Inductive Databases and Constraint-based Mining

Jean-François Boulicaut
INSA Lyon (F)

Luc De Raedt
Albert-Ludwigs-University Freiburg (D)

ECML-PKDD’02 Helsinki (FIN) - August 19, 2002
Inductive databases

- Data mining
 - search for interesting and understandable patterns in data
- State-of-the-art in data mining ~ databases in the early days
- A theory of data mining is lacking
- View by Mannila and Iemielinski (CACM 96)
 - Make first class citizens out of patterns
 - Query not only the data but also the patterns
 - Tightly integrate data mining and databases
Overview

1. Introduction to inductive databases
2. On query languages for data mining
 Design issues and examples
3. Underlying principles of inductive querying
 Constraint-based Mining
4. Perspectives
1. Introduction to Inductive Databases

◆ Supporting complex and interactive knowledge discovery processes

◆ Search for interesting patterns in data
 – Groups of customers, clusters of genes
 – Frequent sequential patterns in alarms
 – Molecular fragments that characterize toxicity

◆ From data to knowledge
The KDD process

Data Consolidation

Data Sources

Consolidated Data

Selection and Preprocessing

Prepared Data

Data Mining

Patterns & Models

Interpretation and Evaluation

Knowledge

Boulicaut and De Raedt - August 2002
A vision

◆ Supporting KDD processes by means of queries

«There is no such thing as real discovery, just a matter of the expressive power of the query languages»
Imielinski & Mannila, CACM Nov. 1996

◆ Make first class citizens out of patterns

◆ Examples queries

◆ Give a decision tree that tests upon at most 5 attributes including blood pressure and sex, and that has accuracy at least 90% on the training data

◆ Give all fragments of molecules that appear in at least 20% of the actives, and in at most 1% of the inactives, and that do not contain a benzene ring.

Boulicaut and De Raedt - August 2002
A long-term perspective

- Why is the relational model so successful?
 - A general purpose query language with «nice» properties
 - simple theoretical foundations
 - declarative semantics
 - closure principle
 The same is needed for KDD applications
 The ultimate goal of IDBs is to find the equivalent of Codd's relational database model for use in data mining
Two Examples

- **Molecular Fragments**
 - A domain specific IDB
 - See Kramer et al KDD 01, De Raedt and Kramer IJCAI 01

- **Association rules and Item sets**
 - Main paradigm in existing IDBs and IDB extensions of SQL
Molecular Feature Mining: Molfea

◆ What?
 ▶ Find fragments (substructures) of interest in sets of molecules

◆ Why?
 ▶ Discover new knowledge
 ▶ Use in predictive models
 – SAR (Structure Activity Relationship)
 – De Raedt & Kramer 01 (ijcai)
Molecules and Fragments

- **2D-structure**
 - Essentially Graphs

- **Fragments**
 - Substructures
 - Linear fragments
 - Sequence of atoms and bonds

- **Linear fragments**
 - 'o', 'c', 'cl', 'n', 's', ... denote elements
 - '-' ... single bond
 - '=' ... double bond
 - '#' ... triple bond
 - ':' ... aromatic bond
 - (hydrogens implicit)

- **Smarts encoding**
Smiles encoding

- Smiles

- Compact encoding of molecular structure
- Used by computational chemists
- Supported by many tools (e.g. Daylight)
- Very compact!
- Very efficient matching

\[N - c1 : c : c : c (-O - c2 : c : c : c (-Cl) : c : c2) : c : c1 \]
Smiles encoding

\[N - \]
\[N - c1: c: c: c: c: c: c1 \]
\[N - c1: c: c: c(-O-): c: c1 \]
\[N - c1: c: c: c(-O-) \]
\[c2: c: c: c: c: c: c2) : c : c1 \]
\[N - c1: c: c: c(-O- c2: c: c: c(-Cl): c: c2) : c : c1 \]
Constraint-based mining (1)

◆ What?
 ♦ Use constraints to specify which fragments are interesting
 – The scientist/user controls the mining process
 ♦ Evaluation functions (generality, frequency)
 ♦ Primitive constraints (minimal/maximal frequency)
 ♦ Boolean operators (conjunctions)
 ♦ Declarative mining!
Constraint-based mining (2)

◆ Generality

- One fragment is more general than another one if it is a substructure of the other one

- Notation: $g \leq s$ (g is more general than s, i.e., g will match a graph/string whenever s does)

- Graphs: ~ subgraph relationship

- Strings: substring / subsequence relationship
 - E.g. aabbcc is more general than ddaabbbccee (substring), abc is more general than aabbcc (subsequence)

- Item sets: subset relation
Primitives

◆ MolFea Specific!

- g is equivalent to s (syntactic variants) only when they are a reversal of one another

E.g. ,C-O-S’ and ,S-O-C’ denote the same substructure

- g is more general than s if and only if g is a subsequence of s or g is a subsequence of the reversal of s

E.g. ,Cl-O-S’ ≤ ,Cl-O-S-c:c:c’, ,O-Cl’ ≤ ,Cl-O-S’

◆ Frequency of a fragment f on a data set D

- Percentage of data points in D that f occurs in
Primitive constraints

\[f \leq P, \ P \leq f, \ \text{not} \ (f \leq P) \text{ and not} \ (P \leq f) \]

\(f \) ... unknown target fragment
\(P \) ... a specific fragment

Assume \(\text{Freq}(f,D) \) is the relative frequency of a fragment \(f \) on a data set \(D \)
E.g., let \(f \) be \(\text{aa} \) and \(D=\{ \text{abaa, acc, caa} \} \), \(\text{freq}(f,D) = .66=2/3 \)

\[\text{Freq}(f,D1) \geq t, \ \text{Freq}(f,D2) \leq t \]
\(t \) ... positive real number between 0 and 1
\(D1, D2 \) ... Data sets

E.g. \(\text{Freq}(f, \text{Pos}) \geq 0.20 \)
Example queries

Queries are conjunctions of primitive constraints

\((\text{`N-O'} \leq f) \)
\& \ (\text{Freq}(f, \text{Act}) \geq 0.1)
\& \ (\text{Freq}(f, \text{Inact}) \leq 0.01) \)

\(\text{not}(F' \leq f) \& \text{not} (,Cl' \leq f) \)
\& \ (\text{Freq}(f, \text{Act}) \geq 0.05)
\& \ (\text{Freq}(f, \text{Inact}) \leq 0.02) \)
The HIV Data Set De Raedt & al 01 (sigkdd)

- Developmental Therapeutics Program’s AIDS Antiviral Screen Database (http://dtp.nci.nih.gov)
 - One of the largest public domain databases of this type
- Measures protection of human CEM cells from HIV-1 infection using a soluble formazan assay
- 41768 compounds have been selected among the 43382 ones
 - 40282 Confirmed Inactive
 - 1069 Confirmed Moderately Active
 - 417 Confirmed Active
AZT (Azidothymidine)

The majority of these fragments are derivatives of AZT.

Gives insight into the structural requirements for anti-HIV activity.

A rediscovery that proves the principle

Post-processing

Combine fragments?

\[N = N = N - C - C - C - n : c : c : c = O \]
\[N = N = N - C - C - C - n : c : n : c = O \]
Another Example: Item Sets

Association rule mining Agrawal & al. 93 (sigmod)

<table>
<thead>
<tr>
<th>A_1</th>
<th>A_2</th>
<th>A_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

baskets - products
documents - keywords
bacteria - properties
cells - genes

$A_1 A_2 \Rightarrow A_3 [1/4, 1]$ \hspace{1cm} $A_1 \Rightarrow A_2 [1/4, 1/3]$
Knowledge discovery from boolean contexts

Data consolidation

Selection and pre-processing

Data mining

Boolean data

Frequent sets

Interpretation and evaluation

Knowledge
Association rule mining process

- Standard process - Agrawal & al. 96 (aaai press)

 Mining every association rule for which support and confidence are greater than user-given thresholds

- Computing frequent itemsets
- Deriving interesting rules from frequent rules

Objective vs. subjective measures of interestingness
Supporting by means of queries (1)

◆ Pre-processing : manipulating data sets

▷ E.g., compute a boolean context
 – Selections of relevant sources, aggregations, sampling, discretizations, etc

◆ Data Mining : generating pattern sets

▷ E.g., compute 5%-frequent association rules
 – A query as some « syntactic sugar » on top of an algorithm;
 – Declarative data mining using constraints
Supporting by means of queries (2)

Post-processing: manipulating pattern sets

- E.g., identify interesting rules among the frequent ones
 - Selections of relevant patterns or models, redundancy elimination, grouping, etc

- Querying materialized collections of patterns
- Crossing over the patterns and the data
The Inductive Database framework

Extensional data

Intensional data

Intensional/extensional patterns

Data Mining System
Inductive database abstraction

◆ What is an inductive database?
 ▸ A set of data sets
 ▸ A set of pattern sets

◆ IDB languages
 ▸ A query language that generates data sets
 ▸ An inductive query language that generates pattern sets

◆ Closure principle!
 ▸ The result of a query should be a pattern set, a data set or a combination thereof

◆ An abstract set and logic oriented view
◆ Not a universal framework, though quite general
Manipulation

- create data set D as query
- create view data set D as query
- create pattern set P as query
- create pattern view P as query
- Insert / Delete / Update statements

- Data and Pattern sets can be extensional / intensional!
Illustration

create data set D1 as Q1
create pattern view P1 as Q2(D1)
 At this point assume P1 = PSet1
update data set D1 using Q2
 Update P1 too : P1 = update(PSet1)

◆ Incremental data mining!

◆ Insert P2 into pattern view P1
◆ Pattern view update problem
Abstraction

◆ Patterns domains specify

 1. Language of patterns (e.g., itemsets, association rules, sequences, graphs, dependencies, decision trees, clusters)
 2. Evaluation functions (e.g., frequency, closures, generality, validity, accuracy)
 3. Primitive constraints (e.g., minimal and maximal frequency, freeness, syntactical constraints, minimal accuracy)

◆ Situation similar to constraint programming
 1. Declarative aspects
2. On query languages for data mining

<table>
<thead>
<tr>
<th>Language</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>MINE RULE</td>
<td>Meo & al. 96 (vldb), 98 (icde)</td>
</tr>
<tr>
<td>MSQL</td>
<td>Imielinski & Virmani 96 (kdd), 99 (dmkd)</td>
</tr>
<tr>
<td>LDL++</td>
<td>Giannotti & Manco 99 (pkdd)</td>
</tr>
<tr>
<td>RDM</td>
<td>de Raedt 00 (ilp)</td>
</tr>
<tr>
<td>...</td>
<td></td>
</tr>
<tr>
<td>DMQL</td>
<td>Han & al. 96 (kdd)</td>
</tr>
<tr>
<td>Molfea</td>
<td>De Raedt & Kramer 01 (ijcai)</td>
</tr>
</tbody>
</table>
Design issues

◆ Specification of the data part
 ◆ Different data types
 ◆ Pre-processing features

◆ Specification of the pattern part
 ◆ Different pattern domains
 ◆ Different constraints
 ◆ Post-processing features

◆ The closure property
MINE RULE (1)

A SQL-like operator on transactional DB

Table Purchase

<table>
<thead>
<tr>
<th>Tid</th>
<th>Customer</th>
<th>Item</th>
<th>Date</th>
<th>Price</th>
<th>Qty</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>c1</td>
<td>ski-pants</td>
<td>12/1</td>
<td>55</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>c1</td>
<td>beer</td>
<td>12/1</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>c2</td>
<td>shirts</td>
<td>12/1</td>
<td>21</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>c2</td>
<td>jackets</td>
<td>12/1</td>
<td>115</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>c1</td>
<td>diapers</td>
<td>12/1</td>
<td>18</td>
<td>1</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>
MINE RULE (2)

MINE RULE exemple as
SELECT DISTINCT 1..n Item as BODY, 1..1 Item as HEAD,
SUPPORT, CONFIDENCE
WHERE HEAD.Item="umbrellas"
FROM Purchase
GROUP BY Tid
HAVING COUNT(*)<6
EXTRACTING RULES WITH SUPPORT: 0.06,
CONFIDENCE: 0.9

E.g., jacket flight_Dublin ⇒ umbrellas (0.02,0.93)
MINE RULE (3)

MINE RULE WordOfMouth as
SELECT DISTINCT 1..1 Customer as BODY,
 1..n Customer as HEAD,
 SUPPORT, CONFIDENCE
WHERE BODY.Date <= HEAD.Date
FROM Purchase
GROUP BY Item
EXTRACTING RULES WITH SUPPORT: 0.01,
 CONFIDENCE: 0.9

E.g., $c_7 \Rightarrow c_3 \ c_{12}$ (0.02,0.93)
MINE RULE (4)

++

- Data selection by means of « full » SQL
- Query evaluation can be effective

--

- Dedicated to association rules
- Poor possibilities for expressing background knowledge
- No specific mechanism for rule post-processing (results are stored in relational tables)
Further integration within SQL

\[\text{job=\text{research} \land \text{age} = [26,38] \Rightarrow \text{position=\text{AssProf}}} \]

\[\text{(0.31,0.95)} \]

\text{Emp(\text{Id, Age, Job, Salary, Position})}

\text{GET_RULES (Emp)}
\text{INTO Rules}
\text{WHERE support > 0.1 and confidence > 0.8}

\text{SELECT_RULES (Rules)}
\text{WHERE body has \{ (Age=*), (Job=*) \}}
\text{and head is \{ (Position=*))}\]
Emp(\textit{Id, Age, Job, Salary, Position})

\textbf{SELECT} *
\textbf{FROM} Emp
\textbf{WHERE} \textit{violates all (GET_RULES (Emp)}
\hspace{1cm} \textbf{WHERE} \textit{body is} \{(\textit{Age=}*)\}
\hspace{1cm} \textit{and head is} \{(\textit{Salary=}*)\}
\hspace{1cm} \textit{and confidence} > 0.3 \)

\textit{Connecting patterns to data}
GET_RULES (Source) INTO R1
WHERE
 body has \{(Age=*)\}
 and head has \{(Salary=*)\}
 and support > 0.1
 and confidence > 0.9
 and not exists (GET_RULES (Source) INTO R2
 WHERE
 body has \{(Age=*)\}
 and head has \{(Salary=*)\}
 and support > 0.1
 and confidence > 0.9
 and R2.body has R1.body)

A correlated query
MSQL (4)

++

- Query evaluation can be effective on data and persistently stored rules
- Useful operators for association rule mining (discretization, crossing over data and patterns)

--

- Dedicated to association rules
- Limits of the underlying relational framework (e.g., for the definition of background knowledge)
A first synthesis

◆ **DMQL** Han & al. 1996 (kdd) Han & Kamber 2001 (m-k)

▷ A typical example of « syntactic sugar » for using many different data mining algorithms

▷ But what are the fundamental primitives ?

◆ A critical evaluation of data mining query languages for association rule mining

 Deliverable D0 cInQ (01) - Botta & al. 02 (dawak)

 Pre and post-processing are poorly supported
Logic-based frameworks

- Data mining primitives embedded in logic programming / deductive databases

- Underlying idea:
 - Exploit similarity with constraint programming

- Two frameworks:
 - LDL++ Manco and Giannotti 99 (pkdd)
 - RDM De Raedt 00 (ilp)
LDL++

- Use LDL (deductive database language)
- Implement special « aggregate » primitives in LDL++ that can be used to implement data mining
- Various domains and tasks have been addressed

\[
q(Z_1, \ldots, Z_k, u_d_aggr<(X_1, \ldots, X_n)>)
\]
\[
\quad \leftarrow r(Y_1, \ldots, Y_m).
\]

E.g.,
\[
p(X_1, \ldots, X_n, patterns<(Y, m_s, m_c)>)
\]
\[
\quad \leftarrow r(Z_1, \ldots, Z_m).
\]

computes
\[
p(t_1, \ldots, t_n, lhs, rhs, f, c) \quad \text{See Ph.D. G. Manco (2001)}
\]

Boulicaut and De Raedt - August 2002
RDM

◆ From Inductive Logic Programming to Data mining primitives
 ▪ Pattern language framework is based upon
 ▪ Dehaspe’s Warmr (dmkd 99)
 ▪ Patterns : queries

 \[- \text{customer}(C), \text{transaction}(C, T1, D1, P1), \text{transaction}(C, T2, D2, P2), D1 > D2, P2 < P1.\]

 Frequent query framework
 ◆ Same constraints as in MolFea
 ◆ Not yet fully implemented, but see Lee and De Raedt (kdid 02)
LDL++/RDM ...

++

- Nice theoretical framework
- A number of data mining processes have been specified within that framework
- Representational issues: background knowledge, data but also patterns are expressed in the same formalism
- Power of embedding in logic programming language

--

- Efficiency (query optimisation issues)
3. Solving inductive queries

◆ Inductive Query Answering

◆ How to compute?

\[\text{Th}(L \otimes E, r, q) = \{ (\phi, e) \in L \otimes E \mid q(r, \phi) \text{ is true} \} \]

- \(q \) is an inductive query
- \(L \) a language of patterns
- \(r \) an inductive database
- \(e \) is a property of the pattern (e.g. frequency)

◆ “Generate and test” is generally impossible

◆ “Pushing constraints” can be difficult
Properties of constraints

◆ Anti-monotonicity of \(q \) w.r.t. \(\leq \)

\[q \text{ is anti-monotone w.r.t. } \leq \text{ if and only if} \]

- For all \(g,s : g \leq s \text{ and } s \text{ satisfies } q \text{ implies } g \text{ satisfies } q \)
- E.g., The minimal frequency is anti-monotone w.r.t. generality (molecular fragments, itemsets)

The levelwise algorithm Mannila & Toivonen 97 (dmkd)

◆ Many other examples (See, e.g., Ng & al. 98 (sigmod))
A String example

\[\text{freq}(f, D) \geq 2 \text{ where } D = \{ A, B, C, D, F \} \]

\[\varepsilon \]

\[A \quad B \quad C \quad D \quad F \]

\[AB \quad AC \quad BD \]

\[ABC \]

Characterized by \[S = \{ ABC, BD, F \} \]

Consider \(E \)

\(E \) is not frequent,

Therefore no string containing \(E \) is frequent

Consider \(ABC \)

\(ABC \) is frequent

Therefore all substrings of \(ABC \) are frequent
Another string example

Let $f \leq ABD$

ε

$A \quad B \quad D$

$AB \quad BD$

ABD

Characterized by $S = \{ABD\}$
Most general sentences w.r.t. q

Most specific sentences w.r.t. q

Border(s) w.r.t. anti-monotone constraints
Application to frequent set mining (Apriori)

Frequency threshold 0.3
Borders of theories

◆ Positive border
 Ⅱ The most specific interesting sentences
 E.g., the maximal frequent sets
 Ⅱ In Machine Learning terminology : the S-set of the version space (Mitchell, Hirsh, Mellish)

◆ Negative border
 Ⅱ The most general sentences that are not interesting
 E.g., the minimal infrequent sets

◆ Single border can represent the whole theory
 Ⅱ Pro and Cons

◆ Borders are a condensed representation!
 Ⅱ They store only a selection of the relevant solutions

Computing borders or theories? Boulicaut and De Raedt - August 2002
Example (Apriori type)

\[\text{freq}(f, D) \geq 2 \text{ where } D = \{ABC, \ BDEF, \ ABDF, \ ABCF\} \]

\[\mathcal{E} \]

A B C D E F

AB AC AD AF BC BD BF CD CF DF

ABC ABD

Characterized by \(S = \{ABC, BD, F\} \)
« Guess and Correct » Mannila & Toivonen 97 (dmkd)

\[C := Bd^+(S) \]
\[E := \emptyset \]
\[\text{While } C \text{ is not empty} \]
\[\quad \text{do} \quad E := E \cup C \]
\[\quad S := S \setminus \{\varphi \in C \mid q(r,\varphi) \text{ is false}\} \]
\[\quad C := Bd^+(S) \setminus E \]
\[\quad \text{od} \]
\[C := Bd^-(S) \setminus E \]
\[\text{While } C \text{ is not empty} \]
\[\quad \text{do} \quad S := S \cup \{\varphi \in C \mid q(r,\varphi) \text{ is true}\} \]
\[\quad C := Bd^-(S) \setminus E \]
\[\quad \text{od} \]
\[\text{Output } S \]

\[S = \text{Th}(L,r,q) \]
Computing Frequent Sets

- Many variants exist, for theories
 - Fp Tree (Han et al.)
 - Apriori (Agrawal et al.)
- Borders, condensed
 - MaxMiner (Bayardo)
Representing solutions w.r.t. monotone constraints

◆ The maximal frequency constraint

Let \(c = \text{freq}(f, \text{Act}) < x \), \(c \) is monotone w.r.t. \(\leq \)

- If we have a fragment \(g \leq s \), then if \(g \) is a solution then \(s \) is a solution as well

◆ Monotone constraints impose a border \(G \) on the space of solutions

\(q \) is monotone w.r.t. \(\leq \) if and only if \(\text{not}(q) \) is anti-monotone w.r.t. \(\leq \)
A String example

Let "$B" \leq f$ and $\text{Freq}(f,D) \leq 2$ with $D = \{ABCD, BDEF, ABDF, ABCF\}$

Characterized by $S = \{ABC\}$ and $G = \{C\}$
Mitchell’s Version Spaces (1)

Consider now two constraints:

\[c_1 = \text{freq}(f, D) \geq x \]
\[c_2 = \text{freq}(f, E) \leq y \]

We want to compute

\[\text{sol}(c_1 \land c_2) = \{ f \mid \exists s \in S, g \in G : g \leq f \leq s \} \]

where \(S \) and \(G \) are defined w.r.t. \(c_1 \land c_2 \)
Mitchell's Version Spaces

- Too frequent w.r.t. c_2
- Too general

- Infrequent w.r.t. c_1
- Too specific

Solutions

G
Is more general
Constraints

Anti-monotonic

\[\text{freq}(f, D) \geq x \]
\[f \leq P \]
\[\text{not}(P \leq f) \]

In ML

\[f \leq P \]
\[\sim \]
\[P \text{ is a positive example} \]

Monotonic

\[\text{freq}(f, D) \leq x \]
\[f \geq P \]
\[\text{not}(P \geq f) \]

In ML

\[\text{not}(f \leq P) \]
\[\sim \]
\[P \text{ is a negative example} \]
Computing borders

- Borders completely characterize the set of solutions
 - Pro and cons

- Combination of well-known algorithms
 - Levelwise algorithm
 - Mitchell’s and Mellish’s version space algorithms
Generic algorithms for solving conjunctive constraints

- Condensed representation
 - Level wise version space algorithm (De Raedt 01)

- Theory level
 - Dual Miner (Gehrke et al. Kdd 02)
 - A generic levelwise algorithm for pushing conjunctions of anti-monotone and monotone constraints Boulcaut & Jeydy 01,02 ideas-ida

- Using anti-monotone constraints for pruning
- Using monotone constraints for candidate generation
Mellish’s Description Identification Algorithm

Incrementally process constraints c

Case c of $f \leq P$ (P is a positive example)

$G = \{ g \in G \mid g \leq P \}$

$S = \min \{ l \mid l \in \text{lub}(s, P) \text{ and } s \in S \text{ and } \exists g \in G : g \leq l \}$

Here $\text{lub}(s, P) = \min \{ l \mid l \leq s \text{ and } l \leq P \}$

$f \leq ABCD$

$G = G' = \{ A, B, C \}$

$S = \{ BCDE, FABC \}$

$S' = \{ BCD, ABC \}$
Levelwise Version Spaces

Minimum frequency

Is more general
Minimum frequency constraints

Let c be a constraint of type $\text{freq}(f, D) \geq m$

$L_0 := G ; i := 0$

while $L_i \neq \emptyset$ do
 $F_i := \{ p \mid p \in L_i \text{ and } p \text{ satisfies constraint } c \}$
 $I_i := L_i - F_i$ the set of infrequent fragments considered
 $L_{i+1} := \{ p \mid \exists q \in F_i : p \in \rho_s(q) \}
 \quad \text{and } \exists s \in S : p \leq s \text{ and } \rho_g(p) \cap (\cup_j I_j) = \emptyset \}$
 $i := i + 1$

endwhile

$G := F_0$

$S := \min(\cup_j F_j)$

$\text{must not be infrequent}$
Dual computation

Minimal frequency

S

G

S'

Is more general

More general
Levelwise Version Space algorithm

Maximal frequency

G
G'
S

Is more general
Levelwise Version Space algorithm

◆ Dualities
 1. General to specific versus Specific to general
 2. Minimum / Maximum frequency

◆ Use refinement operators on single fragments (and check) instead of self joining two fragments

◆ Hashing is important

◆ Generalizes both description identification and levelwise algorithm
Condensed representations: application to frequency queries

\[\text{Th}(L \otimes E, r, q) = \{ (\phi, e) \in L \otimes E \mid q(r, \phi) \text{ is true} \} \]

Other types of condensed representations

- Requires \(e \) (e.g. frequency) to be known or approximated!
- In version spaces \(E/e \) is not used
- Based on closedness concept
Constraints on itemsets

- $C_{freq}(S)$
- $A \not\in S$
- $\{A,B,C,D\} \supset S$
- $S \cap \{A,B,C\} = \emptyset$
- $\exists A \in 2^n, \text{Interest}(A) > \text{Interest}(S)$

See e.g., Ng & al. 98 (sigmod)

- $A \in S$
- $\{A,B,C,D\} \subseteq S$
- $S \cap \{A,B,C\} \neq \emptyset$
- $\text{sum}(S.\text{Price}) \leq v$
- $\text{sum}(S.\text{Price}) > v$

Primitive constraints based on closures
The “closure” evaluation function

The closure of X is the maximal superset of X that has the same frequency

\[
closure(X,r) = \text{Items}(\text{Object}(X,r),r)
\]

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

\[
closure\{A\} = \{A,C\}
\]
Closed sets

A closed set is equal to its closure. It is a maximal set of items that support the same transactions

\[
\begin{array}{cccc}
A & B & C & D \\
1 & 0 & 1 & 0 \\
1 & 1 & 1 & 0 \\
0 & 1 & 1 & 1 \\
0 & 1 & 0 & 1 \\
1 & 1 & 1 & 0 \\
\end{array}
\]

\{A,C\} is closed \quad \{A,B\} is not closed

\text{C}_{\text{Close}}(S)
... introducing condensed representations

Extraction of frequent sets

Boolean data

Data mining

Knowledge

Interpretation and evaluation

FS

Rules

Similarities

Clusters

FS...
Frequent set mining in difficult cases

Frequent closed sets

Booleans data

Patterns

FS

Similarities

Clusters

Rules

Knowledge

Interpretation and evaluation

Data mining

Boulicaut and De Raedt - August 2002
An up-to-date view

Condensed representation of frequent sets

Patterns

Boolean data

Data mining

Rules

Similarities

Clusters...

Knowledge

Interpretation and evaluation
\(\varepsilon\)-adequate representations

- Assume the class of queries that returns the frequency of an itemset, look for alternative representations of data on which we can provide its frequency with a precision of at most \(\varepsilon\)

 - e.g., the collection of \(\gamma\)-frequent sets is \(\gamma/2\)-adequate

 Is it possible to find smaller representations, i.e., condensed representations

- This concept is quite general Mannila & Toivonen 96 (kdd)
Condensed representations of frequent itemsets

◆ Maximal itemsets e.g., Bayardo 97 (sigmod) Max-Miner

◆ Version spaces e.g. De Raedt 01 (ijcai)

◆ Closed sets Pasquier & al. 99 (icdt) - Boulicaut & Bykowsk
00 (pakdd) - Han & Pei 00 (wdomkd) - Zaki 00
(sigkdd) Close - Closet - Charm
Boulicaut & al. 00 (pkdd) - Bastide & al.
00 (sigkdd explorations) Min-Ex - Pascal

◆ Free sets

◆ δ-free sets

◆ ν-free sets Bykowski & Rigotti 01 (pods) - Kryskiewicz 01
(icdm)

◆ Extraction complexity vs. compacity vs. accuracy
Apriori vs. Close

| Dataset/Frequency threshold | Time in sec. | $||F_{S_{\sigma}}||$ | Scans | Time in sec. (1st/2nd step) | $||F_{C_{\sigma}}||$ | Scans |
|----------------------------|--------------|-------------------|-------|--|-----------------|-------|
| ANPE/\(\sigma=0.05\) | 1 463.9 | 25 781 | 11 | 69.2 / 6.2 | 11 125 | 9 |
| Census/\(\sigma=0.05\) | 7 377.6 | 90 755 | 13 | 61.7 / 25.8 | 10 513 | 9 |
| ANPE/\(\sigma=0.1\) | 254.5 | 6 370 | 10 | 25.5 / 1.1 | 2 798 | 8 |
| Census/\(\sigma=0.1\) | 2 316.9 | 26 307 | 12 | 34.6 / 6.0 | 4 041 | 9 |
| ANPE/\(\sigma=0.2\) | 108.4 | 1 516 | 9 | 11.8 / 0.2 | 638 | 7 |
| Census/\(\sigma=0.2\) | 565.5 | 5 771 | 11 | 18.0 / 1.1 | 1 064 | 9 |
Freeness

◆ A free-set is such that there is no logical rules that holds between its subsets

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

\{A,B\} is free \{A,C\} is not free

◆ Closed sets are the closures of free sets
Free and closed sets

closure({A})={A,B,C}
closure({ABC})={ABC}
δ-freeness

- A δ-free-set is such that there is no δ-strong rules that holds between its subsets.
 - \(X \Rightarrow_\delta Y \) is δ-strong if it has at most δ exceptions.

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

\(\{A,B\} \) was free but is not 1-free

\(C_{\delta-Free}(S) \) checking δ-freeness?
An example of a 2-free sets

B, C ∈ closure_2({A})
Examples of condensed representations

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>16 frequent sets</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>ABCD</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>AC</td>
<td>1 maximal frequent set</td>
</tr>
<tr>
<td>3</td>
<td>AC</td>
<td>Frequent closed sets</td>
</tr>
<tr>
<td>4</td>
<td>ABCD</td>
<td>C, AC, BC, ABC, ABCD</td>
</tr>
<tr>
<td>5</td>
<td>BC</td>
<td>Frequent free sets</td>
</tr>
<tr>
<td>6</td>
<td>ABC</td>
<td>∅, A, B, D, AB</td>
</tr>
</tbody>
</table>

Threshold 2
Frequent 1-free sets
∅, B, D

83
Boulicaut and De Raedt - August 2002
« Approximation » from closed sets

◆ ε-adequate representation

If S is not included in a γ-frequent closed set

Then S is not frequent (return $\text{Freq}(S,r) = 0$)

Else S is frequent

Let choose the frequent closed set X s.t. $S \subseteq X$ that has the maximal support and return $\text{Freq}(S,r) = \text{Freq}(X,r)$
Approximation from \(\delta \)-free sets

\(\varepsilon \)-adequate representation

If \(S \) is a superset of an element from \(\text{FreeBd}^\delta \)

Then \(S \) is not frequent (return \(\text{Freq}(S,r) = 0 \))

Else \(S \) is frequent

Let choose the frequent \(\delta \)-free set \(Y \subseteq X \) that has the minimal support and
\[
\text{Freq}(Y,r) - \text{Freq}(X,r) \leq |X \setminus Y| \delta
\]
Computing frequent \(\delta \)-free-sets

\(\text{Min-Ex is an effective levelwise algorithm that computes every frequent } \delta \text{-free set in } r \)

\(\text{thanks to freeness anti-monotonicity and an effective freeness test ...} \)

\(\text{Forthcoming Ph. D thesis by A. Bykowski} \)

\(\text{Promising experimental validation on dense datasets} \)

 - High condensation and pruning even for low \(\delta \)
 - Low error in practice even for « large » \(\delta \) values
Experimental validation

Experiment

- PUMSB* data set (size=49046 rows), $\gamma = 0.3$
- 432699 γ-frequent sets, the largest has $N = 16$ items
- Condensed representation for $\delta = 20$, 11079 frequent δ-free-sets
- Theoretical error bound: maximal absolute (resp. relative) support error $\delta*N = 20*16 = 320$ rows (resp. $\delta*N / \text{size}*\gamma = 2.18$ %)
- Practical observed error: maximal absolute (resp. relative) support error 45 rows (resp. 0.29 %), average absolute (resp. relative) support error 6.01 rows (resp. 0.037 %)
4. Where to go from here?

- Other forms of primitives?
 - E.g. accuracy of rule / hypotheses is larger than \(x \)
 - E.g. average cost of transaction is larger than \(x \)
 - Neither monotone nor anti-monotone

- Optimization primitives?
 - Find item sets with maximum frequency
 - Find rule with maximum accuracy
◆ **Other forms of tasks?**

 ▪ Clustering (some initial works exist)

 – Formulate constraints on no. of desired clusters, and cluster membership
 ▪ Prediction

 – Some approaches to decision tree learning exist

◆ **Other forms of algorithms?**

 ▪ Instead of “all solutions” find “best” or “plausible” solutions
 ▪ Approximation/heuristic algorithms
 ▪ Cf. constraint programming
Other form of queries
 - Boolean inductive queries

Query optimisation
 - E.g. Baralis and Psaila Dawak 98

Operations on solution sets
 - E.g. version spaces
 - E.g. version space trees
Query Optimisation and Reasoning

Claim (subsumption)

Let q_1 and q_2 be two queries such that $q_1 |\supseteq q_2$.

Then $sol(q_1) \subseteq sol(q_2)$

Background knowledge can also be used in this process.

E.g. $freq(f, D) > x$ and $x \geq y \rightarrow freq(f, D) > y$

E.g. $freq(f, D1) > x$ and $D1 \subseteq D2 \rightarrow freq(f, D2) > x$

E.g. $freq(f, D) > x$ and $f1 \leq f2 \rightarrow freq(f1, D) > x$

Useful:

axioms about sets, generality, number theory

Subsumption is useful in the light of interactive querying

and reuse of the results of previous queries
Memory organisation

◆ Consider
 ◆ q1 : freq(f,D) > m
 ◆ q2: freq(f,D U M) > m (q1 |= q2)
 ◆ q3:freq(f,D) > m OR freq(f,M) > m (q3 |= q2)

◆ Scenario’s
 ◆ q1 answered and stored; q2 asked
 ◆ q2 answered and stored; q1 asked

◆ Keep track of subset relations among pattern sets / data sets
◆ Keep track of relations among patterns (generality - lattice structure) within given pattern set
◆ Operations on solution sets ? On border sets ?
Boolean Inductive Queries

Any monotonic or anti-monotonic constraint c, and any membership function (e.g. $f \in P$) is an atom.

An inductive query is a boolean formula over atoms.
E.g. $(f \in P)$ and $[\text{freq}(f,D1) > x \text{ or } \text{freq}(f,D2) < y]$ and $f < abbbcccc$

The query evaluation problem
Given
an inductive database
an inductive query q
Find a characterisation of $sol(q)$

So far: solutions for conjunction of anti-monotonic and monotonic
Query Evaluation

Theorem

Let q be an inductive query.

Then $sol(q)$ can be represented using a set of versionspaces
(a set of versionspaces represents the union of the versionspaces)

Proof

Write q in Disjunctive Normal Form, i.e.

in the form of disjunction of conjunctions of the form $a_1 \land \ldots a_k \land m_1 \land \ldots m_n$

Each conjunction corresponds to a versionspace

$sol(q)$ can be represented using disjunctive versionspace (Cf. Gunther Sablon)
Theorem
Let \(q \) be an inductive query.
Then \(sol(q) \) can be represented using a set of versionspaces
(a set of versionspaces represents the union of the versionspaces)

Proof
Write \(q \) in Disjunctive Normal Form, i.e.
in the form of disjunction of conjunctions of the form \(a_1 \land \ldots a_k \land m_1 \land \ldots m_n \)
Each conjunction corresponds to a versionspace
\(sol(q) \) can be represented using disjunctive versionspace (Cf. Gunther Sablon)
Divide and conquer approach

To evaluate/solve a query
rewrite in DNF
for each conjunct in DNF
call level wise version space algo.
Query Optimisation

Claim
Let q_1 and q_2 be two queries that are logically equivalent. Then $sol(q_1) = sol(q_2)$

Using logical rewrites to optimize the mining process.
E.g. $(a_1 \lor a_2) \land (m_1 \lor m_2)$ is logically equivalent to

$$(a_1 \land m_1) \lor (a_2 \lor m_1) \lor (a_1 \land m_2) \lor (a_2 \lor m_2)$$

One versionspace versus the disjunction of four

What is best?
Operations on solution spaces

- Logical operations on primitives have a set oriented counter part?
- E.g. q_1 or q_2 corresponds to $\text{sol}(q_1) \cup \text{sol}(q_2)$
- What can we say about the corresponding operations on solution sets?
 - Analogy with relational database
 - We assume solution sets are version spaces
 - Version spaces closed under intersection but not for union! Difference?
Version space union

Let \(sol(q_1) \) and \(sol(q_2) \) be boundary set representable, i.e. representable using a version space.

Then in general \(G(q_1 \lor q_2) \neq G(q_1) \lor G(q_2) \) and \(S(q_1 \lor q_2) \neq S(q_1) \lor S(q_2) \)

Counter Example

\[
\begin{array}{ccc}
A & & C \\
AB & ACAC & CD \\
ABC & ACD
\end{array}
\]
Acknowledgments

cInQ consortium

- INSA Lyon
- University of Torino
- Politecnico di Milano
- Albert-Ludwigs University Freiburg
- Nokia Research Center Helsinki
- Institute Jozef Stefan