Constraint-Based Pattern Set Mining

Luc De Raedt
Katholieke Universiteit Leuven
Departement Computerwetenschappen
Celestijnenlaan 200a - bus 2402
3001 Heverlee
Luc.DeRaedt@cs.kuleuven.be

Abstract

Local pattern mining algorithms generate sets of patterns,
which are typically not directly useful and have to be further
processed before actual application or interpretation. Rather
than investigating each pattern individually at the local level,
we propose to mine for global models directly. A global
model is essentially a pattern set that is interpreted as a dis-
junction of these patterns. It becomes possible to specify
constraints at the level of the pattern sets of interest. This
idea leads to the development of a constraint-based mining
and inductive querying approach for global pattern mining.
We introduce various natural types of constraints, discuss
their properties, and show how they can be used for pattern
set mining. A key contribution is that we show how well-
known properties from local pattern mining, such as mono-
tonicity and anti-monotonicity, can be adapted for use in pat-
tern set mining. This, in turn, then allows us to adapt existing
algorithms for item-set mining to pattern set mining. Two al-
gorithms are presented, one level-wise algorithm that mines
for all pattern sets that satisfy a conjunction of a monotonic
and an anti-monotonic constraint, and an algorithm that adds
the capability of asking top; queries, We also report on a
case study regarding classification rule selection using this
new technique.

1 Introduction

The traditional local pattern mining task that is tackled in
data mining is that of finding a theory Th(L,D,q) = {¢ €
L | q(¢,D) is true}, cf. [10], where D is a database, £ a
language of patterns, and ¢(¢, D) a selection predicate that
states the constraints under which the pattern ¢ is a solution
w.r.t. the database D.

Numerous constraints and primitives have been devised
for working with a wide variety of pattern domains. Indeed,
constraint-based mining has been applied across a wide
range of domains, ranging from item-sets, episodes and
strings, to graphs and relational patterns. At the same
time, researchers have looked at many classes of constraints,

Albrecht Zimmermann
Katholieke Universiteit Leuven
Departement Computerwetenschappen
Celestijnenlaan 200a - bus 2402
3001 Heverlee
Albrecht.Zimmermann @cs.kuleuven.be

including for instance monotonic, anti-monotonic, succinct,
convertible constraints [12, 2, 1], and employed a rich variety
of primitives such as frequency, confidence, significance,
lift, closedness, freeness, generality, etc. Furthermore, these
primitives have been combined to form complex inductive
queries, e.g. [12, 2, 3, 13, 7]. For instance, [3, 14]
employ arbitrary boolean combinations of monotonic and
anti-monotonic primitives to specify the inductive queries ¢
in the Th(L, D, ¢q). One such query Qo could for instance
ask for

sup(o, Actives) > 0.05 A
sup(@, Inactives) < 0.01 A
C—H-N=<¢

This query searches in a database D of active and
inactive molecules for patterns that containa C' — H — N
group (more formally: that are more specific than the pattern
C — H — N), are frequent on the Actives and infrequent
on the Inactives. Other inductive queries have asked for
those patterns for which the significance according to a 2
test exceeds a threshold (or belongs to the &k best scoring
patterns in £), cf. [11]:

X*(¢, D) > threshold (arg, max x%(¢,D)).

Characteristic for this formulation of data mining is that
one searches for local patterns in that each pattern is tested
independently of the other patterns, and that the result is,
typically, a (large, unstructured) set of patterns Th(L, D, q).
For the user of the data mining system, this situation is
unsatisfactory, because a lot of time and effort needs to be
put into post-processing Th(L, D, q) in order to obtain a
small set of patterns that is a true nugget of knowledge, i.e.,
can be readily interpreted or applied to solve problems of
interest such as prediction or clustering. At the same time,
contemporary data mining techniques offer too little help for
supporting this post-processing process.

EXAMPLE 1. To give an example of such a mining task,
consider associative classification as in the case of CBA [9].

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited

All class association rules (association rules that predict
one of the class labels) that satisfy minimum support and
confidence (accuracy) thresholds are mined. The resulting
solution set can easily encompass thousands of rules and to
collect a subset of them for use in a classifier needs a post-
processing step. CBA solves the problem by using a heuristic
database covering approach.

The approach taken in this paper is to complement the
first phase of data mining, where local patterns are being
queried, with a second phase, in which pattern sets are
being queried. Pattern sets are simply sets of patterns. For
individual patterns, we will employ lower case characters
such as ¢, v, . .. and for patterns sets, we will employ upper
case characters @, U, ... More formally, we will assume the
following process:

1. L:=Th(L,D,q)
2. M := Th(L,D,p)
in which
Th(L,D,p) = {® C L|p(®,D)is true}

The resulting set of pattern sets M is obtained by formulating
a constraint p that has to hold for pattern sets, i.e. subsets of
L, of interest w.r.t. the database D. Here, L is the result
of the local pattern mining query, and M the result of the
post-processed query.

This formulation is quite natural for many data mining
tasks. Indeed, whether the goal of the mining is to obtain
a classifier in the form of a set of rules, a characterization
of a set of clusters, or simply a set of patterns that are not
too similar to one another, this can — as we will argue — be
obtained by formulating appropriate queries in the second
step.

One such query (formalized as query (03 below) queries
for those sets of patterns of size at least two, in which the
confidence in predicting the positive class is at least 95%,
and the number of examples covered by the intersection of
any pair of patterns is at most 10. This type of query could
be used in a subgroup discovery context, since the goal there
might be to characterize a subset of the data while avoiding
too much redundancy.

The key contributions of this paper are: (1) the intro-
duction of a novel framework for constraint-based mining of
pattern sets; (2) the introduction of a number of interesting
constraints for mining pattern sets; (3) the insight that the
properties of constraints known from local pattern mining
can be adapted in a natural way to those of constraints at the
level of pattern sets; (4) the use of these properties to adapt
existing algorithms from local pattern mining to pattern set
mining, in particular, a variant of the level-wise algorithm
of [10] and the branch-and-bound approach by [11]; (5) the

introduction of an algorithm that combines the level-wise al-
gorithm with that of the branch-and-bound one to compute
the answer to complex queries.

To the best of the authors’ knowledge this approach is
new, with possibly the exception of the work by Shima et. al
[15], which reports on a system for answering one specific
type of pattern set mining query.

This paper is organized as follows: Section 2 introduces
the formal framework of pattern set mining; Section 3
discusses properties of constraints for local pattern mining
as well as pattern set mining; Section 4 introduces several
primitives for pattern set mining, which are then integrated
with aggregation primitives in Section 5; Section 6 contains
some example queries; Section 7 analyzes the properties
of the pattern set mining language that was introduced;
Section 8 introduces the algorithm; Section 9 presents some
experiments; and finally, Section 10 concludes and discusses
related work.

2 Formal Framework

To keep our framework for supporting pattern set queries as
general as possible, we will be imposing as few constraints
on the local pattern mining task Th(L, D, p) as possible. We
will only assume that

e D is adatabase consisting of transactions ¢;, these trans-
actions are organized into possibly overlapping subsets
D1,---, D, C D; the different sets D; correspond to
different classes, like active and inactive molecules;

e for each pattern ¢ € L and each transaction ¢, we can
decide whether ¢ covers or matches the transaction ¢,
i.e., whether match(¢, t) is true;

e it follows that for each data set D;, we can compute
cov(D;, ¢) = {d € D;|match($,d)}, the set of trans-
actions in D; that ¢ covers; it will often be more effi-
cient to work with the transaction identifiers instead of
the proper transactions; to this aim we use the notation
tid(D;, @).

e the support of a pattern ¢ in a data set D;, sup(D;, ¢) =
|cov(Ds, @)

e [is a set of patterns that is partially ordered according
to generality <; basically for two patterns ¢, ¢, we say
that ¢ < ¢ if and only if for all possible transactions
t: match(v,t) — match(o,t), i.e., whenever t is
covered by 1, it is also covered by ¢; and

e pis an inductive query that can be answered.

For instance, when working with a set of items I, we
have that £ = 2!, each data set D; C 27, a transaction
t is covered by a pattern ¢ if ¢ C ¢, ¢ is more general
than ¢ (¢ = @) if and only if ¢ C . These definitions

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited

easily extend towards other pattern domains, such as strings,
episodes, graphs and relational queries.

The operations at the level of individual patterns ¢ can
now easily be lifted towards the level of pattern sets ®.
While doing so, it is often useful to interpret a pattern set
O = {¢1, -, ¢n} as the disjunction ¢; V --- V ¢, of the
patterns ¢; it contains. This is reasonable as more pattern
domains that are being employed (like item-sets) can be
considered conjunctions. From this perspective, a pattern set
® is a kind of formula in disjunctive normal form.

EXAMPLE 2. To return to our earlier example, this is in-
deed consistent with the usage of rule lists used in classifiers
such as the ones produced by CBA. Every single classifica-
tion rule is treated as a conjunction of attribute-value com-
binations. But only a single rule is used for classification of
a new instance, usually the highest-ranked rule matching it.
If no rule covers it, a majority rule is used for classification.

e A pattern set ® matches a transaction ¢ if and only
if there exists a pattern ¢ € & that matches ¢; i.e.,
match(®,t) is true if and only if 3¢ € D : match(¢p, t)
is true.

e By adopting this notion of matching, the definitions
of cov, tid and sup directly carry over to the level of
pattern sets.

The notion of generality deserves some more attention.
We could directly apply the definition of generality and write
that pattern set ® < W if and only if for all possible trans-
actions ¢ it holds that cov(¥,t) — cov(®,t). The problem
with this is, however, that deciding ® < ¥ may be non-
trivial. For instance, in case of ® and ¥ being logical formu-
lae (e.g., in disjunctive normal form as sketched above), this
would amount to deciding whether ¥ logically entails @, i.e.,
whether ¥ |= ®. At the same time, it will be much harder
to define refinement operators that compute minimal gener-
alizations or specializations that belong to L. Therefore, we
will adopt an easier definition of generality at the pattern set
level. More formally,

DEFINITION 2.1. Generality Pattern set ® is more general
than pattern set WU, notation ® < VU, if and only if for all
patterns 1p; € VU there exists a pattern ¢; € ® such that

i = ;.

It is easy to see that this definition is sound, but — depend-
ing on the pattern domain — not necessarily complete, i.e.,
whenever ® < W this implies that for all transactions £,
match(V,t) — match(P,t), but the reverse direction does
not necessarily hold.

When manipulating pattern sets, it will sometimes be
convenient to further simplify this notion of generality and
use the simple subset relation.

DEFINITION 2.2. Subset Generality Using the subset rela-
tion, ® is (subset) more general than U, notation ® <, U if
and only if U C &,

It is instructive to observe that & <, ¥ implies that & < U,
i.e., that ® is more general than W, though the opposite
does not always hold. Consider for instance, in the item-
set domain: for pattern sets {{a}} =< {{a,b}} holds but
{{a}} =5 {{a,b}} does not. There is an interesting property
that can be exploited to characterize the relationship between
=< and <, based on the notion of a reduced pattern set.

DEFINITION 2.3. Reduced Pattern Sets A pattern set @ is
reduced if and only if Ve € & : =[(P — {¢}) <X D|. We use
the notation reduced(®) to signify that ® has this property.

Reduced pattern sets contain no redundant patterns, which
can be deleted without affecting the level of generality.
Given a non-reduced pattern set P, it is easy to obtain a
pattern set U that is equivalent (w.r.t. =) by repeatedly
deleting patterns ¢ from @ for which (& — {¢}) < ®. The
reduced set will be unique provided that the pattern language
does not contain syntactic variants.

At this point, the reader commonly working with item-
sets may notice that the direction of generality is reversed
here. Indeed, when working at the local pattern level of item-
sets, ¢ C 1) implies that ¢ < 1. To see why this is the case,
it is — again — convenient to recall the view of pattern sets
as formulae in disjunctive normal form. No matter whether
one is working with individual patterns or pattern sets, in
this view, G < S if and only if S = G. Subset generality
will be convenient to generate pattern sets, since when using
the subset relation, generalization corresponds to adding a
pattern, and specialization to deleting one.

3 Properties of Constraints

Before discussing various primitives for pattern set mining,
let us define — by analogy with the local pattern mining
setting — some computationally interesting properties of such
primitives.

DEFINITION 3.1. Moneotonicity A constraint p is said to be
monotone w.r.t. a generality relation < if and only if for all
hypotheses A and B, A < B and p(A) — p(B). It is said to
be anti-monotone if and only if for all hypotheses A and B,
A< Bandp(B) — p(A).

This definition is applicable to local pattern mining using <
as well as to pattern set mining using the relations < or <.
‘When the monotonicity property holds at the pattern level set
for <, but not for <, we say that the constraint is restricted
monotone. Restricted anti-monotone is defined similarly.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited

To give an intuition of the meaning of this property,
monotone formalizes the notion that a constraint that is
satisfied will stay satisfied if the pattern becomes more
specific. Similarly, anti-monotone makes the same statement
about a pattern that becomes more general.

As an example of a constraint that is anti-monotone,

consider the classical minimal support threshold
sup(D,¢) > threshold in the local item-set mining
problem.

It is well-known that one can logically combine mono-
tone and anti-monotone predicates. If the a’s are anti-
monotone and the m’s monotone, then

e —a is monotone and —m is anti-monotone;
e a1 A as and a1 V as are anti-monotone; and
e mq A mg and my V moy are monotone.

A relaxation of the monotone and anti-monotone prop-
erties that is still useful for local pattern mining assumes that
a particular lexicographic order on the patterns exists. One
then often talks about convertible constraints. To define con-
vertible constraints, we will — for simplicity — assume that the
hypotheses we work with are sets. This could be item-sets or
pattern-sets. In addition, we assume that the generality rela-
tion corresponds to the subset relation.

DEFINITION 3.2. Convertible Monotonicity A constraint
p is said to be convertible anti-monotone (resp. convert-
ible monotone) w.r.t. a pattern language L, if and only
if there exists an order < on L, such that for all pre-
fix ordered pattern-sets {¢1,---,dn} (for which ¢; <

- < on), p({(rbla T a¢n—1}> - p({(bla T a¢n}) (resp.
P61, n}) = PUS1, -+ b1 })

An example convertible anti-monotone constraint is
avg(price(¢)) > 100, which states that the average price
of the items in ¢ should be larger than 100. By ordering
the items in [according to descending price, the constraint
becomes convertible anti-monotone.

A third type of constraint that is often used is that of
succinctness [12]. Again, we define succinct constraints at
the level of item- and pattern-sets only. We also employ a
simpler definition (proposed by Goethals, personal commu-
nication) that is equivalent to the original one in [12].

DEFINITION 3.3. Succinctness A constraint predicate p de-
fined on sets is succinct if and only if for all sets S: p(S) can
be expressed as Ve € S : r(e) = true for a predicate 7.

So, for succinct constraints, one can test whether a hypoth-
esis satisfies the constraint by testing that all its members
satisfy the constraint. A standard example is requiring that
the maximum price of the individual items is 1000 in item-set
mining. This could be expressed as max(price(¢)) < 1000.

This definition is applicable to local pattern mining using =<
as well as to pattern set mining using the relations < or <.

Within the literature on local pattern mining, branch-
and-bound algorithms have also been successfully employed
to answer topj, queries, which look for the k local patterns
that score best or to find all patterns for which the score
exceeds a certain threshold w.r.t. convex scoring function,
such as x2 [11]. This is realized using boundable constraints.

DEFINITION 3.4. Boundable A function f : L — R is said
to be upper-boundable (resp. lower-boundable) w.rt. to a
pattern language L if given f(¢) = k, k' € R can be derived
s.it. f(¢) < K (resp. f(¢') > k') for all ¢’ < & (resp.
¢ =)

Note that we do not call a function boundable if &’ corre-
sponds to a global maximum or minimum for all p’. If a
function is upper-boundable for ¢ < ¢ (resp. ¢ < ¢'),
it is said to be generalization (resp. specialization) upper-
boundable, and the dual property holds for lower-boundable.
Accuracy for instance is not specialization upper boundable,
since the bound is always 1.

This property has been used in the literature for mining
of correlated conjunctive patterns, using measures such as
information gain and y? [11]. The techniques employed
there base on the fact that the non-increase of support of
such patterns w.r.t. specialization allows calculation of upper
bounds on future values of the measure. For instance, anti-
monotone constraints such as minimum support are also
specialization upper-boundable since for all specializations

1 of a pattern ¢, sup(v, D) < sup(¢, D).

4 Primitives for Pattern Set Mining

In this section, we introduce some useful primitives for
pattern set mining and discuss their properties. The list is
by no means exhaustive; it merely serves to illustrate the
framework and its intuitive appeal.

The first type of constraints are direct adaptations of
the well-known constraints for local pattern mining. In
particular, some standard constraints include

o sup(D,®) > threshold, is anti-monotone, and

sup(D, ®) < threshold, is monotone;

o size(®) > threshold, where size(®) = |¢|, is anti-
monotone, and size(®) < threshold, is monotone.

e & < S, where S is a particular pattern set, is anti-
monotone, and G =< ®, where G is a particular pattern
set, is monotone.

Before specifying some further primitive constraints, let
us define some useful measures that can be derived from the
support.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited

DEFINITION 4.1. Redundancy Given two patterns ¢, ¢’,
their overlap in a data set D is defined as ovlp(¢, ¢’, D) =
cov(D, ¢)Ncov(D, @'). Their redundancy in D is defined as
red(¢,¢’', D) = |ovlp(é, @', D)|. Their relative redundancy

is relred(p, @', D) = %ﬁ,’m.

The redundancy is a measure of the degree to which two
patterns overlap. As for frequency, it can be defined either
absolutely or defined relatively to the size of the data set D.

EXAMPLE 3. This becomes important in cases in which
e.g. a characterization of a dataset is wanted, consisting
of patterns showing little redundancy which thus highlight
characteristic properties of certain subsets. Similarly, when
using an unordered rule set, little redundancy means few
instances which might be classified differently by different
rules, lessening the need for conflict solution heuristics.

Similarly to overlap, symmetric difference is a useful
primitive relating two patterns (kindly suggested by Nijssen,
personal communication):

DEFINITION 4.2. Distinctiveness Given two patterns ¢, ¢’,
the set diff(¢,¢', D) = {cov(é,D) U cov(¢’,D)} \
ovlp(é, @', D) is called their symmetric difference. Their
distinctiveness is dist(¢p, @', D) = |diff (¢, ¢, D)|.

Dually to redundancy, distinctiveness quantifies how
much of the covered data is exclusively covered by one of
the two patterns.

Again, one could define the relative distinctness reldist,
as a variant.

Especially for settings such as subgroup discovery the
existing data is split into subsets corresponding to interesting
groups. For pattern sets mined in such a setting, predicates
that are defined w.r.t. the different subsets have to be used
for effective mining. This will very likely lead to a situation
in which boolean combinations of predicates have to be used
for mining and pruning, probably with differing properties.
In this context, measures such as the representativeness are
useful.

DEFINITION 4.3. Representativeness Given a pattern set
or pattern S and database D = {Ds,...,D,}, the rep-
resentativeness of S w.r.t. a given Dy is defined as
rep(S, Dy, D) = %.

The representativeness of a pattern indicates how character-
istic the examples covered by the pattern set are for the subset
Dy In case membership of the data set D would be repre-
sented as an item or attribute, the representativeness would
correspond to the confidence of the association rule with the
pattern as condition part and the class as the conclusion part.

5 Aggregation

Size, redundancy, distinctiveness and representativeness are
primitives of the constraint language. Typically, these prim-
itives will not be employed in an isolated fashion, but rather
they will be combined with aggregates that range over the
whole set of patterns in the set or, in the case of pairwise
primitives, over the set of pairs of patterns in the set. We
shall be using the typical aggregates such as avg, min, sum
and max. For instance, the constraint

max(sup(®, D)) < threshold

denotes that the maximum support of any pattern in ® should
be less than threshold. So, it is actually an abbreviation for

D threshold
max(sup(9, D) < thresho

Similarly, the constraint
sum(red(®, D)) < threshold

denotes that the sum, taken over all pairs of patterns in @,
of the redundancies should be less than threshold. More
formally, this amounts to

>

1<j,¢i,p;€P

red(¢;, ¢, D) < threshold

In a similar manner, all(red(®,D)) < threshold and
exists(red(®, D)) < threshold will be interpreted.

6 Top-k Mining

A slightly different mining task is represented by top-k
mining. The goal here is not mining of all patterns satisfying
some constraints. Instead, the user specifies an integer k and
a quality measure f and formulates a query:

argy, mgxf((I),D)

This query denotes that the arguments, i.e. pattern sets,
of the k highest scores assigned by f should be returned as
solution. In addition, a minimum (or maximum) threshold
can be set w.r.t. the evaluation function.

7 Example Queries

In this section, we list some example queries that are meant
to illustrate the expressiveness and the use of constraint-
based pattern set mining. Recall also that all the queries
sketched assume that a previous query at the local pattern
mining level has already been formulated. It may be conve-
nient to keep the query Qg in mind that was formulated in
the introduction The pattern set variable ¢ then ranges over
all subsets of Th(L, Mol,Qq), where the database Mol of

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited

molecules is composed of two disjoint sets: Act, the actives,
and InAct, the inactives.

First, in a summarization or clustering context, the user
might pose Q1:

sup(®, Act) > ki A max(red(®, All)) <1

It asks for those sets of patterns that together cover at least k1
active molecules and in which the conjunction of each pair
of patterns covers at most 1 example. The minimum support
ensures that the pattern collection is really representative of
the dataset while the maximum redundancy, as mentioned
above, means that individual capture characteristics particu-
lar to certain subsets.

Second, when focusing on classification or accuracy,
one might pose Qs:

all(rep(®, Act, Mol)) > 0.95 A
maz(red(®, Mol)) < ki N size(®) > 2

Q- generates sets of patterns of size at least two, in
which the representativeness, (i.e., the confidence in predict-
ing an active) is at least 95%, and the number of examples
covered by the intersection of any pair of patterns is at most
k1. This type of query is related to the process of subgroup
discovery.

Third, our chemical expert suggested query ()3, which
models a form of chemical interestingness:

D < {p1} A sup(®, Act) > kq
Nsize(®) < 20 A sup(®, InAct) < ks

Here, the expert is looking for pattern sets that are frequent
in the actives, infrequent in the inactives, contain pattern p;
and have size at most 20.

Fourth, one may want to find sets of patterns that cover
similar sets of examples in Act by employing query Q4.

min(red(®, Act)) > 5 A size(P) > 2

This requires that the intersection of each pair of patterns
covers at least 5 examples and that the size of the pattern set
is larger than 2. This could be used to identify families of
patterns that characterize the same instances.

Finally, an associative classification rule learner such as
CBA aims at selecting a subset of the mined rules with high
accuracy as the final classifier. The rule set should have high
accuracy on a validation set and little redundancy among the
rules. Thus @5 has the form:

max(red(®, D) < k A arg, max acc(®,D) > r

The second term denotes that we are querying for the
single most accurate pattern set among those with accuracy
at least r.

8 Properties of Pattern Set Constraints

Constraint based data mining system rely heavily on the
properties of the employed constraints in order to “push’
the constraints in the data mining system and to develop
efficient and effective algorithms. Therefore, we study in this
section the properties of the pattern set constraint primitives
introduced earlier.

THEOREM 8.1. Each constraint mentioned in Table I pos-
sesses the properties listed.

We omit the proof due to the space restrictions.

Using this list of properties, we can now investigate
the properties of the conjunctive queries, given earlier as
examples:

e (), is written as the conjunction of an anti-monotone
and an monotone constraint, i.e., in the form ’anti-
monotone A monotone’;

e ()o is in the form ’succinct A monotone A anti-
monotone’;

e (3 is in the form (anti-monotone A anti-monotone) A
(monotone A monotone)’, and hence, ’anti-monotone A
monotone’;

e ()4 is in the form ’restricted monotone A anti-
monotone; and

e ()5 is monotone A ’generalization upper boundable’.

Observe that it is — of course — also possible to provide
further queries and analyze their properties. For instance,
the specific type of query which was answered by [15]
corresponds to

U

1<j,pi,p;€P

ovlp({¢i, ¢;}, D)| < k.

It is a monotone constraint.

9 Algorithms

Because many of the pattern set constraints exhibit similar
properties as those of traditional local pattern mining, it is
possible to adapt existing algorithms from local pattern min-
ing to mine pattern sets. Constrained pattern set mining
poses two challenges. On the one hand, and most impor-
tantly, the user should be able to specify in a flexible manner
various types of constraints without getting overwhelmed by
the number of answers. On the other hand, the algorithms
answering the inductive queries should be computationally
feasible.

Since many constraints listed in Table 1 show anti-
monotone or monotone properties, a logical choice for an
efficient pattern set mining algorithm is an adaptation of

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited

Table 1: Set constraints and their properties.

Property

Constraint

G=<d

=<9

size(®) > k

size(®) <k

sup(®,D) <k
sup(®,D) >k
rep(®,D1,D) < k
rep(®, Dy D) > k
all(rep(®,D1,D)) < k
all(rep(®, D1, D)) > k
max(sup(®, D)) < k
min(sup(®, D)) > k
maz(red(®, D)) < k
maz(red(®, D)) > k
min(red(®,D)) < k
min(red(®,D)) > k
avg(sup(®, D)){=, <}k
maz(rep(®, Dy, D)) < k
min(rep(®, D1,D)) > k
sum(red(®, D)) < k
sum(red(®, D)) > k

X2 (sup(®, Dy), sup(®,D_)) >k
min(red(®,D)) < k
min(red(®,D)) > k
max(dist(®, D)){>, <}k
min(dist(®, D)){>, <}k

monotone, primitive
anti-monotone, primitive
anti-monotone, primitive
monotone, primitive
monotone, primitive
anti-monotone, primitive
generalization boundable?, primitive
generalization boundable?, primitive
succinct, aggregate
succinct, aggregate
succinct, aggregate
succinct, aggregate
monotone, aggregate
anti-monotone, aggregate
restricted anti-monotone*, aggregate
restricted monotone*, aggregate
convertible, aggregate
succinct, aggregate
succinct, aggregate
monotone, aggregate
anti-monotone, aggregate
specialization upper-boundable, primitive
restricted anti-monotone, aggregate
restricted monotone, aggregate
(restricted monotone) ™, aggregate
(restricted monotone) ™, aggregate

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited

the well-known level-wise algorithm by [10] extended to
cope with monotone constraints. In the local pattern mining
world, minimum frequency is arguably the most important
and influential constraint. Adding, e.g., additional items to
an itemset usually rapidly reduces its support, making this
constraint so powerful. Appropriate thresholds will make
sure that the number of itemsets mined stays relatively small
and the itemsets themselves are of low cardinality and thus
easy to interpret. When mining constrained pattern sets, the
same properties should show up in sets satisfying constraints,
e.g. few patterns should be involved and not too many pat-
tern sets returned. Thus, minimum frequency’s role is trans-
ferred to maximum redundancy since the disjunctive nature
of pattern sets implies that even strict support thresholds are
satisfied by many high-cardinality pattern sets.

The first algorithm assumes a constraint on pattern sets
that takes the form, shown as Algorithm 1, anti(®) A
mono(®), where anti denotes an anti-monotone predicate
and mono a monotone one. Notice that these predicates
themselves could be logical combinations of several con-
straints, as discussed in Section 3, such as the nones used
in, for instance, [7].

At the algorithmic level, it is necessary to employ a
refinement operator at the level of pattern-sets. Essentially,
applying a refinement operator p to a pattern-set ¢ returns
a set of its direct specializations (or generalizations) w.r.t. a
particular generality relation. The generality relation < is
easy to use in this respect, because refinement is very similar,
though dual, to item-set mining. More formally:

DEFINITION 9.1. The generalization refinement operator

pg(®) = {®U{¢}|¢ € L}.

So, pg simply adds patterns to the existing pattern set ® in all
possible ways. Whereas in item-set mining this would yield
minimal specializations, it yields minimal generalizations
for pattern sets.

A slightly more complex operator is needed to deal
with the other generality relation amongst pattern sets, <.
Essentially, one needs to consider also the replacement of a
pattern ¢ € ® by its minimal generalizations in L.

The algorithm enumerates pattern sets from specific to
general, to create low-cardinality sets. At each level the
monotone constraint is tested since pattern sets that don’t
satisfy it can never be generalized into pattern sets that do.
All sets satisfying the monotone constraint are then extended
using p,. Furthermore, the sets satisfying the anti-monotone
constraint as well are included in the solution set. These
operations are repeated at each level until no candidates are
left that need to be tested against mono.

As usual, various optimizations are possible. A potential
improvement could for instance be gained from the fact that
several constraints in table 1 are pairwise. This means that
either the subset check has to be performed only for the “2-

Algorithm 1 The Levelwise algorithm.
Input:
L, a set of patterns;
anti(®) A mono(®P);
a database D;
QOutput:
Th(L, D, anti(®) A mono(®)) = J, Ti;

Lo :={0};i:=0;

while Z; # () do
M; :={® € L;|mono(®)}
Li+1 = {\Ill\lf S pg(q)) for some ¢ € Mz}
=1+ 1

generalizations” or even better, that this check can be made
an additional aspect in selecting the sets to be specialized.

In addition, many variants of this type of algorithm
can be obtained, by referring to other search-strategies, e.g.,
depth-first [4] instead of breadth-first, or better evaluation
strategies in case the constraints mono and anti are complex
by themselves. Alternatively, one might be interested in
finding maximal or minimal pattern sets that satisfy the
constraints, which corresponds to the (positive) borders of
version spaces, which could easily be devised, cf. [7], free
or closed pattern sets, cf [2].

One of the problems with the levelwise algorithm for
item-set mining is that typically too many solutions are found
and also that it is hard to set the thresholds. Therefore, we
expect that this problem for this type of algorithm carries
over to the levelwise algorithm for mining pattern sets.
Within local pattern mining, the typical solution is to search
for the top-k best local patterns according to a heuristic
criterion such as x?2 or information gain or weighted relative
accuracy. The algorithm of choice for tackling such a mining
task would usually be a branch-and-bound algorithm, such
as the one proposed by [11]. The convexity property means
that upper bounds on the value these measures assign to
specializations of already seen patterns can be calculated.
Since convexity also allows for generalization upper bounds,
convex measures used in local pattern mining can also used
for pattern set mining. In addition, a measure such as
accuracy, which is not specialization boundable, can be
bounded for the pattern set case (under the assumption that
no re-classification of instances by other patterns occurs).

Unfortunately, the typical branch-and-bound approach
suffers from two problems. On the one hand, upper bounds
are often too generous and do not leverage the same pruning
power as (anti-)monotone constraints. On the other hand,
while the best-first strategy would ideally raise the threshold
quickly and also needs limited memory, in practice raising
the threshold often happens in the early stages of the min-

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited

ing run. The branch-and-bound approach thus sacrifices the
pruning capabilities that can be gained by using the informa-
tion about all subsets of the current set which is collected at
the level before the current, should one adopt the levelwise
approach.

Therefore, rather than presenting the typical branch-
and-bound algorithm for mining for top k patterns, we intro-
duce an extension of the levelwise algorithm that computes
the answers to queries of the form

argy, qujmx{f(\llﬂanti(\ll) A mono(¥)}

So, we are interested in computing the top k pattern sets
scored according to the function f of those pattern sets
that satisfy anti(¥) A mono(¥). The resulting branch-and-
bound algorithm using a generalization upper-boundable
constraint is shown as Algorithm 2. By not specifying a
top-k constraint, the regular level-wise algorithm described
above is derived.

Algorithm 2 The Levelwise algorithm using a generalization
upper-boundable constraint.
Input:
L, a set of patterns;
anti(®) A mono(®);
f(®) — R, selection measure;
7 minimum threshold;
k size of solution;
a database D;
Output:
Th= arg;, maxq{f(®)|anti(®) A mono(®)};

Lo == {0};i =0
Sol =0
while L; # () do
M; == {® € L;lmono(®)}
T; :={® € M;|anti(P)}
Sol U{® € T;|f(®) > 7}
while |Sol| > k do
Sol \ arg Inin@Esol f(q))
if |Sol| = k then
T = mingeso f(P)
Lisy = {U|W € py(®), ® € M;, ub(f(®)) > r}
1:=1+1;
return Sol

There are a few differences to Algorithm 1. The first one
lies in the fact that the size of the solution set is potentially
limited. Thus, (potential) solutions do not only have to
satisfy mono A anti but also be better than the k best pattern
sets seen so far. Only then are they included in the solution
set Sol (and can be replaced by better-scoring ones in the
future). Also, candidates for expansion are not only tested

against mono but also on whether their upper bound exceeds
the kth-best score seen so far.

What is perhaps more important than the specific algo-
rithm is that essentially any principle that applies to item-set
mining can be adapted towards pattern set mining. The main
difference is that the direction of generality is inverted, as
adding new elements to a set corresponds to generalization
when working with pattern sets, instead of specialization.

10 Experiments

Throughout the paper we provided evidence that pattern set
mining is quite analogous to local pattern mining. Therefore
a key goal of the experiments is to verify whether the level-
wise algorithm behaves in a similar way regarding pattern
sets as it would mining item-sets. We evaluate this in the
first experimental setting.

In addition, the use of a top-k-query for classifier con-
struction is evaluated to provide example of an application
of the pattern set mining approach.

For the first part of the experimental evaluation we
mined local patterns on two datasets. The first data set is
the DTP aids antiviral database, using the molecular feature
miner MolFea, with a minimum support threshold on the
actives of 27 and a maximum threshold on the inactives
of 8. The resulting set of local patterns contains 287
patterns. This set was once used as is for the evaluation
of Q1 and @2 and for the evaluation of Q3 a subset was
selected in such a way that each tid-list occurred only once,
leaving 29 patterns. The second data set is the well-known
UCI mushroom dataset. We mined maximal patterns both
on the entire dataset and on each subset separately, using
Apriori and a minimum support of 25%, finding 101 and
131 patterns, respectively. We then used those sets of local
patterns for our experiments.

10.1 Evaluating conjunctions anti \ mono For this set-
ting, we evaluated ()1, (2, and Q3 with different thresholds
on the patterns mined on the DTP aids antiviral database.
Results are shown in Tables 2, 3, 4. All tables report the
constraint thresholds, number of constrained sets returned,
minimum and maximum cardinality of constrained sets, re-
spectively.

In Table 2, k denotes the minimum support threshold
on Act, in Table 3, m denotes the maximum redundancy
allowed. Only the values 0 and 11 are reported since any
value below 11 behaves as in setting maximum redundancy
to 0 and any value above 11 is obviously not practical. We
also added a support threshold to ()2, to additionally evaluate
its effect, its threshold is denoted by k.

Finally, in Table 4, k; and k5 denote the maximum
support on the inactives and minimum support on the actives,
respectively.

On the one hand are the resulting pattern sets are of

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited

Table 2: (1 evaluated on L = sup(¢, Act) > 27

k |Th| min |®| | max |P|
50 | 8525392 2 5
100 | 8195886 3 5
150 | 2649152 5 5
160 | 42688 5 5
162 | 13920 5 5

Table 3: ()2 evaluated on L = sup(¢, Act) > 27

m | k |Th| | min|®| | max ||
0 | n/a| 3690 2 2
0 | 40 180 2 2
0 | 50 90 2 2
0 | 55 32 2 2
0 | 57 0 n/a n/a
11 | n/a | 776602 2 4
11 | 40 | 741028 2 4
11 | 50 | 134650 2 4
11 | 55 960 2 3
11 | 58 928 3 3
11 | 59 0 n/a n/a

Table 4: @3 evaluated on L = sup(¢, Act) > 27, unique

tid-lists

ki | ko |Th| | min|®| | max|P|
10 | 30 7678 2 13
10 | 50 6040 2 13
10 | 100 2 5 6
20 | 30 | 706975 2 17
20 | 50 | 703904 2 17
20 | 100 | 242377 4 17
20 | 130 | 2417 5 13
20 | 137 541 6 13
20 | 138 0 n/a n/a

Table 5: Mushroom dataset, maximal sets mined on com-
plete dataset
max(red(®, All)) < 1, varying support

|Th| | min|®| | max ||
min(sup(®, All) >0 923 1 3
min(sup(®, All) > 3000 | 823 1 3
man(sup(®, E) > 3000 | 245 2 3
min(sup(®, P) > 3000 | 171 2 3

Table 6: Mushroom dataset, maximal sets mined on subsets
mazx(red(®, All)) < 1, varying support

|Th| | min|®| | max|P]|
min(sup(®, All) > 0 23647 1 6
man(sup(®, All) > 3000 | 21227 2 6
min(sup(®, E) > 3000 | 1063 2 6
min(sup(®, P) > 3000 | 5046 3 6

relatively low cardinality, facilitating the understanding of
the results. On the other hand, the amount of pattern sets
returned is high, even for restrictive constraint settings.

Additionally, as can be seen, selecting the right thresh-
olds for the constraints is a non-trivial task. Sometimes,
changing support by 1 means that no pattern set is returned
at all.

These are well-known phenomena from local pattern
mining. The fact that, as we expected, they are mirrored in
the task of constrained pattern set mining as well gives addi-
tional support to our claim that the two tasks are structurally
similar.

An interesting result is that using the patterns without
ad-hoc removal of non-unique tid-lists allows for a larger
minimum support on Act than if those patterns are removed.
This shows that the task of removing non-unique fid-lists is
itself essentially a constrained pattern set mining task.

In the case of patterns mined on the mushroom dataset,
we constrained the maximum redundancy to 0 and evaluated
the effect of setting a minimum support threshold of 3000 on
the entire dataset, and each of the subsets. The results for
these experiments are shown in Tables 5 and 6.

Again, it can be seen that pattern sets are of small
cardinality, making it easy for the user to comprehend the
entire set. On the other hand, even setting relatively strong
thresholds (considering that each subset consists of roughly
4000 instances) still leads to a large number of pattern sets
returned.

The experiment provides evidence that the levelwise
algorithm behaves very similarly to the item-set mining task,
including the regrettable effect of typically producing far
more solutions than humans can peruse. Also, the cardinality
of returned pattern sets is relatively small.

On the positive side this means that applying the lessons

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited

Table 7: Comparing CBA’s classifier with constrained set
mining result

Size set AcCirain Acciest
CBA | 17.4+5.1 | 0.8443 +£0.019 | 0.7918 £+ 0.0459
CSM | 49+1.66 | 0.8443 +0.019 | 0.7918 £ 0.0459

learned in local pattern mining regarding condensed repre-
sentations, different enumeration (and ordering) strategies,
and techniques for top-k-mining will be applicable to the
pattern set mining task as well.

10.2 Classifier construction As mentioned before, CBA
mines the set of all classification rules that have a minimum
support and minimum accuracy on a set of training data. To
construct a classifier out of these rules, a post-processing
step is necessary to select a useful subset. This is done
heuristically, traversing an ordered list of rules, adding ones
that correctly classify instances that are not being classified
by the rules chosen so far for the subset. The quality of the
classifier constructed is measured on the training data. This
also means that the order of the rules has quite an impact on
the final classifier. Especially if rules are completely equal
in support, accuracy and generality, the ordering becomes
essentially arbitrary and different orderings will result in
different classifiers.

In constrained pattern set mining, using a constraint
such as @5 allows to ignore the ordering though and thus
find one classifier with the highest accuracy on the training
set.

To illustrate this, we set up the following small exper-
iment: using CBA, we mined class association rules on ten
folds of the UCI balance-scale dataset. On average 98.8 rules
(o = 17.38) were found. When randomly permutating the
order of equal rules and using CBA’s post-processing step on
the resulting rule sets, classifiers of different size and accu-
racy on the training sets are constructed.

Then we chose one permutation and additionally ran
query ()5 on that permutation to select a pattern set used as
final classifier. Average and standard deviation for the size of
the rule set selected by the post-processing step, accuracy on
the training and the test data are shown in Table 7 for CBA
and the constrained pattern set mining (CSM) approach in
the first and second row, respectively. Maximum redundancy
was set to 5 and minimum accuracy to 0.5.

While the two approaches construct classifiers of iden-
tical accuracy both on the training and test data, constrained
pattern set mining allows to construct a far more compact
classifier. Visual inspection of the rule sets mined by our
approach shows that often rules are selected that are not
included in CBA’s solution. Specifically, quite often, the
highest-ranked rule is ignored by our approach while CBA’s
post-processing will always include this one. Additionally,

on several folds, the constrained pattern set did not include
a single rule with confidence 1 without this decreasing the
accuracy of the resulting classifier.

While mining for the constrained pattern sets, on aver-
age 18.6 levels were traversed (o = 2.319), far from the
search space that an exhaustive search for the best subset of
on average 99 rules would need to consider.

11 Conclusions

We have introduced a novel framework for constraint-based
mining at the pattern set level rather than at the level of
individual local patterns. We introduced various types of
pattern set primitives and constraints and analyzed their
properties. It turned out that the key principles and findings
of constraint-based local pattern mining can directly be
adapted towards pattern set mining. This allowed us to
adapt well-known algorithms from local pattern mining,
such as a variant of the level wise algorithm that deals with
conjunctions of monotonic and anti-monotonic constraints,
and the branch-and-bound approach for dealing with top-k
criteria due to [11] towards our purposes.

We also illustrated the approach in two pattern mining
settings and a small-scale case study demonstrating an appli-
cation of the technique. The experiments show that the be-
havior of the mining process and the relation between under-
lying language and query results closely resemble the phe-
nomena encountered in local pattern mining.

To the best of the authors’ knowledge, this is a novel
approach to inductive querying [6, 3]. It is, however, related
to the work by [15], who proposed an algorithm for solving
one specific type of inductive query (as sketched above).
There has been work on allowing for dynamic constraints
in data mining [8, 5] that also attempts to give the user more
control about the amount of patterns returned by adjusting
parameters while the mining process is underway. These
works focus mainly on the well-known minimum frequency
constraint and somewhat on anti-monotone and succinct
constraints. A main difference to our work lies in the fact
that the mining process returns exactly the solution to these
adjusted constraints while we suggest mining patterns at
fixed constraints first and then selecting a subset that has
further properties that are not that easily pushed into the local
pattern mining step.

There are a lot of opportunities for further work. Never-
theless, we believe that our work already illustrates the bene-
fits of the approach, and also, that — in principle — pattern set
mining should work as efficient as item-set mining, where
an important factor is the number of items (or, in our case, of
patterns) to be considered.

There is a lot of room for developing further constraints,
studying their properties and developing interesting algo-
rithms for solving pattern set mining problems. Additionally,
it might be interesting to transfer the lesson of constrained

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited

pattern set mining back to local pattern mining, namely the
positive effect of using an additional selection criterion to
return a smaller solution set to the user. Finally, do the sim-
ilarities between local pattern and global model mining also
raise some general questions w.r.t. the globality of “global”
models.

12 Acknowledgments

The authors would like to thank Andreas Karwath for provid-
ing some help with the MolFea experiments, Siegfried Ni-
jssen for interesting discussions and suggesting the notion of
distinctness, and Kristian Kersting for suggesting the name
Aposteriori :-). This work was partly supported by the EU
IST project IQ.

References

[1] Francesco Bonchi, Fosca Giannotti, Alessio Mazzanti, and
Dino Pedreschi. Examiner: Optimized level-wise frequent
pattern mining with monotone constraint. In /CDM, pages
11-18. IEEE Computer Society, 2003.

Toon Calders, Christophe Rigotti, and Jean-Frangois Bouli-
caut. A survey on condensed representations for frequent
sets. In Jean-Frangois Boulicaut, Luc De Raedt, and Heikki
Mannila, editors, Constraint-Based Mining and Inductive
Databases. Springer, 2005.

L. De Raedt. A perspective on inductive databases. SIGKDD
Explorations, 4(2), 2002.

Jiawei Han, Jian Pei, Yiwen Yin, and Runying Mao. Mining
frequent patterns without candidate generation: A frequent-
pattern tree approach. Data Min. Knowl. Discov., 8(1):53-87,
2004.

Christian Hidber. Online association rule mining. In Alex
Delis, Christos Faloutsos, and Shahram Ghandeharizadeh,
editors, SIGMOD Conference, pages 145-156. ACM Press,
1999.

Tomasz Imielinski and Heikki Mannila. A database perspec-
tive on knowledge discovery. Commun. ACM, 39(11):58-64,
1996.

Stefan Kramer, Luc De Raedt, and Christoph Helma. Molec-
ular feature mining in hiv data. In KDD-2001, 2001.

Laks V. S. Lakshmanan, Carson Kai-Sang Leung, and Ray-
mond T. Ng. Efficient dynamic mining of constrained fre-
quent sets. ACM Trans. Database Syst., 28(4):337-389, 2003.
Bing Liu, Wynne Hsu, and Yiming Ma. Integrating classifica-
tion and association rule mining. In Rakesh Agrawal, Paul E.
Stolorz, and Gregory Piatetsky-Shapiro, editors, KDD 1998,
pages 80-86, New York City, New York, USA, August 1998.
AAAI Press.

Heikki Mannila and Hannu Toivonen. Levelwise search and
borders of theories in knowledge discovery. Data Mining and
Knowledge Discovery, 1(3):241-258, 1997.

S. Morishita and J. Sese. Traversing itemset lattice with
statistical metric pruning. In PODS, 2000.

Raymond T. Ng, Laks V. S. Lakshmanan, Jiawei Han, and
Alex Pang. Exploratory mining and pruning optimizations

(2]

(3]
(4]

(5]

(6]

(71

(8]

(9]

(10]

(11]

[12]

[13]

(14]

[15]

of constrained associations rules. In SIGMOD Conference,
pages 13-24, 1998.

Jian Pei, Jiawei Han, and Laks V. S. Lakshmanan. Pushing
convertible constraints in frequent itemset mining. Data Min.
Knowl. Discov., 8(3):227-252, 2004.

Luc De Raedt, Manfred Jaeger, Sau Dan Lee, and Heikki
Mannila. A theory of inductive query answering. In ICDM,
pages 123-130. IEEE Computer Society, 2002.

Yoshikazu Shima, Kouichi Hirata, and Masateru Harao. Ex-
traction of frequent few-overlapped monotone dnf formulas
with depth-first pruning. In Tu Bao Ho, David Cheung, and
Huan Liu, editors, PAKDD, pages 50-60. Springer, 2005.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited

