Classification and Prediction

Introduction
Evaluation of Classifiers
Decision Trees
Bayesian Classification
Nearest-Neighbor Classification
Support Vector Machines
Multi-relational Classification
Regression Analysis

Introduction

The Classification Problem

- Let O be a set of objects of the form $\left(o_{1}, \ldots, o_{d}\right)$
with attributes $A_{i}, 1 \leq i \leq d$, and class membership $c_{i}, c_{i} \in C=\left\{c_{1}, \ldots, c_{k}\right\}$
- Wanted:
class membership for objects from $D \backslash O$
a classifier $K: D \rightarrow C$
- Difference to clustering
classification: set of classes C known apriori clustering: classes are output
- Related problem: prediction
predict the value of a numerical attribute

NAME	RANK	YEARS	TENURED
Mike	Assistant Prof	3	no
Mary	Assistant Prof	7	yes
Bill	Professor	2	yes
Jim	Associate Prof	7	yes
Dave	Assistant Prof	6	no
Anne	Associate Prof	3	no

Evaluation of Classifiers

Introduction

- Given a sample of labeled data (O)
- Want to build a classifier that labels the entire population in particular, $D \backslash O$
- Can only estimate the performance of the classifier on unseen data
- Need separate, disjoint training and test data (all labeled)
- Training data
for training the classifier (model construction)
- Test data
to evaluate the trained classifier

Evaluation of Classifiers

Approaches

- Train-and-Test
- partition set O into two (disjoint) subsets: Training data and Test data
- not recommended for small O
- m-fold cross validation
- partition set O into m same size subsets
- train m different classifiers using a different one of these m subsets as test data and the other subsets for training
- average the evaluation results of the m classifiers
- appropriate also for small O

Evaluation Criteria

- Classification accuracy
- Interpretability
e.g. size of a decision tree insight gained by the user
- Efficiency
of model construction
of model application
- Scalability for large datasets
for secondary storage data
- Robustness
w.r.t. noise and unknown attribute values

Classification as optimization problem: score of a classifier

Evaluation of Classifiers

Classification Accuracy

- Let K be a classifier, $T R \subseteq O$ the training data, $T E \subseteq O$ the test data. $C(o)$: actual class of object o.
- classification accuracy of K on $T E$:
- classification error $^{\text {Accuracy }_{T E}(K)=\frac{|\{o \in T E \mid K(o)=C(o)\}|}{|T E|}}$

$$
\operatorname{Error}_{T E}(K)=\frac{|\{o \in T E \mid K(o) \neq C(o)\}|}{|T E|}
$$

aggregates over all classes $c_{i} \in C$
not appropriate if minority class is most important

Evaluation of Classifiers

Confusion Matrix

- Let $c_{1} \in C$ be the target (positive) class, the union of all other classes the contrasting (negative) class.
- Comparing the predicted and the actual class labels, we can distinguish four different cases:

	Predicted as positive	Predicted as negative
Actually positive	True Positive (TP)	False Negative (FN)
Actually negative	False Positive (FP)	True Negative (TN)

Confusion matrix

Evaluation of Classifiers

Precision and Recall

- We define the following two measures of K w.r.t. the given target class:

$$
\begin{aligned}
& \operatorname{Precision}(K)=\frac{|T P|}{|T P|+|F P|} \\
& \operatorname{Recall}(K)=\frac{|T P|}{|T P|++F N}
\end{aligned}
$$

- There is a trade-off between precision and recall.
- Therefore, we also define a measure combining precision and recall:

$$
\mathrm{F}-\operatorname{Measure}(K)=\frac{2 \cdot \operatorname{Precision}(K) \cdot \operatorname{Recall}(K)}{\operatorname{Precision}(K)+\operatorname{Recall}(K)}
$$

Evaluation of Classifiers

ROC Curves

- F-Measure captures only one of the possible trade-offs between precision and recall (or between TP and FP)
- True positive rate: percentage of positive data correctly predicted
- False positive rate: percentage of negative data falsely predicted as positive

8

Evaluation of Classifiers

Model Selection

- Given two classifiers and their (estimated!) classification accuracies
e.g., obtained from m-fold cross-validation
- Which of the classifiers is really better?
- Naive approach: just take the one with higher mean classification accuracy
- But: classification accuracy may vary greatly among the m folds
- Differences in classification accuracies may be insignificant due only to chance

Evaluation of Classifiers

Model Selection

- We measure the classification error on a (small) test dataset $O \subseteq X$.
- Questions:

How to estimate the true classification error on the whole instance space X ? How does the deviation from the observed classification error depend on the size of the test set?

- Random experiment to determine the classification error on test set (of size n): repeat n times
(1) draw random object from X
(2) compare predicted vs. actual class label for this object
- Classification error is percentage of misclassified objects
\rightarrow observed classification error follows a Binomial distribution with mean $=$ true classification error (unknown)

Evaluation of Classifiers

Binomial distribution

- n repeated tosses of a coin with unknown probability p of head head $=$ misclassified object
- Record the number r of heads (misclassifications)
- Binomial distribution defines probability for all possible values of r :

$$
P(r)=\frac{n!}{r!(n-r)!} p^{r}(1-p)^{n-r}
$$

- Random variable Y counting the number of heads in n coin tosses:

$$
\begin{aligned}
& E[Y]=n \cdot p \text { expected value } \\
& \operatorname{Var}[Y]=n p(1-p) \\
& \sigma_{Y}=\sqrt{n p(1-p)}
\end{aligned}
$$

Evaluation of Classifiers

Estimating the True Classification Error

- We want to estimate the unknown true classification error (p).
- Estimator for $p: \quad E[Y]=n \cdot p=r \Rightarrow p=\frac{r}{n}$
- We want also confidence intervals for our estimate. n
- Standard deviation for the true classification error (Y/n):

$$
\begin{aligned}
\sigma_{\frac{r}{n}}=\frac{\sigma_{Y}}{n} & =\frac{\sqrt{n p(1-p)}}{n} \\
\sigma_{\frac{r}{n}} & \approx \sqrt{\frac{\frac{r}{n}\left(1-\frac{r}{n}\right)}{n}} \quad \text { use } \frac{r}{n} \text { as estimator for } p
\end{aligned}
$$

Evaluation of Classifiers

Estimating the True Classification Error

- For sufficiently large values of n, the Binomial distribution can be approximated by a Normal distribution with the same mean and standard deviation.
- Random variable Y Normal distributed with mean m and standard deviation s and y be the observed value of Y :
the mean of Y falls into the following interval with a probability of $N \%$

$$
y \pm z_{N} \sigma
$$

- In our context, $N \%$ confidence interval for the true classification error:

$$
\frac{r}{n} \pm z_{N} \sqrt{\frac{\frac{r}{n}\left(1-\frac{r}{n}\right)}{n}} \text { interval size decreases with increasing } n
$$

Decision Trees

Introduction

ID	Age	Autotype	Risk
1	23	Family	high
2	17	Sports	high
3	43	Sports	high
4	68	Family	low
5	32	Truck	low

disjunction of conjunction of attribute constraints and hierarchical structure

Introduction

- A decision tree is a tree with the following properties:
- An inner node represents an attribute.
- An edge represents a test on the attribute of the father node.
- A leaf represents one of the classes of C.
- Construction of a decision tree

Based on the training data
Top-Down strategy

- Application of a decision tree

Traversal of the decision tree from the root to one of the leaves
Unique path
Assignment of the object to class of the resulting leaf

Construction of Decision Trees

Base algorithm

- Initially, all training data records belong to the root.
- Next attribute is selected and split (split strategy).
- Training data records are partitioned according to the chosen split.
- Method is applied recursively to each partition.
local optimization method (greedy)

Termination conditions

- No more split attributes.
- All (most) training data records of the node belong to the same class.

Decision Trees

Example

Day	Outlook	Temperature	Humidity	Wind	PlayTennis?
1	sunny	hot	high	weak	no
2 sunny	hot	high	strong	no	
3	overcast	hot	high	weak	yes
4	rainy	mild	high	weak	yes
5	rainy	cool	normal	weak	yes
6	rainy	cool	normal	strong	no
7	\ldots	\ldots	\ldots	\ldots	\ldots

Decision Trees

Example

Types of Splits

Categorical attributes

- Conditions of the form „attribute =a" or ,,attribute \in set"
- Many possible subsets

Numerical attributes

- Conditions of the form ,,attribute $<a$ "
- Many possible split points

Quality Measures for Splits

Given

- a set T of training data
- a disjoint, exhaustive partitioning $T_{1}, T_{2}, \ldots, T_{m}$ of T
- p_{i} the relative frequency of class c_{i} in T

Wanted

- A measure of the impurity of set S (of training data) w.r.t. class labels
- A split of T in $T_{1}, T_{2}, \ldots, T_{\mathrm{m}}$ minimizing this impurity measure
information gain, gini-index

Decision Trees

Information Gain

- Entropy: minimal number of bits to encode a message to transmit the class of a random training data record
- Entropy for a set T of training data:

$$
\begin{aligned}
& \quad \begin{array}{r}
\operatorname{entropy}(T)
\end{array}(T)=-\sum_{i=1}^{k} p_{i} \cdot \log _{2} p_{i} \\
& \text { entropy }(T)=0, \text { if } p_{i}=1 \text { for some } i
\end{aligned}
$$

- Let attribute A produce the partitioning $T_{1}, T_{2}, \ldots, T_{m}$ of T.
- The information gain of attribute A w.r.t T is defined as

$$
\operatorname{InformationGain}(T, A)=\operatorname{entropy}(T)-\sum_{i=1}^{m} \frac{\left|T_{i}\right|}{|T|} \cdot \operatorname{entropy}\left(T_{i}\right)
$$

Decision Trees

Gini-Index

- Gini index for a set T of training data records

$$
\operatorname{gini}(T)=1-\sum_{j=1}^{k} p_{j}^{2}
$$

low gini index \Leftrightarrow low impurity,
high gini index \Leftrightarrow high impurity

- Let attribute A produce the partitioning $T_{1}, T_{2}, \ldots, T_{m}$ of T.
- Gini index of attribute A w.r.t. T is defined as

$$
\operatorname{gini}_{A}(T)=\sum_{i=1}^{m} \frac{\left|T_{i}\right|}{|T|} \cdot \operatorname{gini}\left(T_{i}\right)
$$

Decision Trees

Example

$\operatorname{InformationGain}(T$, Humidity $)=0.94-\frac{7}{14} \cdot 0.985-\frac{7}{14} \cdot 0.592=0.151$

Overfitting

Overfitting: there are two decision trees T and T^{\prime} with

- T has a lower error rate than T^{\prime} on the training data, but
- T ' has a lower test error rate than T.

Approaches for Avoiding Overfitting

- Removal of erroneous training data
in particular, inconsistent training data
- Choice of appopriate size of training data set
not too small, not too large
- Choice of appropriate minimum support
minimum support:
minimum number of training data records belonging to a leaf node

```
minimum support >> 1
```


Approaches for Avoiding Overfitting

- Choice of appropriate minimum confidence
minimum confidence: minimum percentage of the majority class of a leaf node
minimum confidence $\ll 100 \%$
leaves can also absorb noisy / erroneous training data records
- Subsequent pruning of the decision tree

remove overfitting branches

see next section

Error Reduction-Pruning [Mitchell 1997]

- Train-and-Test paradigm
- Construction of decision tree T for training data set $T R$.
- Pruning of T using test data set $T E$
- Determine subtree of T such that its removal leads to the maximum reduction of the classification error on $T E$.
- Remove this subtree.
- Stop, if no more such subtree.
only applicable if enough labled data available

Minimal Cost Complexity Pruning

[Breiman, Friedman, Olshen \& Stone 1984]

- Cross-Validation paradigm

Applicable even if only small number of labled data available

- Pruning of decision tree using training data set

Cannot use classification error as quality measure

- Novel quality measure for decision trees

Trade-off between (observed) classification error and tree size
Weighted sum of classification error and tree size

Small decision trees tend to generalize better to unseen data

Decision Trees

Notions

- Size $|T|$ of decision tree T : number of leaves
- Cost complexity of T w.r.t. training data set $T R$ and complexity parameter $\alpha \geq 0$:

$$
C C_{T R}(T, \alpha)=\operatorname{error}_{T R}(T)+\alpha \cdot|T|
$$

- The smallest minimizing subtree $T(\alpha)$ of T w.r.t. α has the following properties :
(1) There is no subtree of T with smaller cost complexity.
(2) If $T(\alpha)$ and T^{\prime} satisfy condition (1), then $T(\alpha)$ is a subtree of T^{\prime}.
- $\alpha=0: T(\alpha)=T$
- $\alpha=\infty: T(\alpha)=$ root of T
- $0<\alpha<\infty: T(\alpha)=$ true subtree of T (more than the root)

Decision Trees

Notions

- T_{e} : subtree of T with root $e,\{e\}$: tree consisting only of node e $T>T^{6}$: subtree relationship
- For small values of $\alpha: C C_{\mathrm{TR}}\left(T_{\mathrm{e}}, \alpha\right)<C C_{\mathrm{TR}}(\{e\}, \alpha)$, for large values of $\alpha: C C_{\mathrm{TR}}\left(T_{\mathrm{e}}, \alpha\right)>C C_{\mathrm{TR}}(\{e\}, \alpha)$.
- critical value of α w.r.t. e

$$
\alpha_{c r i t}: C C_{\mathrm{TR}}\left(T_{\mathrm{e}}, \alpha_{\text {crit }}\right)=C C_{\mathrm{TR}}\left(\{e\}, \alpha_{\text {crit }}\right)
$$

for $\alpha \geq \alpha_{\text {crit }}$ the subtree of node e should be pruned

- weakest link: node with minimal $\alpha_{\text {crit }}$ value

Method

- Start with complete decision tree T.
- Iteratively, each time remove the weakest link from the current tree.
- If several weakest links: remove all of them in the same step. sequence of pruned trees $T\left(\alpha_{1}\right)>T\left(\alpha_{2}\right)>\ldots>T\left(\alpha_{m}\right)$
\Longrightarrow with $\alpha_{1}<\alpha_{2}<\ldots<\alpha_{m}$
- Selection of the best $T\left(\alpha_{i}\right)$
estimate the true classification error of all $T\left(\alpha_{1}\right), T\left(\alpha_{2}\right), \ldots, T\left(\alpha_{m}\right)$
performing l-fold cross-validation on the training data set

Decision Trees

Example

i	$\mathbf{T i} \mid$	training error	estimated error	true error
1	71	0,0	0,46	0,42
2	63	0,0	0,45	0,40
3	58	0,04	0,43	0,39
4	40	0,10	0,38	0,32
5	34	0,12	0,38	0,32
6	19	0,2	0,32	0,31
7	10	0,29	0,31	0,30
8	9	0,32	0,39	0,34
9	7	0,41	0,47	0,47
10	\ldots	\ldots	\ldots	\ldots

T_{7} has the lowest estimated error and the lowest true error

Bayesian Classification

Introduction

- When building a probabilistic classifier, we would like to find the classifier (hypothesis) h that has the maximum conditional probability given the observed data, i.e.

$$
\max _{h \in H} P(h \mid D)
$$

- But how to compute these conditional probabilities for all possible classifiers h ?
- Bayes theorem

$$
\begin{aligned}
& P(h \mid D)=\frac{P(D \mid h) \cdot P(h)}{P(D)} \text { and } \\
& \max _{h \in H} P(h \mid D)=\max _{h \in H} P(D \mid h) \cdot P(h)
\end{aligned}
$$

Bayesian Classification

Introduction

$$
\max _{h \in H} P(h \mid D)=\max _{h \in H} P(D \mid h) \cdot P(h)
$$

$P(h \mid D)$: posterior probability of h given the data D $P(D \mid h)$: likelihood of the data D given hypothesis h $P(h)$: prior probability of h

- The more training data D we have, the higher becomes the influence of $P(D \backslash h)$.
- $P(h)$ is subjective.
- $P(h)$ can, e.g., favor simpler over more complex hypotheses.
- If there is no prior knowledge, i.e. $P(h)$ uniformly distributed, then we obtain the Maximum Likelihood Classifier as a special case.

Bayesian Classification

Introduction

－When applying a learned hypothesis h to classify an object o ， we could use the following decision rule：

$$
\operatorname{argmax} P\left(c_{j} \mid h\right)
$$

－h depends on the attribute values of o ，i．e．$o_{1}, \ldots c_{j} \mathscr{F}_{d}$ ．
－Therefore we determine

$$
\underset{\operatorname{argmax}}{\operatorname{argmax}} P\left(c_{j} \mid o_{1}, o_{d}\right)
$$

－Applying Bayes theorem，we ogbtain

$$
\begin{aligned}
& \underset{c_{j} \in C}{\operatorname{argmax}} P\left(c_{j} \mid o_{1}, \text { 団, }, o_{d}\right)=\underset{c_{j} \in C}{\operatorname{argmax}} \frac{P\left(o_{1}, \text {, }, o_{d} \mid c_{j}\right) \cdot P\left(c_{j}\right)}{P\left(o_{1}, \text { 國 }, o_{d}\right)} \\
& =\underset{c_{j} \in C}{\operatorname{argmax}} P\left(o_{1}, \mathrm{~K}_{\mathrm{k}}, o_{d} \mid c_{j}\right) \cdot P\left(c_{j}\right) \quad \text { Bayesian Classifier }
\end{aligned}
$$

Bayesian Classification

Naive Bayes Classifier

- Estimate the $P\left(c_{j}\right)$ using the observed frequencies of the individual classes.
- How to estimate the $P\left(o_{1}, \ldots, o_{d} \mid c_{j}\right)$?
- Assumption:
- Attribute values o_{i} are conditionally independent, given class c_{j}
- $P\left(o_{i} \mid c_{j}\right)$ are easier to estimate from the training data than

$$
P\left(o_{1}, \ldots, o_{d} \mid c_{j}\right)
$$

§ $\sum_{i=1}^{d}\left|A_{i}\right|$ instead of $\prod_{i=1}^{d}\left|A_{i}\right|$ parameters to estimate

- Decision rule of the Naive Bayes-Classifier

$$
\underset{c_{j} \in C}{\operatorname{argmax}} P\left(c_{j}\right) \cdot \prod_{i=1}^{d} P\left(o_{i} \mid c_{j}\right)
$$

Bayesian Classification

Bayesian Networks

- Naive Bayes-Classifier is very efficient, but assumptions may be unrealistic \Longrightarrow suboptimal classification accuracy
- Often, only some attributes are dependent, most are independent (given some class)
- Bayesian networks (Bayesian belief networks / Bayes nets)
allow you to specify all variable dependencies,
all other variables are assumed to be conditionally independent
- Network respresents subjective, a-priori beliefs

Bayesian Classification

Bayesian Networks

- Graph with nodes $=$ random variable (attribute) and

$$
\text { edge }=\text { conditional dependency }
$$

- Each random variable is (for given values of the predecessor variables) conditionally independent from all variables that are no successors.
- For each node (random variable): Table of conditional probabilities given values of the predecessor variables

Bayesian network can represent causal knowledge

Example

$(\mathrm{FH}, \sim \mathrm{S}) \quad(\sim \mathrm{FH}, \sim \mathrm{S})$

	(FH,S)	$(\sim \mathbf{F H}, \mathbf{S})$		
LC	0.8	0.5	0.7	0.1
$\sim \mathrm{LC}$	0.2	0.5	0.3	0.9

Conditional probabilities for LungCancer

For given values of FamilyHistory and Smoker, the value of Emhysema does not provide any additional information about LungCancer

Bayesian Classification

Training Bayesian Networks

- With given network structure and fully observable random variables all attribute values of the training examples known estimate conditional probability tables by calculating the relative frequencies
- With given network structure and partially known random variables some attribute values of the training examples unknown expectation maximization (EM) algorithm random initialization of the unknown attribute values
- With apriori unknown network structure (very difficult!) assume fully observable random variables heuristic scoring functions for alternative network structures

Bayesian Classification

Interpretation of Raster Images

- Automatical interpretation of d raster images of a given region for each pixel: a d-dimensional vector of grey values $\left(o_{1}, \ldots, o_{d}\right)$
- Assumption: different kinds of landuse exhibit characteristic behaviors of reflection / emission
(12),(17.5)

Bayesian Classification

Interpretation of Raster Images

- Application of the (optimal) Bayes classifier
- Estimate the $P\left(o_{1}, \ldots, o_{d} \mid c_{j}\right)$ without assuming conditional indepency
- Assume a d-dimensional Normal distribution of the grey value vectors of a given class

Bayesian Classification

Method

- Estimate from the training data
μ_{i} : d-dimensional mean vector of all feature vektors of class c_{i}
$\Sigma_{i}: d \cdot d$ covariance matrix of class c_{i}
- Problems of the decision rule
- Likelihood for the chosen cla very small
- Likelihood for several classes similar

unclassified regions

Bayesian Classification

Discussion

+ Optimality property
Standard for comparison with other classifiers
+ High classification accuracy in many applications
+ Incrementality
classifier can easily be adapted to new training objects
+ Integration of domain knowledge
- Applicability
the conditional probabilities may not be available
- Maybe inefficient

For high numbers of features
in particular, Bayesian networks

Nearest-Neighbor Classification

Motivation

- Optimal Bayes classifier assuming a d-dimensional Normal distribution Requires estimates for μ_{i} and Σ_{i}

Estimate for μ_{i} needs much less training data

- Goal
classifier using only the mean vectors per class
\Longrightarrow Nearest-neighbor classifier

Nearest-Neighbor Classification

Example

Classifier:
Cat q is a dog!Instance-Based Learning
Related to Case-Based Reasoning

Nearest-Neighbor Classification

Overview

Base method

- Training objects o as feature (attribute) vectors $o=\left(o_{1}, \ldots, o_{d}\right)$
- Calculate the mean vector μ_{i} for each class c_{i}
- Assign unseen object to class c_{i} with nearest mean vector μ_{i}

Generalisations

- Use more than one representative per class
- Consider $k>1$ neighbors
- Weight the classes of the k-nearest neighbors

Nearest-Neighbor Classification

Notions

- Distance function defines similarity (dissimilarity) for pairs of objects
- k : number of neighbors considered
- Decision Set
set of k-nearest neighbors considered for classification
- Decision rule
how to determine the class of the unseen object from the classes of the decision set?

Example

Uniform weight for the decision set
$k=1$: classification as „+", $k=5$ classification as „,"
Inverse squared distance as weight for the decision set
$k=1$ and $k=5$: classification as ,,+"

Nearest-Neighbor Classification

Choice of Parameter k

- „too small" k : very sensitive to outliers
-,too large" k : many objects from other clusters (classes) in the decision set
- medium k : highest classification accuracy, often $1 \ll k<10$

Nearest-Neighbor Classification

Decision Rule

Standard rule

Choose the majority class within the decision set

Weighted decision rule

Weight the classes of the decision set

- By distance
- By class distribution (often skewed!)
class A: 95%, class B 5%
Decision set $=\{A, A, A, A, B, B, B\}$
Standard rule $\Rightarrow A$, Weighted rule $\Rightarrow B$

Index Support for k-Nearest-Neighbor Queries

- Balanced index tree (such as X-tree or M-tree)
- Query point p
- PartitionList

BBs of subtrees that need to be processed, sorted in ascending order w.r.t. MinDist to p

- NN

Nearest neighbor of p in the data pages read so far

Index Support for k-Nearest-Neighbor Queries

- Remove all BBs from PartitionList that have a larger distance to p than the currently best NN of p
- PartitionList is sorted in ascending order w.r.t. MinDist to p
- Always pick the first element of PartitionList as the next subtree to be explored

Does not read any unnecessary disk pages!

- Query processing limited to a few paths of the index structure

Average runtime $\mathrm{O}(\log n)$ for „not too many" attributesFor very large numbers of attributes: $\mathrm{O}(n)$

Nearest-Neighbor Classification

Discussion

+ Local method
Does not have to find a global decision function (decision surface)
+ High classification accuracy
In many applications
+ Incremental
Classifier can easily be adapted to new training objects
+ Can be used also for prediction
- Application of classifier expensive Requires k-nearest neighbor query
- Does not generate explicit knowledge about the classes

Introduction [Burges 1998]

Input

$$
S=\left\{\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)\right\} \quad x_{i} \in X
$$

a training set
of objects and their known classes

$$
y_{i} \in\{-1,+1\}
$$

Output
a classifier

$$
f: X \rightarrow\{-1,+1\}
$$

Goal
Find the best separating hyperplane (e.g., lowest classification error)
Two-class problem

Support Vector Machines

Introduction

Half-space:
w. $\mathrm{x}+\mathrm{b}>0$
(Class +1)

w. $\mathrm{x}+\mathrm{b}<0$
(Class -1)

- Classification based on the sign of the decision function

$$
f_{w, b}(x)=w \cdot x+b
$$

- "." denotes the inner product of two vectors

Hyperplane: w.x $+\mathrm{b}=0$

Support Vector Machines

Introduction

Choose hyperplane with largest margin (maximum distance to closest training object)

Support Vector Machines

$$
\text { w. } x_{1}+b=0
$$

$$
\text { w. } x_{2}+b=1
$$

$$
\text { à w. }\left(\mathrm{x}_{2}-\mathrm{x}_{1}\right)=1
$$

$$
\text { à }\|w\|\left\|x_{2}-x_{1}\right\| \cos 0=1
$$

$$
\gamma=\left\|x_{2}-x_{1}\right\|=\frac{1}{\|w\|}
$$

γ : margin

Method

Problem

- Minimize $\|w\|^{2}$
- Under the constraints $\forall i=1, \ldots, n: y_{i}\left(w \cdot x_{i}+b\right)-1 \geq 0$

Dual problem

- Introduce dual variables α_{i} for each training object i
- Find α_{i} maximizing

$$
L(\alpha)=\sum_{i=1}^{n} \alpha_{i}-\frac{1}{2} \sum_{i, j=1}^{n} \alpha_{i} \cdot \alpha_{j} \cdot y_{i} \cdot y_{j} \cdot x_{i} \cdot x_{j}
$$

under the constraints $\alpha_{i} \geq 0$ and $\sum_{i=1}^{n} \alpha_{i} \cdot y_{i}=0$

- Only training objects with $\alpha_{i}>0$ contribute to w
- These training objects are the support vectors
$\left\{\begin{array}{l}\text { Typically, number of } \\ \text { support vectors } \ll n\end{array}\right.$

Support Vector Machines

Non-Linear Classifiers

Support Vector Machines

Non-Linear Classifiers

- Decision function $\quad f_{w, b}(x)=w \cdot \Psi(x)+b$
- Kernel of two objects $\forall x, x^{\prime} \in X: \quad K\left(x, x^{\prime}\right)=\Psi(x) . \Psi\left(x^{\prime}\right)$
- Explicit computation of $\Psi(x) \quad$ is not necessary
- Example: $\quad \Psi(x)=\left(x_{1}^{2}, x_{2}^{2}, \sqrt{2} x_{1} x_{2}, \sqrt{2} x_{1}, \sqrt{2} x_{2}, 1\right)$

$$
K\left(x, x^{\prime}\right)=\Psi(x) \cdot \Psi\left(x^{\prime}\right)=\left(x \cdot x^{\prime}+1\right)^{2}
$$

Support Vector Machines

Kernels

－Kernel is a similarity measure
－ $\mathrm{K}(\mathrm{x}, \mathrm{x}$＇）is a kernel iff

$$
\forall x_{i} \in X:\left(\begin{array}{c}
K\left(x_{1}, x_{1}\right) K\left(x_{1}, x_{2}\right) \text { 匈 } \\
K\left(x_{2}, x_{1}\right) \\
K\left(x_{2}, x_{2}\right) \text { 娄 } \\
\text { 圆 }
\end{array}\right)
$$

is a symmetric and positive definite matrix

Support Vector Machines

SVM for Protein Classification [Leslie et al 2002]

- Two sequences are similar when they share many common substrings (subsequences)
..
and $|\mathrm{s}|$ denotes the length of string s
- Very high classification accuracy for protein sequences
- Variation of the kernel (when allowing gaps in the matching subsequences)

$$
K\left(x, x^{\prime}\right)=\sum_{s \text { common substring }} \lambda^{\text {length }(s, x)+\text { length }\left(s, x^{\prime}\right)}
$$

length(s,x): length of the subsequence of x matching s

SVM for Prediction of Translation Initiation Sites [Zien et al 2000]

- Translation initiation site (TIS): starting position of a protein coding region in DNA All TIS start with the triplet "ATG"
- Problem: given an "ATG" triplet, does it belong to a TIS?
- Representation of DNA

Window of 200 nucleotides around candidate "ATG"
Encode each nucleotide with a 5 bit word $(00001,00010, \ldots, 10000)$ for A, C, G, T and unknown
\rightarrow Vectors of 1000 bits

Support Vector Machines

SVM for Prediction of Translation Initiation Sites

- Kernels

$$
\begin{array}{ll}
K\left(x, x^{\prime}\right)=\left(\mathrm{x} . \mathrm{x}^{\prime}\right)^{\mathrm{d}} & \begin{array}{l}
\mathrm{d}=1: \text { number of common bits } \\
\mathrm{d}=2: \text { number of common pairs of bits }
\end{array}
\end{array}
$$

Locally improved kernel: compare only small window around "ATG"

- Experimental results

Long range correlations do not improve performanceLocally improved kernel performs best
Outperforms state-of-the-art methods

Discussion

+ Strong mathematical foundation
+ Find global optimum
+ Scale well to very high-dimensional datasets
+ Very high classification accuracy
In many challenging applications
- Inefficient model construction

Long training times ($\sim \mathrm{O}\left(n^{2}\right)$)

- Model is hard to interpret

Learn only weights of features
Weights tend to be almost uniformly distributed

Multi-relational Classification

The Single Table Assumption

- Existing data mining algorithms expect data in a single table
- But in reality, DBs consist of multiple tables
- Naive solution: join all tables into a single one (universal relation) and apply (single-relational) data mining algorithm

Purchases

Client\#	Date	Item	Quantity
2765	$02 / 25 / 2005$	A	5
3417	$02 / 26 / 2005$	B	1
1005	$02 / 26 / 2005$	C	12
\ldots			

Clients

Client\#	Name	Age
1005	Jones	35
1010	Smith	52
1054	King	27
\ldots		

The Single Table Assumption

- Universal relation

Client\#	Date	Item	Quantity	Name	Age
1005	$02 / 26 / 2005$	C	12	Jones	35
1005	$02 / 28 / 2005$	B	2	Jones	35
\ldots	\ldots	\ldots	\ldots	\ldots	\ldots
2765	$02 / 25 / 2005$	A	5	Bornman	23
\ldots					

There are no more client entities!
What if rule depends on how many different items were purchased by a client?

Multi-relational Classification

Aggregating Related Tables

- Enhancing „target table" by aggregates of the related tuples in other tables
- Aggregation operators: COUNT, SUM, MIN, AVG, . . .

Client\#	Name	Age	Overall Quantity of Item A	Overall Quantity of Item B	\cdots
1005	Jones	35	0	10	\cdots
1010	Smith	52	35	0	\cdots
\ldots					\cdots

More meaningful! But what aggregates to consider? And what if attributes of the other clients that have purchased the same item are relevant?

Multi-Relational Data Mining

- Data mining methods for multi-table databases
- Pattern search space much larger than for single tables
- Testing the validity of a pattern more expensive
- Similar data mining tasks
classification, clustering, association rules, . . .
. . . plus some tasks specific to the multi-relational case
- Single table (propositional) algorithms can be upgraded to multiple tables (first order predicate logic)

Multi-relational Classification

Inductive Logic Programming (ILP)

- Goal: learn logic programs from example data
- Knowledge representation is expressive and understandable
- Examples: tuples from multiple tables
- Hypotheses: sets of rules
- Use of background knowledge also set of rules

Logic Programs and Databases

- Logic program: set of clauses
- Clause: rule of the form „Head \leftarrow Body" where Head / Body consist of atoms connected using the logical operators

$$
\wedge, \vee \text { and } \checkmark
$$

- Atom: predicate applied to some terms
- Predicate: boolean function with arguments (terms)
- Term: constant (e.g., mary), variable (e.g., X), function symbol applied to some term

Logic Programs and Databases

- Example rule

$$
\text { father }(X, Y) \vee \text { mother }(X, Y) \leftarrow \operatorname{parent}(X, Y)
$$

- Definite clauses: exactly one atom in the head

$$
\operatorname{parent}(X, Y) \leftarrow \operatorname{father}(X, Y) \vee \text { mother }(X, Y)
$$

- Horn clauses

One (positive) atom in the head, conjunction of body atoms

$$
\text { mother }(X, Y) \leftarrow \operatorname{parent}(X, Y) \wedge \text { female }(Y)
$$

Classical Rule Induction Task

- Given:
set P of examples from target relation (positive examples) set N of examples not from target relation (negative examples)
background predicates B
hypothesis (rule) language
- Find a set of rules that explains all positive and none of the negative examples

Multi-relational Classification

Example

```
Training examples
Background knowledge
    daughter(mary,ann) + parent(ann,mary)female(ann) daughter(eve,tom)
    + parent(ann,tom) female(mary)
    daughter(tom,ann) - parent(tom,eve) female(eve)
    daughter(eve,ann) - parent(tom,ian)
```

Hypothesis language
definite clauses
Resulting rule

$$
\operatorname{daughter}(X, Y) \leftarrow \operatorname{parent}(Y, X) \wedge \text { female }(X)
$$

The Sequential Covering Algorithm

Hypothesis (H) := \{\}

Repeat

find a clause c that covers some positive and no negative examples; add c to H ;
delete all positive examples implied by c
Until no more (uncovered) positive examples

$$
B\left[\begin{array}{c}
W
\end{array} \cup\{c\}\right.
$$

Construction of new clauses: search of the space of clauses applying some refinement operator

Structuring the Space of Clauses

- Substitution

$$
\theta=\left\{V_{1} / t_{1}, \text { 罒, } V_{n} / t_{n}\right\}
$$ assignment of terms t_{i} to variables V_{i}

- Clauses as sets of atoms (literals)

$$
\begin{aligned}
& \text { Head } \leftarrow \operatorname{Body} \Leftrightarrow H \text { Head } \vee \neg \operatorname{Body} \\
& \text { e.g., daughter }(X, Y) \leftarrow \operatorname{parent}(Y, X): \\
& \{\operatorname{daughter}(X, Y), \neg \operatorname{parent}(Y, X)\}
\end{aligned}
$$

Clause $\boldsymbol{c} \theta$ - subsumes clause c^{\prime}
if there exists a substitution θ such that $c \theta \subseteq c^{\prime}$

Multi-relational Classification

Structuring the Space of Clauses

- Examples

$$
\begin{aligned}
& c=\operatorname{daughter}(X, Y) \leftarrow \operatorname{parent}(Y, X) \\
& \theta=\{X / \text { mary }, Y / \text { ann }\} \\
& c \theta=\operatorname{daughter}(\text { mary }, \text { ann }) \leftarrow \operatorname{parent}(\text { ann }, \text { mary })
\end{aligned}
$$

$$
\begin{aligned}
& c=\operatorname{daughter}(X, Y) \leftarrow \operatorname{parent}(Y, X) \\
& c^{\prime}=\operatorname{daughter}(X, Y) \leftarrow \operatorname{female}(X) \wedge \operatorname{parent}(Y, X) \\
& \theta=\{ \} \\
& c \theta=c \subseteq c^{\prime}, \text { i.e. } c \theta-\operatorname{subsumes} c^{\prime}
\end{aligned}
$$

Structuring the Space of Clauses

- Syntactic notion of generality
clause c is at least as general as clause $\mathrm{c}^{\text {‘ }}\left(\mathrm{c} \leq\right.$ d ' $^{\prime} \mathrm{iff}$

$$
c \theta-\text { subsumes } \quad c^{\prime}
$$

c is more general than clause $\mathrm{c}^{\text {‘ }}$ iff

$$
c \leq c^{\prime} \wedge \neg\left(c^{\prime} \leq c\right)
$$

c is a generalization of $\mathrm{c}^{\text {c }}, \mathrm{c}^{\text {d }}$ a specialization of c
R If c does not cover an example, none of its specializations do If c covers an example, all of its generalizations do

Searching the Space of Clauses

- Top-down approach:
start from most general clauses
recursively apply refinement operators
- Refinement operator
θ - subsumption-based
returns all most general specializations of a given clause
- Types of refinements
apply a substitution to a clause or
add a literal to the body of the clause

Example

Refinement graph (lattice)

Top－Down Search of Refinement Graphs

Hypothesis $(H):=\{ \}$
repeat
clause
$c:=p\left(X_{1}\right.$, 㕼，$\left.X_{n}\right) \leftarrow$

repeat

build the set S of all refinements of c ；
$c:=$ the best element of S（according to some heuristic）
until stopping criterion satisfied（ c is consistent with B 聯 H
$\operatorname{add} c$ to H ；
delete all positive examples implied by $c($ using $B)[$ 网 H
until no more（uncovered）positive examples（i．e．，H complete）

FOIL [Quinlan 1990]

- Top-down search of refinement graph
- Weighted information gain as heuristic to choose best clause
- Heuristic can be modified to allow clauses covering (some) negative examples
\rightarrow handling of noisy data
- Declarative bias to reduce search space syntactic restrictions on clauses to be considered to be provided by the user

Declarative Bias

- Argument types / domains (relational DBS)
- Input / output modes of arguments
argument must / must not be instantiated when predicate added
- Parametrized language bias
e.g., maximum number of variables, literals, . . . per clause
- Clause templates

Ex.: $\quad P(X, Y) \leftarrow Q(X, Z) \wedge R(Z, Y)$ where $\mathrm{P}, \mathrm{Q}, \mathrm{R}$ denote predicate variables

Declarative bias difficult to specify for user (syntactic!)

Multi-relational Classification

CrossMine [Yin, Han, Yang \& Yu 2004]

- Several improvements of FOIL and similar ILP classification methods
- Evaluation of alternative refinement operator requires joins, which are very expensive DB operations
\rightarrow TupleID propagation (virtual joins)
propagate tupleIDs and their class labels from the target table to related tables
- Relationship tables have no attributes and may not yield a high information gain
would never been chosen by FOIL
\rightarrow Increased look ahead (two instead of one literal)

Multi-relational Classification

TupleID Propagation

Related table

Regression Analysis

Prediction

Commonality with classification

- First, construct a model
- Second, use model to predict unknown value

Major method for prediction is regression

- Simple and multiple regression
- Linear and non-linear regression

Difference from classification

- Classification refers to predict categorical class label
- Prediction models continuous-valued functions

Regression Analysis

Linear Regression

- Predict the values of the response variable y based on a linear combination of the given values of the predictor variable(s) x_{i}

$$
\hat{y}=a_{0}+\sum_{j=1}^{d} a_{j} x_{j}
$$

- Simple regression: one predictor variable \rightarrow regression line
- Multiple regression: several predictor variables \rightarrow regression plane
- Residuals: differences between observed and predicted values

Use the residuals to measure the model fit

Linear Regression

$$
y(i)=\hat{y}(i)+e(i)=a_{0}+\sum_{i=1}^{d} a_{j} x_{j}(i)+e(i), \quad 1 \leq i \leq n
$$

- y : vector of the y values for the n training objects
- $\quad X$: matrix of the values of the d predictor variables for the n training objects (and an additional column of 1s)
- $\quad e$: vector of the residuals for the n training objects
- Matrix notation:

$$
y=X a+e
$$

Linear Regression

- Optimization goal: minimize $\sum_{i=1}^{n} e(i)^{2}=\sum_{i=1}^{n}\left[y(i)-\sum_{j=0}^{d} a_{j} x_{j}(i)\right]^{2}$
- Solution:
- Computational issues $\left(X^{T} X\right)^{-1} X^{T} y$
- $\mathrm{X}^{\mathrm{T}} \mathrm{X}$ must be invertible

Problems if linear dependencies between predictor variables

- Solution may be unstable

If predictor variables almost linear dependent
Equation solving e.g. using LU decomposition or SVD
Runtime complexity $\mathrm{O}\left(d^{2} n+d^{3}\right)$

Locally Weighted Regression

Limitations of linear regression

- Only linear models
- One global model

Locally weighted regression
Construct an explicit approximation to f over a local neighborhood of query instance $x q$
Weight the neighboring objects based on their distance to x_{q}
Distance-decreasing weight K
Related to nearest neighbor classification
\rightarrow Minimize the squared local weighted error

Locally Weighted Regression

Local weighted error

- W.r.t. query instance $x q$
- Arbitrary approximating function
- Pairwise distance function d
- Three major alternatives:

$$
\begin{aligned}
& E\left(x_{q}\right)=\frac{1}{2} x_{x \in k_{-} \text {nearest_neighbors_of_- } x_{q}} \sum(f(x)-\hat{f}(x))^{2} \\
& E\left(x_{q}\right)=\frac{1}{2} \sum_{x \in \hat{D}}^{[f(x)-\hat{f}(x)]^{2} \cdot K\left(d\left(x_{q}, x\right)\right)} \\
& E\left(x_{q}\right)=\frac{1}{2}_{x \in k_{-} \text {nearest_neighbors_of_} x_{q}} \sum_{x^{\prime}}(f(x)-\hat{f}(x))^{2} K\left(d\left(x_{q}, x\right)\right)
\end{aligned}
$$

Discussion

+ Strong mathematical foundation
+ Simple to calculate and to understand
For moderate number of dimensions
+ High classification accuracy
In many applications
- Many dependencies are non-linear

Can be generalized

- Model is global

Cannot adapt well to locally different data distributions
But: Locally weighted regression

