencies among performed tasks. In this work we try to
go further by looking for frequent subsequences of tasks that
show temporal dependencies and additionally are executed
with a similar transition duration.

2.2 74S-based Mining

In [4, 3] it is shown how it is possible to apply the ZAS
mining paradigm to medical data when its structure is a
sequence of clinical observations taken at different times. In
this context the temporal dimension of the data is a variable

that should be taken in account in the mining process and
returned as part of the extracted knowledge. In these papers
a real-world medical case study was reported in which the
TAS mining paradigm was applied to such a data.

In [8], the authors introduce a novel spatio-temporal pat-
tern that formalizes the idea of aggregate movement be-
haviour. In their approach a trajectory pattern is a sequence
of spatial regions that, on the basis of the source trajectory
data, emerge as frequently visited in the order specified by
the sequence; in addition, the transition between two con-
secutive regions in this sequence is annotated with typical
travel times that emerge from the input trajectories.

3. THE TAS MINING PARADIGM

Time in FSP (Frequent Sequence Patterns) is mainly con-
sidered (i) for the sequentiality that it imposes on events; (ii)
as a basis for user-specified constraints, aimed to select an
interesting subset of patterns; (iii) as a pruning mechanism
to shrink the pattern search space and make computation
more efficient. In all of these cases, time is not explicitly
returned in the ouput as timestamps or timestamped inter-
vals, although in some cases interval precedence and overlap
is expressed [19, 26, 14, 17, 18, 15, 20].

The 7AS mining paradigm, introduced in [9], tries to over-
come such limitations, by defining a form of sequential pat-
terns annotated with temporal information (or temporally-
annotated sequences, ZAS in short) that represent typical
transition times between events in the sequence.

More formally:

DEFINITION 1 (ZAS). Given a set of items Z, a tempo-
rally-annotated sequence of length n > 0, called n-TAS or
simply TAS, is a couple T = (s, @), where s = (So, ..., Sn),
Vo<i<nSi € 27 is called the sequence, and o = (a1 ...y an) €

" is called the (temporal) annotation. ZAS will also be
represented as follows:

T:(s7o¢):soa—1>51a—2>...

Qn
— Sn

Making use of this new form of pattern, the standard se-
quential pattern mining problem is redefined as the extrac-
tion of frequent ZAS, in the following way.

DEFINITION 2 (FREQUENT ZAS). Given a set D of TAS,
a time threshold T and a minimum support threshold o, we
define the T-support of a TAS T as suppi. p|(T) =| {T™ €
D|T =; T} | and say that T is frequent in D, given a
minimum support threshold o if suppi p1(T) > o.

Such definition is based on a containment relation, =<,
that extends the basic sequence containment relation by
adding temporal constraints to the occurrences of the pat-
tern. Such constraints essentially require that the temporal
gaps in the occurrence be similar to the transition times in
the ZAS, where similar means, in this context, to be equal
up to a maximal deviation 7:

DEFINITION 3 (7-CONTAINMENT (=<-)). Given a n-7AS
Ty = (s1,01) and a m-ZAS Ta = (s2,a2) with n < m, and
a time threshold T, we say that T is T-contained in Ts, de-
noted as Th <; Tz, if and only if there exists a sequence of
integers 0 < ip < ... < in, < m such that:

1. Yo<k<n- S1,k C 82,4

2. Yi<k<n- | a1k — Qx k | <7

where Vlgkgn. Qs o — Zik,1<j§ik a2 j.

In this paper, we will make use of a software described in
[9], named MiSTA, that extracts the complete set of frequent
TAS, and returns a concise representation of the following

form:

lan,bn]

[a1,b1] [az,b2]
S1 n

that can be read as: the sequence so — ... — s, appears

frequently in the dataset, with typical transition times t1 €

[a1,b1] for the first transition, t2 € [a2,b2] for the second

one, and so on.

The software also allows to focus on contiguous occur-
rences, i.e., to consider only subsequences with no gaps in
the support calculation of 7ZAS. This feature will be ex-
ploited in the experimental part of the paper.

4. A 745-BASED WORKFLOW MINING AP-
PROACH

In this section we introduce a methodology for helping
the domain expert in the analysis of process logs, aimed
at understanding which possible models might have gener-
ated such logs, and whether such models might also contain
temporal constraints. The methodology is composed of the
following elements:

e a TAS-based representation of the original log traces,
that filters out noisy behaviours and detects temporal
regularities. Such representation consists of a set of
frequent ZAS;

e a set of operators for recognizing and factorizing two
standard components of workflow models — i.e., paral-
lelism and choice — from the ZAS, keeping trace of the
temporal component;

e a graph summarization of a database of 7AS, to pro-
vide the user with an easy-to-grasp view of the data;

e an iterative and interactive procedure for exploring dif-
ferent and alternative factorizations of the same database
of 7AS, potentially corresponding to different interpre-
tations of the original input traces.

Performing these operations manually, by analyzing large
quantities of information (such as 1 million of tasks per-
formed as in our case study in section 5) is unfeasible and
may not guarantee to discover what the domain expert or
the workflow designer was looking for.

In the following, we start the discussion by summariz-
ing the ultimate objective of this work, i.e., an interactive
workflow analysis system. Then, for ease of presentation,
we first describe the kind of data our analysis starts from
(i.e., workflow traces) and define the above mentioned fac-
torization operators over such data type. After that, the
TAS-based representation of the input data is briefly de-
scribed, extending the factorization operators to the case
of 7AS and defining a graph summarization of sets of 7AS.
Both the factorization operators and the graph representa-
tion will be the building blocks of the final analysis system,
which is then described in more detail.

4.1 Problem setting: workflow analysis

One of the most important objectives in workflow analysis
consists in reconstructing (part of) the workflow model that

has generated a given dataset of process execution traces.
This sort of reverse engineering operation is often very use-
ful for comparing the model derived from the traces with the
original model that generated them. This kind of compari-
son might highlight some design mistakes, useless or redun-
dant parts of the model or, in general, a usage of the model
that differs from the intentions of its designer (e.g., contain-
ing the systematic adoption of actions that were originally
meant to be exceptional measures).

Reconstructing the model underlying a set of process traces
usually requires to make some guesses about the scheduled
order of operations in the model, or whether some sets of
actions were executed in parallel (parallelism) or they were
executed as mutually exclusive alternatives (choice). The
method proposed in this work tries to perform such a re-
construction in a step-by-step fashion, selecting (with the
aid of the user) and isolating at each stage a single relation
between actions, and iterating the process till all significant
relations were caught. The whole process can be sketched
as follows:

1: Represent the input set of process traces through a set
of frequent 74S;
2: while user does not stop the execution do
3: Compute a graph-based summary of the actual set of
AS;
4: Detect the potential cases of parallelism and choice
between pairs of actions within the actual set of ZAS;
5: Ask the user to choose a single case of parallelism or
choice to factorize, or to backtrack;
6: if backtrack
then Return to the set of ZAS preceding the last
factorization step;
else Factorize the chosen relation between two ac-
tions (parallelism or choice), and update the set of
TAS accordingly;

As we can see, the approach requires the interaction with
the user, for choosing, among the several possible alterna-
tives available at each step, the factorization that looks more
promising. Performing such choice automatically would re-
quire to have a function that correctly evaluates the quality
or utility of any alternative (i.e., any case of parallelism or
choice) and selects the best one. To the best of our knowl-
edge, the state-of-art of the field is still far from defining
any function of this kind having a sufficiently wide applica-
bility, therefore our solution demands this heavily domain-
dependent evaluation to the user. The interaction with the
user is facilitated by means of a graphical, graph-based, sum-
marization of the set of ZAS at hand, which provides a com-
plementary, more readable view of the same data, that can
help in choosing the next most interesting factorization step
to perform, among those listed by the system. These aspects
are detailed in Sections 4.6 and following ones.

4.2 The process workflow context

The digital traces collected during the re-iterated execu-
tion of a workflow process essentially have a sequential na-
ture, and describe the ordered list of actions executed in each
run, together with the agents who performed them and the
date/time of execution:

DEFINITION 4 (WORKFLOW TRACE, WORKFLOW LOG).
Let A be a finite set of actions and U a finite set of users.
Then o = ((a1,u1,t1)(az, u2,t2) ... (an, un,tn)), where a; €
A u; € U and t; is a timestamp describing when the user

112

u; atomically performed a;, is a Workflow trace or Process
instance. A set L of workflow traces is a Workflow log.

Therefore, a workflow log describes several runs (i.e., in-
stances) of the same workflow process, each run being rep-
resented as a sequence of operations. An example of such
a data can be found in Table 1 in Section 4.8, where two
workflow traces (identified by the column “Inst.ID”) are rep-
resented, each containing 4 actions (tasks) performed by a
unique user at different times.

Basic applications of workflow log analysis focus on the
sequences of actions performed in each trace, therefore disre-
garding the user identity and the temporal information, and
representing each trace essentially as a sequence of items.
For instance, the sample workflow log in Table 1 could be
reduced to a set of two sequences: { z —a — b — ¢,
b—a—c}.

€r —

4.3 Detecting parallelism and choice

As mentioned above, a typical workflow model can sched-
ule the actions in several ways, including sequential execu-
tion (action a must be executed before b), parallel execution
(a and b are launched together), and choice (only one be-
tween a and b is executed). A simple way to infer the pres-
ence of a parallelism or of a choice looking at a set of process
instances, then, consists in locating possible evidences (or
just clues) of such relations in the traces. On one hand, two
actions invoked in parallel can appear in the traces in any
order; on the other hand, two actions that form a choice can
never appear one after the other. Following these basic ideas
we define two relations between actions, that hold when the
workflow traces suggest that a pair of actions might be ex-
ecuted in parallel or as a choice:

DEFINITION 5 (ITEMS RELATIONSHIPS). Let I be a set
of items, and S be a set of sequences of items. Then, given
a,b,x € I, we define the relations a ||z b (read ”a is parallel
tob w.r.t. ©”) and a%zb (read “a is in choice with b w.r.t.
x”) as follows:

ea . b & 3Ts,5 €S8 such that:
(x—a—=bES)A (x—b—als);

e a%.b & 3Is,s €8 such that:
(x—aCs)A (x—bCs), and
As"e€S:(a—=bCs")V(b—als");

where C is the substring relation, i.e., s T s” iff all items of
s appear in s’ in the same order and in contiguous positions.

In the above definition, the relation between two items
takes into consideration not only their relative positions in
the input sequences, but also a limited form of context: both
items (a and b) are preceded by a common item (x). This
is a trade-off between more conventional relations defined
in literature (e.g., [16]), mostly focused only on the items
involved, and a more general approach that takes into con-
sideration a larger number of items in the past context and
a number of items also in the future context, i.e., situations
likexy — -+ oy —a—b— y1--+ — yu. In our case,
essentially, we are considering N =1 and M = 0.

EXAMPLE 1 (||z). If we have the sequences: x — a —
b, x — b — a, then, according to Definition 5, we can
write: a ||« b. On the contrary, in the case of sequences:
r — a — b y — b — a there is no parallelism under

our definition, since each context (resp. x and y) leads to
a distinct and coherent order of a and b. More standard
definitions of parallelism do not consider the provenance of
subsequences a — b and b — a, therefore they are mixed up
and interpreted as a unique evidence of a parallelism.

EXAMPLE 2 (%.). If we have the sequences: x — a —
b, x — b — d, then, according to Definition 5, we can write:
a%zb. If we add the sequence x — b — a to this example,
a%zb does not hold anymore, while now it holds a || b.

After defining which pairs of items/actions might poten-
tially be in relation, we provide a function that lists all such
relations, divided in parallelisms and choices:

DEFINITION 6 (PARALLELISM DETECTOR). We define an
unary operator P(S) that associates to a set of sequences S
the collection of relations of parallelism contained in S, i.e.,

P(S) = {(x,a,b) | a | bin S}.

DEFINITION 7
operator C(S) that associates to a set of sequences S the col-

lection of relations of choice contained in S, i.e., C(S) =
{(z,a,b) | a%ab in S}

ExXAMPLE 3 (DETECTORS). Given a set of sequences S =
{r —a—b—c¢, x—b— a}, the following holds:

o P(S) ={(z,a,0)}
o C(5) ={(ba,0)}

The approach proposed in this work consists in iteratively
selecting one of the possible relations between items, and
then factorizing it in the traces, i.e., locating the occurrences
of such relation and replacing the items involved with a new
element that represents the pair of items and the relation
that connects them. That yields a new set of traces, where
the selected relation between items has been isolated and
emphasized.

DEFINITION 8 (FACTORIZE|). Let S be a set of
sequences. Given (x,a,b) € P(S), we define the operator
Factorize|((x,a,b),S) = S', where every subsequence x —
a—borxz—b—aofseS isreplaced with x — a || b,
where a || b is a new item.

DEFINITION 9 (FACTORIZEy). Let S be a set of
sequences. Given (z,a,b) € C(S), we define the operator
Factorizey((z,a,b),S) = S, where every subsequence x —
a orx — b of s € S is replaced with v — a%b, where a%b
18 a new item.

On the new set of traces obtained by applying one of the
factorization operators above, the same kind of analysis (de-
tection of relations) and transformation (factorization) can
be applied, iteratively.

EXAMPLE 4 (FACTORIZATION). Given S, P(S) and
C(S) as in Example 3, we can apply the factorization oper-
ators in the following way:

e Factorizey((x,a,b),S) =5’

z—alb—c,

x—alb}

e Factorizey((b,a,c),S)=S5" =
={z—a—b—a%c, x—b—a%ec}

(CHOICE DETECTOR). We define an unary

113

4.4 A 74S-based representation of traces

Applying the operators described above to the raw work-
flow traces has some drawbacks, mainly due to the possible
presence or errors (missing actions, or actions registered by
mistake) or very rare behaviours that we might want to ex-
clude from the analysis.

Our approach provides that the analysis is carried out not
on the original traces but on a set of ZAS that represent the
frequent behaviours (w.r.t. a given frequency threshold) and
their temporal characteristics. That yields two results:

e first, errors and spurious behaviours are eliminated,
since they are expected to appear with very low fre-
quency, and therefore cannot appear in frequent pat-
terns;

second, the temporal information carried by the ZAS
can be used to better understand the behaviours ap-
pearing in the original traces, since different times in
performing the same sequence of actions might reveal
different usages of the same resources.

An example of ZAS obtained from an input dataset of work-
flow traces is given in Table 2. Each 7AS represents a se-
quence of actions (e.g., x — a in the first ZAS listed) to-
gether with the set of typical transition times taken to move
from one action to the next one (e.g., any time ¢ € [18, 20],
for the first ZAS).

The set of ZAS used to represent the original traces can be
selected following different criteria. Beside adopting differ-
ent parameters and thresholds for the ZAS mining phase, we
could choose to use all the ZAS extracted, or just the maxi-
mal ones, or those that satisfy other constraints, for instance
temporal (e.g., take only patterns having duration longer
than 5 minutes) or structural constraints (e.g., exclude pat-
terns where the same action appears twice, thus evidencing
the presence of a loop). For simplicity, in this paper we
will adopt the first option, thus using all the ZAS extracted.
However, the whole analysis process can be equally applied
with different selection criteria.

In the following we extend the operators described above
in order to treat ZAS, instead of simple sequences.

4.5 Parallelism and choice over 748

All the definitions given for workflow traces do not take
into account the temporal dimension contained in the data
we work with. In order to add the time to our model, we
redefine them for the case where the input sequences are a
set of ZAS, as follows.

From now on, we assume to have a set of 7ZAS T', each TAS
being represented as a pair t = (s, «), where s is a sequence
of items and « is a sequence of transition times. We also
define as St the set of sequences that appear in T', without
times, i.e., ST = {s|(s,a) € T'}. Then, definitions 5, 6 and
7 can be applied to Sr, essentially defining and locating
parallelisms and choices only on the sequence component of
our ZAS.

However, since when we solve a parallelism or choice in-
stance we have to perform some operations to the temporal
annotations on the corresponding sequences, we should re-
define the factorization operators as follows.

DEFINITION 10 (FACTORIZE|). Let T be a set of TAS.
Given (z,a,b) € P(St), we define the operator
Factorize|((z,a,b),T) = T', where every temporally an-

notated substring © ~% a =% b of (s,a) € T is replaced

by © =% a || b, and every temporally annotated substrmg
z 2o

b Loa of (s',a’) € T is replaced by x 2, a | b,
where a || b is a new item.

DEFINITION 11 (FACTORIZEy). Let T be a set of TAS.
Given (z,a,b) € C(ST), we define the operator
Factorizey, ((x,a,b),T) =T', where every temporally anno-

@0

tated substring x —> a of (s,a) € T is replaced by © —

a%b, and every temporally annotated substring x 20, p of

(s,a) € T is replaced by x 29, a%b, where a%b is a new
item.

(FACTORIZATION). Given a set of frequent

EXAMPLE 5
TAS T — {ac [18,20] [3,4] b [7,10] ¢z [19,22] b [2,4]

a}, its corresponding set of sequences is St = {x — a —
b— ¢, x — b— a}. Then, we can apply the factorization
operators in the following way:

e Factorize|((x,a,b),T) =T = {x as.20, I [7,10)
o 92 19,22] ol b}

e Factorizey((b,a c),T) T" = {x 118,200, a 1341,
p 10 o ‘. [19,22] (2,4] 24, e}

4.6 A graph summarization of 745

The set of 7ZAS extracted from a database of workflow
traces can be rather large, though usually much less than the
original data. That makes it difficult for a human expert to
obtain an overall picture of the sequences of tasks described
by the data by simply sifting through them. For this reason,
in this work we define a graph data structure that provides
a complementary, lossy yet easy-to-read view of the set of
TAS under analysis.

DEFINITION 12 (TEMPORALLY-ANNOTATED GRAPH).
Given a set T of frequent TAS, we define the temporally-
annotated graph (ZAG) for T as a labeled graph G(T) =
(V, E, 1), whose nodes represent the actions appearing in T,
the edges represent pairs of actions performed consecutively
in at least one TAS of T, and the label of each edge is a set
containing all the transition times that occurred in any TAS
between the two corresponding consecutive actions. More
formally:

V =
E =

I((a,b)) =

Figure 1 shows the Temporally-Annotated Graph correspond-
ing to the starting set of ZAS in Example 5. As we can see,
all actions, all transitions between consecutive actions and
all transition times contained in the ZAS are depicted in the
graph. On one hand, the graph loses some information, since
all sequences longer than 2 in the ZAS are virtually broken
into pieces of length 2, not allowing to understand whether
there is a loop in the starting sequences (¢ — b — a) or
whether b — c is preceded by a in any sequence or, on the
contrary, any sequence that passes through a terminates at
b. On the other hand, the graph allows to understand at
first sight some useful properties, for instance the fact that
z plays the role of a source node, and ¢ that of a terminal

{a|aCs,s€S8r}
{(a,b) | a - bC s,s € Sr}
{a|a b tteT)

114

(18,20

O = OO

Figure 1: 74G for 7AS T in Example 5

118,20 ° 241

Figure 2: 74G after choice factorization in Examp. 5

node, while between a and b there is not a strict order, which
might be due to a loop or a case of parallelism. For compar-
ison, in Figure 2 it is reported the ZAG corresponding to the
previous set of ZAS after the factorization of a choice case.
Notice that: (i) factorizing the choice case has as a side effect
the disappearance of the parallelism located in the original
set of ZAS, due to the fact that the two relations were in con-
flict and therefore the user must give priority to only one of
them and disregard the other; (ii) the transition times for
the rightmost edge (b — a%c) are obtained as union of those
of b — a and b — ¢, which is a direct effect of the way the
labels of edges are defined in Definition 12.

Notice that our definitions of parallelism and choice in-
volve a notion of context, that leads, in the case of paral-
lelism, to check relations between actions in sequences of
length 3 (which might become longer, if we extend the defi-
nitions to consider a longer context). That means that such
relations cannot be clearly identified from the graph alone,
and therefore the factorization analysis must be performed
directly on the ZAS, as done in Section 4.5.

4.7 Interactive Workflow Analysis

The operators defined in the previous section allow to de-
tect particular situations present in the dataset (parallelisms
and choices), and to transform the latter in order to group
the items involved.

We remark that the order of application of the operations
is relevant, since after applying an operator the conditions
for applying another operator could be not valid anymore
(e.g., the result of a factorization for parallelism could de-
stroy the subsequences that created a situation of choice), or
simply the result could affect a different part of the dataset.
In order to take into consideration all the possible sequences
of operators applicable, we define a graph that represents
the partially ordered set (poset) of all datasets that can be
obtained from the original one (7T'), through a sequence of
factorizations.

DEFINITION 13 (POSET GRAPH). Given a dataset T of
TAS, we represent the poset of transformations of T' through
a poset graph PG(T) = (V, E), where:

V= PC*1¥({T})
E= {(a,b) eV xV]be PC({a})}
such that
PC(Ts)= {Factorize)((z,a,b),T)|
T eTs a (x,a,b) € P(ST)}
U {Factorizey((x,a,b),T)|
T eTs n (z,a,b) €C(ST)}
PC*(Ts)= TsUPC(Ts)

i.e., V is the fiz-point of operator PC™ applied to the original
dataset, which yields the set of datasets obtained through a
sequence of factorizations, and E connects each dataset with
the dataset it was obtained from.

If the original dataset of ZAS is complex and contains critical
situations, such that items involved in several parallelisms
or choices, loops, etc., the set of transformed datasets can
be very large. Therefore, it could be impractical for the end-
user to simply fetch the whole graph of transformations. In
Algorithm 4.7, we sketch an interactive procedure that ex-
tracts only a subset of the possible transformations, by ask-
ing the user which branch of the graph to explore, possibly
backtracking to previous nodes of the graph: Figure 3 shows

Input: dataset of process logs L
Output: a set T of (factorized) ZAS
1: Extract the set T' = Tp of frequent ZAS from L;
2: while execution not stopped by the user do
3: Compute the Z4G on T and display it;
4: Compute the set S =P(Sr) U C(St);
5. Present S to the user and ask him/her to select
an operation op from S U {backirack};
6: if op = backtrack n T # Ty then
T=T st (T',T) € E, PG(To) = (V, E);
7. else
T = factorization of T through op;
8: return T’

Algorithm 1: Interactive Poset Graph Navigation

an example of a complete poset graph for a small dataset.
The topmost ZAG represents the (graph representation of
the) set of ZAS exctracted from the input workflow log, as
described in steps 1-3 of Algorithm 1. Then, each arrow rep-
resents a possible factorization operation for a given set of
TAS (see step 4), and each time the user chooses one of such
operations (step 5) the algorithm factorizes the actual set of
TAS accordingly, and re-iterates the computation focusing
on the resulting set of Z4S.

4.8 Run-through example

In this section we present a run-through example on a toy
dataset of only 2 days of logs, where each day represents
a transaction. For each transaction we have a sequence of
performed tasks, together with their timestamps. Table 1
shows the data under investigation. On this data we apply

Inst.ID | Task User Timestamp
1 T Administrator | Oct, 09, 1980, 12:00:00
1 a Administrator | Oct, 09, 1980, 12:00:19
1 b Administrator [Oct, 09, 1980, 12:00:29
1 c Administrator | Oct, 09, 1980, 12:00:31
2 T Userl Oct, 10, 1980, 17:10:12
2 b Userl Oct, 10, 1980, 17:10:13
2 a Userl Oct, 10, 1980, 17:10:51
2 c Userl Oct, 10, 1980, 17:10:54

Table 1: Example of Process Logs

the ZAS mining paradigm, in order to extract sequences that
are executed frequently with typical transition times. Table
2 shows the 7ZAS mined with minimum support o 10%
and temporal tolerance 7 = 1.

Figure 3 shows the poset graph of ZAG that can be ob-
tained starting from the ZAG G1, which is the root of the
graph. As we can see, we can have several possibilities at a
certain level, for example after we generate graph G2. Each
of them corresponds to having chosen to solve a particular
parallelism or choice, first by enumerating all the possibil-
ities by using one of the two detector operators defined in
Section 4, then by applying the corresponding factorization
operator. Choosing which parallelism or choice to solve will

115

7AS ID TAS 7AS 1D TAS

[18,20] [18,20] [9,11]

1 r — 7 r——a—>b

2 z [0,2] b 3 - [0,2] b [37,39] B

3 @ [9,11] b 9 o [9,11] b [1,3] .

4 o [2,4] c 10 b [37,39] B [2,4] .

5 b [37,39] a 11 - [18,20] o [9,11] b [1,3] .
[1,3] [0,2] [37,39] [2,4]

6 b——c¢ 12 r——sbh—" g ——

Table 2: The corresponding mined 7AS

correspond to choose a path of ZAG along the graph. In this
way we can navigate through all the possible actions that
we can perform on the original mined workflow Z4G.

S. CASE STUDY

In this section we present the work done as a case study
on real-life data. The dataset comes from the usage of a
real-world system developed by Think3[1], which is an ob-
ject repository managing system, that allows the users to
operate on the same objects from different locations. The
timestamps contained on the logs represent the exact mo-
ment in which the event occurred. In particular, we did not
have the starting and ending time of an operation, so we as-
sumed that they are instantaneous and that the timestamps
generally refer to the pair (execution time, transition time).

The dataset contains about 300000 transactions on 9 tasks,
for a total of about 1 million of performed tasks. The logs
span along 6 months of executions. For our analysis, we
used a quite low support threshold of 0.5%, coupled with a
7 of 1000 (seconds). Surprisingly, even these thresholds were
enough to cut away two tasks from the frequently obtained
annotated sequences. This proves that by manipulating the
o and T parameters one can perform different grained anal-
ysis, even focusing on a frequently performed subprocess.
Figure 4 shows a graph derived from the sequences of the
original dataset of process logs in input, obtained with a
procedure identical to the construction of ZAG, but without
dealing with the temporal information.

[0, 2408]
[2456.2536]

10, 10641 [0, 6504] Administrator

e e T

[6552. 6632

[0, 1128]

0, 8552]
8600, 8680]
8728, 8808

0. 1000]
Building_Up

[0, 2664]
(2712,2792]

[0, 1640]

[0, 5608]
(5636, 5736]

Construction

Model_definition

0. 1000]

Null_serie

Figure 5: The initial mined 74G

Figure 5 shows the ZAG resulting from the initial mining
step, before looking for any dependency among the activi-
ties. As we can see, the o and 7 parameter played already an
interesting role in this first step: several paths in the graph
have disappeared, making 2 out of 9 tasks disappear as well.
Of course, using a lower minimum support and/or a higher
7 would have resulted in a more selective mining, making
several other paths and tasks disappear from the graph.

We then followed the steps we have described on the pre-
vious section: after running the ZAS mining software, we
applied all the operators we have in our framework, look-
ing for interesting dependency situations. After one step

— H Model definition

Null serie
¥\

[0, 1128]

[0, 8552] [0, 1064] [0, 1640]
(8600, 86801

(8728, 8808]

[0, 6504]
(6552, 6632]

Administrator

Construction
Null_serie

Figure 6: The 74G after one factorization step

of analysis, we found one parallelism and several choices.
We followed the parallelism, obtaining the ZAS graphically
depicted in Figure 6.

If we go one step forward, solving the choice between (Ad-
manistrator) and (Modify), we can note an interesting event:
due to the particular handling of the temporal annotations
and to the definition of the choice splitter, the annotations
of the (Administrator) task became split between the choice
node and what was left to the old (Administrator) node.
Thanks to this particular feature, it was possible to detect
frequent temporal behaviours that can be actually divided
in two sub-behaviours. This situation is depicted in Figure
7. As we can see, this framework is particularly suitable for
any kind of temporal analysis of process logs. Thanks to the
temporal annotations, it is easily possible to find bottlenecks
on the process, unexpected behaviours, separate useless or

116

redundant temporal information while performing business
process analysis and so on. The ZAS mining paradigm gives
also the possibility, by a proper use of the minimum support
parameter (o), to look at the executed task with different
granularity, looking for the most followed paths. The frame-
work hence results particularly suitable for performing Delta
Analysis and Performance Analysis. Analysts, in fact, can
take advantage of our methodology in two ways: by using it-
eratively and interactively the two operators described in the
paper, they can detect situations of choice and parallelism
performed by the users (either as their free choice or because
it was an intrinsic requirement of the corresponding tasks)
that were not designed, and discover a workflow diagram dif-
ferent from the designed one (Delta Analysis); or they can
take advantage of the temporal information contained in the
TAG to discover bottlenecks or to optimize the execution of
(part of) the process, by looking at the expected (possibly

0,8552)
8600, 8680]
8725, 8508

Building_Up

[0.1128)

10,2408
sed (24562536 o (s ginistratonye (Moxify)
10.1384]

0, 6504]
16552, 6632

[0.1128)

Figure 7: The 74G after two factorization steps

designed) time needed to perform particular (sequences of)
tasks (Performance Analysis).

6. CONCLUSIONS AND FUTURE WORK

In this work we have introduced a novel framework for
mining workflow graphs from process logs that enables the
user to perform a temporal analysis by means of a ZAS-
based mining paradigm. We have presented a methodology
for helping the domain expert in the analysis of process logs,
aimed at understanding which possible models might have
generated such logs, and whether such models might also
contain frequent temporal behaviours.

After a run-through example, we have presented a case
study in which our model and framework have been used
to perform visual temporal analysis on a real-life process
log dataset. Based on this work, we have thus showed how
the framework results suitable for performing Delta Anal-
ysis and Performance Analysis involving also the temporal
dimension contained in the data. The results in these di-
rections are encouraging, and indeed let emerge unexpected
behaviours in our case study.

We plan to develop a complete software for performing
such an analysis, which will guide the user through an iter-
ative and interactive navigation of the poset of the possible
workflow diagrams that the data can support. We plan also
to investigate the possibility of extending the management of
the transition times, in order to handle non-instantaneously
executed tasks, which will enable an even more sophisticated
temporal analysis of the data.

A possible research direction would be also to take the
original designed workflow diagram as input, considering it
during the mining step to better analyze the process logs.

7. REFERENCES

[1] The think3 company. http://www.think3.com.

[2] Rakesh Agrawal, Dimitrios Gunopulos, and Frank
Leymann. Mining process models from workflow logs.
volume 1377-469+ of LNCS, '98.

Michele Berlingerio, Francesco Bonchi, Fosca
Giannotti, and Franco Turini. Mining clinical data
with a temporal dimension: a case study. In Proc. of
The 1st Intern.Conf. on Bioinf. and Biomed., '07.
Michele Berlingerio, Francesco Bonchi, Fosca
Giannotti, and Franco Turini. Time-annotated
sequences for medical data mining. In Proc. of The
Intern. Workshop of Data Min. in Medicine, 2007.

A. Datta. Automating the discovery of AI-IS business
process models: probabilistic and algorithmic
approaches. Inf. Sys. Res., 9(3):275-301, ’98.

P. Lawrence (ed). Workflow Handbook 1997, Workflow
Management Coalition. J. Wiley and S., NY, 1997.
Fosca Giannotti, Mirco Nanni, and Dino Pedreschi.
Efficient mining of temporally annotated sequences. In
Proc. of the 6th SIAM Intern. Conf. on Data Min.,
2006.

Fosca Giannotti, Mirco Nanni, Dino Pedreschi, and
Fabio Pinelli. Trajectory patter mining. In The 30th
KDD Int.Conf. on Knowl.Disc. and Data Min., '07.
Fosca Giannotti, Mirco Nanni, Dino Pedreschi, and
Fabio Pinelli. Mining sequences with temporal
annotations. In Proc. of the 2006 ACM Symp. on
Applied Comp. (SAC), pages 593-597, 2006.

8]

4

[5]

[6]

[7]

8]

[9]

117

[10] Gianluigi Greco, Antonella Guzzo, Giuseppe Manco,
and Domenico Sacci. Mining unconnected patterns in
workflows. Inf. Syst., 32(5):685-712, 2007.

Gianluigi Greco, Antonella Guzzo, Luigi Pontieri, and
Domenico Sacca. Discovering expressive process
models by clustering log traces. IEEE Trans. Knowl.
Data Eng., 18(8):1010-1027, 2006.

San-Yih Hwang, Chih-Ping Wei, and Wan-Shiou
Yang. Discovery of temporal patterns from process
instances. Comput. Ind., 53(3):345-364, 2004.
San-Yih Hwang and Wan-Shiou Yang. On the
discovery of process models from their instances.
Decis. Support Syst., 34(1):41-57, 2002.

Steffen Kempe and Jochen Hipp. Mining sequences of
temporal intervals. In PKDD, pages 569-576, 2006.
Frank Klawonn. Finding informative rules in interval
sequences. In Intelligent Data Analysis, pages
123-132. Springer, 2001.

Hongyan Ma. Process-aware information systems:
Bridging people and software through process
technology: Book reviews. J. Am. Soc. Inf. Sci.
Technol., 58(3):455-456, 2007.

Fabian Moerchen. Algorithms for time series
knowledge mining. In Proc. of the 12th SIGKDD
int.conf. on Knowl.disc. and data min., 2006.
Panagiotis Papapetrou, George Kollios, Stan Sclaroff,
and Dimitrios Gunopulos. Discovering frequent
arrangements of temporal intervals. In ICDM, 2005.
Dhaval Patel, Wynne Hsu, and Mong Li Lee. Mining
relationships among interval-based events for
classification. In Proc. of the 2008 int.conf. on
Manag.of data, pages 393404, 2008.

Po shan Kam and Ada Wai chee Fu. Discovering
temporal patterns for interval-based events. In Proc.
of the 2nd DaWaK, pages 317-326. Springer, 2000.
S.Jablonski and C.Bussler. Workflow Management:
Modeling Concepts, Architecture and Implementation.
Intern. Thomson Comp. Press, 1996.

W. M. P. van der Aalst, B. F. van Dongen, J. Herbst,
L. Maruster, G. Schimm, and A. J. M. M. Weijters.
Workflow mining: a survey of issues and approaches.
Data Knowl. Eng., 47(2):237-267, 2003.

Wil M. P. van der Aalst, Jorg Desel, and Andreas
Oberweis, editors. Business Process Management,
Models, Techniques, and Empirical Studies, volume
1806 of LNCS. Springer, 2000.

Wil M. P. van der Aalst and Kees M. van Hee.
Workflow Management: Models, Methods, and
Systems. MIT Press, 2002.

T. Weijters and W. M. P. van der Aalst. Process
mining: Discovering workflow models from
event-based data., 2001.

Edi Winarko and John F. Roddick. Discovering richer
temporal association rules from interval-based data. In
A. Min Tjoa and J. Trujillo, editors, 7th DaWaK,
volume 3589 of LNCS, pages 315-325. Springer, ’05.

(11]

20]

(21]

(22]

(24]

[25]

[26]

