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Abstract

LiDAR (Light Detection And Ranging) acquisition is a
widespread method for measuring urban scenes, be it a
small town neighborhood or an entire city. It is even more
interesting when this acquisition is coupled with a collec-
tion of pictures registered with the data, permitting to re-
cover the color information of the points. Yet, this added
color can be perturbed by shadows that are very depen-
dent on the sun direction and weather conditions during the
acquisition. In this paper, we focus on the problem of au-
tomatically detecting and correcting the shadows from the
LiDAR data by exploiting both the images and the point set
laser reflectance. Building on the observation that shadow
boundaries are characterized by both a significant color
change and a stable laser reflectance, we propose to first
detect shadow boundaries in the point set and then segment
ground shadows using graph cuts in the image. Finally us-
ing a simplified illumination model we correct the shadows
directly on the colored point sets. This joint exploitation
of both the laser point set and the images renders our ap-
proach robust and efficient, avoiding user interaction.

1. Introduction
As more and more cities embrace the digital revolution,

there is a growing demand for digitization technologies able
to reconstruct urban scenes from geometric measurements
and pictures. The goal might be, for example, to plan ur-
ban evolution or allow virtual tours of the city. A common
way to perform these measurements is through a LiDAR
acquisition campaign. Indeed, range laser scanners as well
as cameras can be embedded aboard a vehicle moving in
the streets, taking laser measures and pictures as it goes.
The final result is a point cloud and a series of pictures
that are either registered by calibration or by optimization
algorithms. Thus the geometric information can be aug-
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mented with some color information. However, this infor-
mation depends strongly on the lighting conditions during
the acquisition which in turn depend on the daytime, sea-
son and weather. This leads to the question of retrieving
illumination-free colors in order to have a time-independent
urban scene acquisition. In urban scenes the most important
problem lies in the shadows projected by the buildings or by
the street furniture and trees.

In this paper we focus on shadow detection in the point
cloud by jointly analyzing the geometry, reflective and color
properties of the scene. The detection and correction of
shadows is closely linked to the intrinsic image recovery
problem, which decomposes an image into a reflectance and
a shading layer [9]. However we will use a simplified illu-
mination model compatible with our input data and avoid-
ing user interaction. To do so, we build on a simple charac-
terization of the shadow edge: two points lie on two sides
of a shadow boundary if they have similar laser reflectances
but very different color values. Indeed, the value of the laser
reflectance depends solely on the reflective properties of the
surface and not on the fact that the surface lies in the shad-
ows or in an illuminated area.

Input data. We consider unstructured point clouds and
associated pictures acquired from urban scenes. The point
cloud is endowed with the laser reflectance intensity which
depends on the reflective properties of the surface impacted
by the laser. It is typically given by the amount of photon
that flies back toward the LiDAR. The pictures GPS po-
sitioning is also available which will be important for the
illumination correction step. Images are considered to be
precisely registered relatively to the point cloud. They can
be taken at the same time as the LiDAR acquisition pro-
cess or at a different time, but they are assumed to be taken
in a relatively small period of time so that all images have
consistent illumination conditions.

To summarize, our contributions are the following:

• A shadow characterization that does not require user



interaction

• A new energy minimization formulation for segment-
ing shadows and sunlit areas

• The joint exploitation of the image structure and Li-
DAR data reflectance properties

The remainder of this paper is divided as follows: in sec-
tion 2 we review relevant previous work. Section 3 gives an
overview of our method. Then, sections 4 and 5 detail the
methods for detecting and correcting the shadows. Finally,
the results are shown in section 6.

2. Related work
Shadow detection and removal is already a widely ex-

plored field. Methods have been developed to detect shad-
ows either on a single image, a sequence of images or
datasets containing both geometric information such as a
LiDAR point set and registered images. Each of these prob-
lem settings requires a specific problem formulation, al-
though some common ideas can be found in all these ap-
proaches. We review below relevant work emphasizing con-
cepts that are linked to our approach.

Single image shadow detection

The detection and correction of shadows in a single im-
age is a difficult problem that has been extensively studied.
We restrict our analysis to some recent works that not only
propose methods to detect the shadows but also address the
re-illumination problem.

Lalonde et al. [8] present a method to locate and remove
the shadows based on machine learning. First the shadows
are detected using a watershed segmentation and a Canny
edge detection. Descriptors composed of histograms and
skewness of the pixels intensities are analyzed on both sides
of the detected edges. Shadow edges are then consolidated
using a probabilistic model. Finally the scene layout (de-
composition between ground, sky, and vertical surfaces) is
added to only detect and consider the shadows laying on the
ground.

Corke et al. [3] propose a method to recover a grayscale
intrinsic image from a standard RGB image by considering
the physical properties of the light and using also the Log-
Chromaticity colorspace. In this particular colorspace, the
colors of all materials under varying illuminations change
along parallel directions. By projecting the points on a line
perpendicular to these directions, an illumination-free color
can be found. It however requires user interaction to de-
fine two regions of the same material under different illu-
mination conditions and a perfect knowledge of the camera
sensor response.

Xiao et al. [16] remove shadows from a single im-
age using a multiscale illumination transfer in the La*b*

colorspace. Shadowed and lighted regions are roughly
sketched by the user and then segmented using a Gaus-
sian Mixture Model. A multi-scale illumination transfer
between the shadowed and lighted regions is then per-
formed assuming lambertian surface illumination proper-
ties. Finally the shadow boundaries are reprocessed using
a Bayesian framework to remove relighting artifacts.

Images sequence and 3D proxy

Over the past ten years, fast and robust photogrammetric
methods have been developed to compute a 3D model from
a series of pictures. Two of the most well known meth-
ods are Structure from Motion (SfM) [13] and Patch-based
Multi-View Stereo (PMVS) [4]. These multiview methods
have been exploited to enrich the information of 2D images
in order to retrieve specific lighting properties.

Laffont et al. [7] propose a complete and precise process
to retrieve the intrinsic characteristic from a set of images.
This algorithm requires a set of HDR images, a set of LDR
images from which a proxy 3D model is built, and a mea-
sured environment map. User interaction is also required to
define the sun orientation and obtain two gray color values
in the sunlight and in the shadow. This set of input data are
used to decompose the illumination of each vertex of the
proxy model into the original albedo and the sun, sky and
indirect luminance. Finally these vertices are projected onto
the image planes to retrieve the intrinsic images. Although
this method proves efficient, it requires a lot of additional
information that are not available in our context, in addition
to user interaction, something we avoid.

In a somewhat similar manner, Wehrwein et al. [15] au-
tomatically detect the shadows and the sun direction in a
series of picture. Applying SfM to the pictures yields a
3D model. A set of colors is associated to each vertex of
the mesh that comes from all the images that see the ver-
tex. From the statistics of the proposed colors, the algo-
rithm can guess which points lie in the shadow in each im-
age. These shadow point labels are used to consolidate the
shadow edges and estimate the orientation of the sun.

Shadow detection on 3D LiDAR data

Detection of shadows on 3D LiDAR data is a less ex-
plored environment compared to single image and images
collections.

Troccoli and Allen [14] relight a 3D point cloud model
using multiple HDR overlapping images taken under dif-
ferent illumination conditions. Their strategy is to compute
and analyze illumination ratio in overlapping areas and use
these ratios to relight the whole image. This approach how-
ever requires a mesh reconstruction step to get rid of the
point cloud and work on a watertight surface.

Ramakrishnan et al. [10] propose to correct the colors
of a point cloud using a consistent and continuous illumi-



nation model by removing the direct sun illumination and
normalizing the sky illumination. The indirect illumination
from the other part of the scene is considered negligible.
The sun orientation is obtained using the GPS coordinates
of the scene as well as the known sun position relative to
this position at the time of the scene acquisition. Similarly
to [3], pairs of points of the same material are selected by
the user both in sunlight and in the shadowed parts of the
cloud. These pairs are used to compute the sun illumination
and sky illumination contributions which yield an estima-
tion of the illumination values for each point of the cloud.
Unlike our approach, this method requires user interaction.
Furthermore, this algorithm is tested on LiDAR scans mea-
sured on separated buildings, a setting quite different from
our complex urban scene point clouds, where the buildings
are concentrated and the streets narrow. Finally, this method
relies heavily on having a clean 3D model. However in our
context, the 3D model is only imperfectly measured, which
can affect the quality of the sun visibility estimation (there
can be missing building parts) and alter the final results.

3. Overview
Our approach takes as input a point cloud endowed with

laser reflectance information as well as a series of pictures
aligned with the point cloud. From this relatively com-
mon input data, we propose to detect the ground shadows
and to correct them using a simplified illumination model.
The main characteristic of our algorithm lies in the joint ex-
ploitation of both images and point clouds.

Our shadow detection algorithm proceeds in several
steps:

• Shadow interfaces are identified using reflectance and
luminance properties of the colored point cloud
• Interface points are filtered using local histogram anal-

ysis
• The shadows are segmented in the image plane using

graph cut with well chosen graph edge costs

Once the shadows are detected the correction is a two-
step method building on a simplified illumination model
performing a luminance correction in the first step and a
chrominance correction in a second step.

4. Shadow detection
Our shadow detection method relies on the observation

that a shadow barely impacts the reflectance value of a point
while it strongly impacts the color value. Indeed the laser
reflectance only depends on the material properties of the
surface whereas the color takes into account the illumina-
tion of a point. Therefore our first step is to look for shadow
interface areas that have low reflectance gradients and high
color gradients.

4.1. Shadow interface detection

In this first step, the algorithm works directly on the point
cloud and finds pairs of close points that are likely to lie on
each side of a shadow interface.

We define the neighborhood of a point as the set of its K
nearest neighbors and estimate the color gradient ∇c and
reflectance gradient ∇R in this neighborhood. Since the
value of K impacts the computation time, we use a small
value K = 4 at the risk of loosing some interfaces. As will
be seen below, we still get enough interfaces to detect the
shadows. The gradients between two neighboring points p
and q are defined as follows:

∇R =
|Rp −Rq|
Rp +Rq

∇c = E00(Cp, Cq)

where E00 is a weighted difference of the color expressed
in the La*b* coordinates to render the gradient perceptu-
ally meaningful. The exact formula for E00 can be found in
[12]. To detect relevant pairs of points we use a threshold
that loosely selects a set of shadow interfaces. This thresh-
old is set experimentally: two points are considered to lie at
a shadow interface if |∇c| ≥ 2.33 and |∇R| ≤ 0.05. It may
appear counterintuitive to use the color gradient instead of
the luminance gradient since the luminance should contain
all illumination information. However, in the case of out-
doors scenes, not only the luminance but also the chromatic-
ity of the points is affected by the sun visibility, as noted by
Khan and Reinhard [6] and Corke [3]. Indeed, sunlit areas
tend to be more yellowish (due to the sun light spectrum),
while unlighted areas tend to appear more blueish (due to
Rayleigh scattering). Therefore, it is better to use the full
color difference rather than the luminance only. This as-
sumption was verified experimentally by a higher number
of meaningful detection.

Since our threshold is not tight, irrelevant detected pairs
of points are filtered out based on a local density criterion:
if a single pair is detected in a large area then it is likely that
this pair is a false positive. In practice we remove the pairs
of points that do not contain at least 1/4 of their K ′ nearest
neighbors as potential shadow interface (K ′ = 21). While
this step does not remove all the outliers it is sufficient to
reduce the computational burden of the next filtering step.

4.2. Shadow interfaces filtering

A further filtering of the shadow interfaces is achieved
by analyzing the luminance histograms around a detected
shadow interface pair of points. Indeed, histograms around
a pair corresponding to a true shadow interface should have
a bimodal distribution reflecting the light and shadow parts,
as illustrated by figure 1.



(a) Luminance histogram

(b) a* histogram (c) b* histogram

Figure 1: Histogram of the different La*b* color channels
around a shadow interface.

Following this observation, points pairs should only be
kept if their histograms indeed display a bimodal distribu-
tion. Luminance histograms are computed by considering
points that lie close to the pair and exhibit similar normal
and reflectance values. This avoids considering luminance
coming from potentially different materials in the vicinity
of the pair. Histograms are then smoothed using a con-
volution and the peaks are detected by computing the first
derivative of the distribution function. Small peaks are dis-
carded if their heights are less than 75% of the highest peak.
The remaining number of peaks should be exactly equal to
2 for the distribution to be considered bimodal. In this case,
the interface pair is kept. The values of the two peaks de-
fine LL and LS the luminance in sunlit areas and in the
shadowed areas respectively.

4.3. Shadow consolidation

Previous steps allowed for the detection of interface
points pairs which should next be turned into a complete
segmentation method. To do so we momentarily set aside
the point cloud, and exploit the detected interfaces directly
in the image plane, since an image is a denser information.
Thus, we project our shadow interface pairs in the image
plane, using the camera known pose and intrinsic parame-

ters.
Using these interface points to estimate the sun position

and deduce the segmentation might look like an appealing
idea but it would require a complete and consistent geom-
etry to be able to retrieve the shadow mask. However if it
is indeed the case on most terrestrial scans, some scanners
may either miss occluding geometry or even do not account
for all the geometry of the scene. For example, the Velodyn
scanner of the KITTI dataset [5] measures points that are
less than around 2 meters off the ground. We propose a dif-
ferent approach, relying on the images to compute a shadow
segmentation: we look for a labelling δ of the image pixels,
equal to 1 if the pixel lies in a shadow and 0 otherwise. The
segmentation problem can be stated as an energy minimiza-
tion with the following objective:

E(δ) =
∑

p:image pixel

Edata(δ, p) + γ
∑

(p, q): neighboring pixels

Esmooth(δ, p, q) (1)

where Esmooth = e−
1

2σ2
(L(p)−L(q))1δ(p)6=δ(q),

Edata(δ, p) =

{
e−

1
2σ2

(L(p)−LS)2 if δ(p) = 0

e−
1

2σ2
(L(p)−LL)2 if δ(p) = 1

and γ is a weighting term set to 1 in our experiments.
This type of energy can be easily minimized using graph

cuts [2] [1] by usingEdata as the source and sink edge costs
and Esmooth as the inter-pixel edge cost. The labels ob-
tained by the graph cut are then back-projected on the point
cloud to assign the points to the shadow mask. On figure
2, we show the results of initial interface detection, inter-
faces filtered by density, by histogram analysis and the final
graph cut result, demonstrating how the graph cut turns the
sparse set of shadow edges into a full segmentation. This
step retrieved the proper shadowed areas in a scene where
the surface reflectance changes widely due to material vari-
ation (ie., white building wall vs darker building wall).

5. Shadow Correction
Once the shadows are segmented, the next step is to

project the labelling on the point cloud, and to modify the
color of the points so as to obtain a shadow-free point cloud.

5.1. Illumination model

According to [17], [7] and [10] the luminance of a point
lying on an lambertian outdoor surface can be defined as:

L = R(Ssun + Ssky + Sindirect) (2)

Ssun = VsuncosαEsun (3)



(a) Detected points (b) Filtered points

(c) Shadow interface points (d) Shadow mask

Figure 2: Points detected as potential shadow interfaces
(2a), density filtered points (2b), shadow interface points
(2c), and shadow mask from the graph cut. The shadow ap-
pearing at the bottom left of the graph cut mask (2d) is due
to the acquisition vehicle that is visible on the pictures but
not on the point cloud.

Ssky =

∫
Ωsky

cosθskyEsky (4)

Sindirect =

∫
Ωindirect

cosθindirectEindirect (5)

With I the illumination, R the albedo of the material,
Ssun the lighting contribution of the sun, Ssky the light-
ing contribution of the sky (ambient light) and Sindirect the
lighting contribution of the light reflected by the objects in
the scene. All notations are summarised on figure 3. Us-
ing this simplified model, our algorithm proceeds in two
steps, correcting first the luminance component and second
the chrominance component at each point.

5.2. Luminance correction

The luminance correction step requires an approxima-
tion of the sunlight orientation to be able to separate the
different component of the scene lighting. Although the
method proposed by [15] locates the sun orientation with-
out a priori information, it cannot be applied on large ur-
ban scans due to the lack of precision on the surface to de-
tect attached shadows. However, the sun azimuth and el-
evation can be estimated if the approximate GPS position
and time of the data acquisition are known [11], leading
to the sun orientation estimate. That is the method that
was used to obtain the sun ray orientation relative to the
scene. Knowing the position of several shadow points, the
amount of illumination provided by the sky can be roughly
estimated. Indeed, for shadow points the sun contribution
can be safely ignored and the luminance of these points
writes: L = R(SSky + SIndirect), where R is the surface
reflectance.

nα

Esun

Eind

ϴind ϴsky

Esky

Esky

Ωsky

Ωind

Figure 3: Illumination model of a point. The illumination
is decomposed into 3 components: a sky contribution, a sun
contribution and an indirect lightening contribution. Each
sky ray (θsky ∈ Ωsky) contributes an energy Esky , the
sun contributes an energy Esun in direction α and the rays
corresponding to indirect illumination (θind ∈ Ωind) con-
tribute an energy Eind. In our simplified model we omit the
indirect contribution.

We simplify the problem by considering that SSky +
SIndirect = β×Esky where β = 0.5×〈n(p),nground〉+1.
Thus β varies proportionally to the dot product of the
ground normal nground and the point normal n(p).

This estimated lighting ratio β from the sky is error-
prone in the case of urban environment where streets can be
tightly enclosed by buildings, greatly reducing the real con-
tribution of the sky compared to the contribution of indirect
lightening. However it is still a good first approximation
of the amount of light coming from the environment. It is
thus possible to make the luminance uniform for shadowed
points by computing β̄ the average β in the shadowed area:

L′(p) = L(p)
β̄

β(p)
(6)

The matter is quite different for sunlit points. In a similar
manner as [10] we define the sun-sky-ratio (SSR) of lighting
between the sun and the sky:

SSR =
L̄Lβ̄S − L̄S β̄L
L̄L ¯(cosα)L

(7)

where α is the angle between the sun direction and the
points normal. The straight bar above the notation means
that the quantity is averaged on a light or a shadow area
respectively, depending on the indice L or S . More details
on the derivation of this formula can be found in the original
publication [10].

This ratio allowing us to recompute the luminance of
points in sunlight:

L′(p) = L(p)
β̄S

SSR cosα+ β(p)
(8)



Applying these transformations to the luminance of the
point successfully relight them in a realistic manner. Once
the luminance is corrected, the chrominance can also be
adapted.

5.3. Chrominance correction

The chrominance correction is simpler: it uses a simple
chrominance ratio between the sunlit points and the shad-
owed points. It is performed for both the a and b compo-
nents expressed in the La*b* colorspace.

b′(p) = b(p) · b̄S
b̄L

and a′(p) = a(p) · āS
āL

(9)

This trivial update is enough for chrominance correction,
as presented below in our experiments.

5.4. Penumbra zones

After this two-step correction, there may remain some
artifacts near the boundaries of the shadowed and sunlit ar-
eas which should be corrected (figure 4). Indeed, having
a binary shadow mask may lead to unwanted effects along
the shadow edges where the boundary between light and
darkness is not sharply defined. These effects are typically
due to under- or over-compensation in the luminance and
chrominance correction around the shadow edges, which
induces the apparition of a strong linear artifact along the
border. This artifact is clearly visible in figure 4c. To allevi-
ate this effect we perform an in-painting step around the
known shadow border. Since the area to inpaint is very
small, we avoid any sophisticated inpainting method such
as variational or patch-based inpainting and use a median
filter to guess the missing pixel colors. This last step, de-
spite not being perfect, mitigates the visual artifacts caused
by overcompensation as depicted in figure 4d.

6. Results and Discussion
We demonstrate the efficiency of our shadow detection

and correction schemes on two different sets of data. Both
these sets are composed of points clouds with intensity val-
ues and registered images that are used to color the point
cloud. The GPS positioning of the images is also available.
In these two sets, images and point clouds have been ac-
quired at the same time.

6.1. Leica Pegasus Dataset

Our main test-case is a dataset containing point clouds
with reflectance values and associated images provided by
Leica Geosystems, acquired in the city of Shrewsbury, UK.
This point cloud offers smooth reflectances features that re-
flect well the luminance variation of the materials, almost
without any noise. As can be seen in figure 5, it is possi-
ble to relight a point cloud by switching its dark points to a

(a) Shadow border area (b) Binary shadow mask

(c) Re-lighted area. (d) Re-lighted area with local
median filtering.

Figure 4: Small penumbra zones on the boundary of a
shadow can have non negligible effect when re-lighting a
point cloud.

sunlight state or switching the sunlight points to a shadow
state (see figure 5d).

Other locations displaying strong shadows were tested
as well, as shown on figures 6, 7 and 8. In most cases the
shadow is properly detected on the ground plane and ex-
tracted using the graph cut.

6.2. KITTI Dataset

Our second test case is the KITTI Dataset [5]. Due to
the nature of data, some pre-processing was performed to
obtain a point cloud dense enough with smooth reflectance
values. First a set of 20 scans around an image were merged
together. From this merged point cloud, the point density
was regularized. This point cloud was then colored using
the color camera. This small pre-processing yielded a point
cloud dense enough to be exploited jointly with the images.
Our algorithm was then run with the standard parameters
defined in sections 4 and 5. Figure 9 and 10 show that strong
shadows were successfully detected by the process. How-
ever, some soft shadows located on very bright regions (eg.,
the shadow of the tree on the white wall on the left) have
not been correctly identified as shadows.



(a) Original cloud color (b) Reflectance values

(c) Shadow mask (d) Relighted cloud (light/dark)

Figure 5: Comparison between the original color and the
relighted colors of a fragment of the Pegasus point cloud
where the shadows were suppressed.

(a) Original Cloud (b) Shadow mask

(c) Relighted cloud (light) (d) Relighted cloud (dark)

Figure 6: Comparison between the original color and the
relighted colors of a fragment of the Pegasus point cloud

(a) Original Cloud (b) Shadow mask

(c) Relighted cloud (light) (d) Relighted cloud (dark)

Figure 7: Comparison between the original color and the
relighted colors of a fragment of the Pegasus point cloud

(a) Original Cloud (b) Shadow mask

(c) Relighted cloud (light) (d) Relighted cloud (dark)

Figure 8: Comparison between the original color and the
relighted colors of a fragment of the Pegasus point cloud



(a) Photo

(b) Colored cloud

(c) Shadow mask

(d) Relighted cloud

Figure 9: Example of shadow detection and cloud re-
lighting on the KITTI dataset

6.3. Discussion

As explained above, the sharp shadows can be correctly
detected and corrected by our process. Unfortunately, in
some cases, the relighted areas do not possess the exact
same luminance and chromaticity as its original counter-
part. This is slightly noticeable in figures 6 and 7 but is very
clear on figure 9. Several factors may be responsible for
this. First, the illumination model is only an approximation
and does not perfectly reflect the illumination of the object
(indirect and sky illumination). Second, the light source is
supposedly uniform for each point of the cloud. However,
illumination power may also vary in the case of a partially
clouded sky. These two factors as well as the existence of
soft shadows may account for the residual observable color
difference. Another limitation lies in the lack of robustness
to moving vehicles or pedestrians. They might not be at the
same place in the image or in the point cloud which makes
the joint exploitation fail.

(a) Photo

(b) Colored cloud

(c) Shadow mask

(d) Relighted cloud

Figure 10: Example of a shadow detection and cloud re-
lighting on the KITTI dataset

7. Conclusion

We introduced a new shadow detection and correction
algorithm that relies on the simple but efficient observa-
tion that reflectance is only marginally impacted by shad-
ows whereas color information is. Our algorithm makes
intensive use of both geometric information and color in-
formation working either on the point cloud or in the image
plane in each step. Our simplified illumination model may
lead however to some remaining artifacts, and in a future
work we plan to explore more sophisticated models. Our
method is not robust to moving objects, another research
direction we want to further explore.
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