Lifbdw2 – Bases de données *Test – novembre 2016*

Licence informatique – automne 2016–2017

Durée : 90 minutes. Les documents sont interdits. Le barème est donné à titre indicatif. Les réponses doivent être données sur la feuille.

Nom:

Pr	énom :
	Résumé
	$\frac{Y \subseteq X}{X \to Y} \sigma_1 \qquad \frac{X \to Y X \to Z}{X \to YZ} \sigma_4$
	$\frac{X \to Y}{WX \to WY} \sigma_2 \qquad \frac{X \to YZ}{X \to Y} \sigma_5$
	$\frac{X \to Y \qquad Y \to Z}{X \to Z} \sigma_3 \qquad \frac{X \to Y \qquad WY \to Z}{WX \to Z} \sigma_6$
	$rac{X ightarrow Y}{Z ightarrow Y} \sigma_7$
E×	ercise 1 : questions de cours (5 pts)
1.	Définir la relation de satisfaction d'une dépendance fonctionnelle $X \to Y$ par une instance r , notée $r \models X \to Y$, ainsi que la relation $\Sigma \models X \to Y$ (1 pt)
2.	Définir la relation de satisfaction d'une dépendance d'inclusion $R[X] \subseteq S[Y]$ par une instance r, s notée $r, s \models X \subseteq Y$ (1 pt)
3.	Une dépendance triviale est une dépendance de la forme $X \to Y$ avec $Y \subseteq X$. Montrer que les dépendances triviales sont toujours satisfaites, quelque soit l'instance r considérée (1 pt)
4.	Donner les noms communs des règles σ_3 et σ_5 (1 pt)

5.	Donner un ensemble de DFs sur le schéma $R = ABC$ qui n'est pas en 2^e forme normale (1 pt)
Ex	ercise 2 : sur les fermés (10 pts)
Soit	t l'ensemble de DFs suivant $F = \{A \to B, C \to AE, CE \to D, E \to C, BC \to A\}$. On rappelle
	able des fermés de F est défini comme $Cl(F) = \{X^+ X \subseteq R\}$. Calculer $Cl(F)$ en donnant les étapes <i>nécessaires</i> du calcul (3 pts)
)	Représenter graphiquement $CI(F)$ ordonné par l'inclusion (1 pt)
۷.	representer graphiquement Cr(r) ordonne par i inclusion (1 pt)
3.	Construire une relation d'Armstrong correspondante (2 pts)
1.	Quelles sont les DFs qui deviennent satisfaites quand on supprime le tuple du fermé <i>BD</i> (2 pts)
	(2 pts)

5.	Donner 3 clés de F (1 pt)
	Donner un ensemble minimal de DFs qui génère l'ensemble de fermés $\{\emptyset, A, B, BC, ABC\}$ (2 pts)
	BC
	$A \qquad B$
Ex	ercise 3 : inférence de dépendances (5 pts)
	considère l'ensemble de dépendances suivant :
	$\Sigma = \{ D ightarrow C$, BC $ ightarrow E$, BA $ ightarrow FB$, EB $ ightarrow$ A, DF $ ightarrow E$, EC $ ightarrow F\}$
1.	Prouver que $\Sigma \models BD \rightarrow F$ avec les règles σ_1, σ_2 et σ_3 (2 pts)
•	
2.	Idem mais en utilisant l'algorithme de fermeture (donner les étapes du calcul) (1 pt)

3.	Prouver que $\Sigma \not\models \mathit{BE} \to \mathit{D}$ par la méth	node de votre choix (2 pts	s)
Ex	ercise 4 : système d'inférence	e (5 pts)	
	rappelle que le système d'Armstrong es		flexivité, transitivité et augmentation
	sidère l'ensemble $\mathcal{F}=\{R_1,R_2,R_3\}$ sui		
	$\overline{X o X}$ R_1	X o Y	$X \to Y$ $Y \cup W \to Z$
	$X \to X$	$X \cup Z \to Y$	$\frac{X \to Y \qquad Y \cup W \to Z}{X \cup W \to Z} R_3$
1.	Justifier si la règle d'inférence R_x est c	orrecte (2 pts)	
		$X \to Y \qquad X \to Z \qquad R_x \longrightarrow Z \qquad R_x \longrightarrow Z \qquad R_x \longrightarrow Z \longrightarrow $	
		$Y \rightarrow Z$	
2.	Prouver la propriété suivante d'interact	tion entre DFs et DIs (3 p	
	{ <i>R</i> [<i>XY</i>] ⊆	$S[TU], S: T \to U\} \models R$: X → Y

Exercise 5: Vers la normalisation (7 pts)

Soit l'ensemble Σ de dépendances fonctionnelles suivant sur le schéma R = ABCDEFGH $\Sigma = \{AB \rightarrow CD; AC \rightarrow BD; A \rightarrow D; D \rightarrow C; C \rightarrow D; A \rightarrow C; H \rightarrow G\}$, l'ensemble M de dépendances multivaluées $M = \{E \twoheadrightarrow GH\}$ et l'ensemble I des dépendances d'inclusion $I = \{R[A] \subseteq R[E]\}$.

Calculer une	couverture mini	mum de Σ . (3)	pts)				
	parties gauches e	t droites.					
(2pts)							
Appliquer l'. Préciser les o obtenue. (2p	algorithme de sy dépendances fonc ots)	nthèse vu en tionnelles proj	cours pour d etées sur chad	obtenir une que relation a	décomposition ainsi obtenue e	ı de la rela et la forme r	tion norm
bienae. (2)	713)						

NomP	IdResp		
Etoile	1		
Ramdam	1		
Websem	3		
Art	4		
Projets			

IdC	NomC	Grade	
1	Fouilhoux	Pr	
2	Pesneau	ATER	
3	Borne	Mcf	
4	Slama	Pr	
5	Lopes	Mcf	
6	Frenoux	Mcf	
Chercheurs			

NomP	Taux	IdC
Etoile	0.1	1
Etoile	0.2	3
Etoile	0.5	4
Ramdam	0.1	2
Ramdam	0.3	1
Websem	0.1	1
Websem	0.1	3
Websem	0.4	2
Art	0.1	4
Art	0.15	1
Art	0.4	6
Implic	ations	

Implications

Soit ${f R}$ le schéma de bases de données dont on donne une instance ci-dessus :

- $Implications = \{NomP, Taux, IdC\}.$

Exercise 6: modélisation (3 pts)

Identifier la contrainte permettant de restreindre les extensions possibles de cette base, pour chacune des assertions suivantes

Les responsables de projets sont tous des chercheurs (1 pt)
In chercheur est toujours impliqué dans un projet dont il est responsable (1 pt)