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Abstract. Subgroup discovery in labeled data is the task of discover-
ing patterns in the description space of objects to find subsets of objects
whose labels show an interesting distribution, for example the dispropor-
tionate representation of a label value. Discovering interesting subgroups
in purely numerical data - attributes and target label - has received little
attention so far. Existing methods make use of discretization methods
that lead to a loss of information and suboptimal results. This is the case
for the reference algorithm SD-Map*. We consider here the discovery of
optimal subgroups according to an interestingness measure in purely
numerical data. We leverage the concept of closed interval patterns and
advanced enumeration and pruning techniques. The performances of our
algorithm are studied empirically and its added-value w.r.t. SD-Map* is
illustrated.
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1 Introduction

Mining purely numerical data is quite popular. It concerns data made of objects
described by numerical attributes, and one of these attributes can be considered
as a target label. We can then choose to learn models to predict the value of
the label for new objects, or we can apply subgroup discovery methods [14,22]
that is the focus of this paper. Subgroup discovery aims at discovering subsets of
objects - known as subgroups - described by interesting descriptions according
to a quality measure calculated on the target label. A quality measure has to
capture discrepancies in the target label distribution between the selected sub-
set of objects and the overall dataset. A large panel of exhaustive [1,10] and
heuristic [5,16] subgroup discovery algorithms have been proposed so far. Most
of these approaches consider a set of nominal attributes with a binary label.
Regarding numerical attributes, a few approaches [11,19] that avoid the use of
basic discretization techniques have been introduced. However, to the best of our
knowledge, we lack a method that would support an exhaustive search and thus
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the possibility to guarantee the computation of a global optimum for the quality
measure without the use of discretization in some form or other. When consider-
ing numerical target labels, [15] introduced relevant quality measures as well as
the SD-Map+ reference algorithm. Notice however that SD-Map+* requires the
prior discretization of the numerical attributes.

The guarantee to discover an optimal subgroup in purely numerical data is
a useful task and we now motivate it for our ongoing research project. We are
currently working on optimization methods for urban farms (e.g., AeroFarms,
Infarm, FUL!). In that setting, plant growth recipes involve many numerical
attributes (temperature, hydrometry, CO5 concentration, etc) and a numerical
target label (the yield, the energy consumption, etc). Our goal is to mine the
recipe execution records (i.e., the collected measures) to discover the charac-
teristics of an optimized growth. In expert hands, such characteristics can be
exploited to define better recipes. In such a context, the guaranteed discovery
of the optimal subset of recipes with respect to the target label is more rele-
vant than the heuristic discovery of the k best subgroups with no optimality
guarantee. Preliminary results on simulated crops are given in this paper.

To achieve the search for optimality, we decided to search the space of interval
patterns as defined in [13]. Our main contribution consists in an algorithm that
exhaustively enumerates all the interval patterns. Our approach (i) exploits the
concept of closure on the positives adapted to a numerical setting to operate in
a subspace (ii) uses a new faster tight optimistic estimate that can be applied
for several quality measures (iii) uses advanced pruning techniques (forward
checking, branch reordering). The result is the efficient algorithm OSMIND for an
optimal subgroup discovery in purely numerical data without prior discretization
of the attributes. Section2 formalizes our mining task. In Sect.3, we discuss
related work. We detail our contributions in Sect. 4 before an empirical evaluation
in Sect. 5. Section 6 briefly concludes. Proofs of the theorems are made available
in the anonymized technical report available at https://bit.ly/3bAba8J.

2 Problem Definition

Purely Numerical Dataset. A purely numerical dataset (G, M, T) is given by
a set of objects G, a set of numerical attributes M and a numerical target label
T. In a given dataset, the domain of any attribute m € M is a finite ordered set
denoted D,,. In this context, m(g) = d means that d is the value of attribute
m for object g. The domain of label T is also a finite ordered set denoted Dy.
T(g9) = v means that v is the value of label T for object g. Figurel (left) is a
purely numerical dataset made of two attributes (M = {mj,m2}) and a target
label T'. A subgroup p is defined by a pattern, i.e., its intent or description, and
the set of objects from the dataset where it appears, i.e., its extent, denoted

ext(p).

! https://aerofarms.com/, https://infarm.com/, http://www.fermeful.com/.
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Fig. 1. (left) A purely numerical dataset. (right) Non-closed (c1 = ([2,4],[1, 3]), non-
hatched) and closed (c2 = ([2,4],[2,3]), hatched) interval patterns.

Interval Patterns, Extent and Closure. Given a purely numerical dataset
(G, M,T), an interval pattern p is a vector of intervals p = <[bi’ci]>ie{1,...,\M|}
where b;,¢c; € D,,;, and each interval is a restriction on an attribute of M, and
|M] is the number of attributes. An object g € G is in the extent of an interval
pattern p = <[bi’ci]>z‘e{1,...,|M\} iff Vi € {1,...,|M|},mi(g) € [bs,ci]. Let py and
p2 be two interval patterns. p; C ps means that ps encloses py, i.e., the hyper-
rectangle of p; is included in that of ps. It is said that p; is a specialization of
p2. Given an interval pattern p and its extent ext(p), p is defined as closed if
and only if it represents the most restrictive pattern (i.e., the smallest hyper-
rectangle) that contains ext(p). For example, in the data from Fig. 1 (left), the
domain of my is {1,2,3,4} and ([2,4],[1, 3]) is the interval pattern that denotes
a subgroup whose extent is {gs, g4, g5, g6} Figurel (right) depicts the same
dataset in a cartesian plane as well as a comparison between a non-closed (cy)
and a closed (cz) interval pattern.

Quality Measure and Optimistic Estimate. Considering a purely numerical
dataset (G, M,T), the interestingness of each interval pattern is measured by
a numerical value. Usually, the value quantifies the discrepancy in the target
label distribution between the overall dataset and the extent of the considered
interval pattern. We consider here the family of quality measures based on the
mean introduced in [15]. Given an interval pattern p, its quality is given by:

qgnean(p) = \ea:t(p)|“ X (Mezt(p) - ,uezt(@))va € [0’ 1]

with fiei(p) the mean of the target label for p, pie.. (@) the mean of the target
label for the overall dataset, |ext(p)| the cardinality of ext(p) and a a parameter
that controls the number of objects in the subgroups.

Given an interval pattern p and a quality measure ¢, an optimistic estimate
for ¢, denoted as bsg, is a function that gives an upper bound for the quality of
all specializations of p. Formally, Vs C p : ¢(s) < bsy(p). Optimistic estimates are
used to prune the search space: if an interval pattern optimistic estimate is lower
than the required minimal quality, it is useless to consider its specializations.
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Optimal Subgroup. Let (G, M, T) be a purely numerical dataset, ¢ a quality
measure and P the set of all interval patterns of (G, M, T). An interval pattern
is said to be optimal iff Vp' € P : ¢(p’) < q(p). Notice that several subgroups
can have the same optimal quality. In this paper, we return the first one found
by the algorithm.

3 Related Work

Although we are not aware of previous proposals for an optimal subgroup discov-
ery in purely numerical data, related topics have been seriously investigated. Tra-
ditionally, subgroup mining has been mainly concerned with nominal attributes
and binary target labels. To deal with numerical data, prior discretization of
the attributes [6,8] is then required. Numerical target labels can also be dis-
cretized [18]. However, discretization generally involves a loss of information such
that we cannot guarantee the optimality of the returned subgroups. [2] intro-
duced the concept of Quantitative Association Rules where a rule consequent
is the mean or the variance of a numerical attribute. A rule is then defined as
interesting if its mean or variance significantly deviates from that of the overall
dataset. Later on, [21] proposed an extension of such rules called Impact Rules.
These methods, however, cannot perform an exhaustive enumeration of sub-
groups and therefore provide no guarantee for an optimal subgroup discovery.
A recurring issue with exhaustive pattern enumeration algorithms is the size
of the search space which is exponential as a function of the number of
attributes. Fortunately, the search space can be pruned thanks to optimistic
estimates [12,22]. [15] introduces a large panel of quality measures and opti-
mistic estimates for an exhaustive mining with numerical target labels. A few
approaches have been proposed to tackle numerical attributes [11,16,19]. How-
ever, these methods always involve the use of discretization techniques. When
dealing with exhaustive search in numerical data, we find the MinIntChange
algorithm [13] based on constructs from Formal Concept Analysis [7]. It enables
an exhaustive mining of frequent patterns - not subgroups - in numerical
data without prior discretization. The use of closure operators and equivalence
classes [4,9,10,20] is a popular solution to reduce the size of the subgroup search
space. [3] introduced an anytime subgroup discovery algorithm in numerical data
for binary target labels by revisiting the principles of MinIntChange. We also
want to leverage closure operators, optimistic estimates and the enumeration
strategy of MinIntChange for an optimal subgroup discovery in purely numer-
ical data though our mining task is different from the task in [3].

4 Optimal Subgroup Discovery

4.1 Closure on the Positives

The closure operator on interval patterns introduced in [13] has been extended
to closure on the positives for binary labels in [3].
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Fig. 2. (left) Purely numerical dataset with binary label (T5). (center) Closed (c1 =
([1,4],[1,3]), non hatched) and closed on the positives (c2 = ([2,4],[2,3]), hatched)
interval patterns. (right) Depth-first traversal of Dy, using minimal changes.

Definition 1. Let p € P be an interval pattern, p’ C p a second interval pattern,
and T a binary target label. An object is said to be positive if its label value is
that of the class we want to discriminate, and negative in the opposite case. Let
ext(p)t be the subset of objects of ext(p) whose label T is positive. p’ is said to
be closed on the positives if it is the most restrictive pattern enclosing ext(p)™.
If q is the quality measure, we have q(p) < q(p’).

For all subgroups p € P, if all negative objects which are not in the extent of
p’ are removed from the extent of p, then the subgroup quality cannot decrease.
Note that closed on the positives are a subset of closed patterns.

The concept of closed on the positives for binary target labels can be extended
to numerical target labels for a set of quality measures, including g% .., We
transform the numerical label into a binary label: objects whose label value is
strictly higher (resp. lower or equal) than the mean of the dataset are defined
as positive (resp. negative). Note that the quality measure is computed on the
raw numerical label. The binarisation is only used to improve search space prun-
ing and it does not lead to a loss of information concerning the resulting pat-
terns (i.e., the optimal subgroup discovery without discretization is guaranteed).
Figure 2 (left) is the dataset of Fig. 1 with label T' (mean = 50) transformed into
the binary label 7. Figure2 (center) depicts the dataset of Fig.2 (left) in a
cartesian plane and a comparison between a closed (c1) and a closed on the pos-
itives (cg) interval pattern. We separate the case where the subgroup quality is
positive from the case where it is negative. Given a subgroup of positive quality,
we can prove that its quality is always higher or equal if all negative objects not
in the closure on the positives are removed.

Theorem 1. Let p be an interval pattern, q% .., @ set of quality measures, p™
the closure on the positives of p such that p*™ C p, and q%..,(p) > 0, then

qgnean(er) Z q;lnean(p)7 a G [07 1]

The case of a negative quality subgroup is more complex since the closure
on the positives can lead to a decrease of the subgroup quality. We prove that
objects which are not in the closure on the positives can never be part of the
best subgroup specialization.
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Theorem 2. Let p be an interval pattern, pT the closure on the positives of
p such that p™ C p and ext(p)t its extent with |ext(p)™| > 0. Let ext(p)” =
ext(p)\ext(p)T be the set of negative objects of ext(p) not in ext(p)™, and ¢ pun
a set of quality measures with ¢%,,.,,(p) < 0: No object in ext(p)~ can be part of
the best specialization of p.

4.2 Tight Optimistic Estimate

We now introduce a new tight optimistic estimate for the family of quality
measures q% ... An optimistic estimate is said to be tight, if, for any subgroup
of the dataset, there is a subset of objects of the subgroup whose quality is equal
to the value of the subgroup optimistic estimate. Note that the subset does not
need to be a subgroup. It is possible to derive a tight optimistic estimate for the
quality measures ¢p .., by considering each object of a subgroup only once.

Definition 2. Let p be an interval pattern, and S; C ext(p) the subset of objects
of ext(p) containing the i objects with the highest label value. Then, as defined
in [15], a tight optimistic estimate for q% .., S given by:

a

bssmean (p) = ma’x(q(rlnean(sl)v cee 7q;lnean (S\ezt(p)\))a ac [07 1]

We can derive a better optimistic estimate by focusing on positive objects only.

Theorem 3. Let p be an interval pattern and ext(p)t the set of objects from
the extent of p whose label value is higher than the mean of the dataset. Let
S; C ext(p)™ be the subset of objects containing the i objects with the highest
label value. A new tight optimistic estimate for q% ..n S given by:

E(:nean(p) = max(qgnean(sl)a BERE) Q?nean(5|ewt(p)+|))7 ac [Oa 1]

4.3 Algorithm

We introduce OSMIND, a depth first search algorithm for an optimal subgroup
discovery. It computes closed on the positives interval patterns coupled with the
use of tight optimistic estimates and advanced search space pruning techniques.
The pseudocode is available in Algorithm 1.

To guarantee an optimal subgroup discovery, we adopt the concept of min-
imal change from MinIntChange that ensures an exhaustive enumeration of
all interval patterns (see Fig.2 (right) for an example with one attribute). A
right minimal change consists in replacing the right bound of an interval by the
current value closest lower value in the domain of the corresponding attribute.
Following the same logic, a left minimal change consists in replacing the left
bound by the closest higher value. The search starts with the minimal interval
pattern that covers all the objects of the dataset. The main idea in procedure
RECURSION is to apply consecutive left or right minimal changes until obtaining
an interval whose left and right bounds have the same value for each interval
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Algorithm 1. OSMIND algorithm

1: function OSMIND( )
2: Initialize(minimal Zinterval _pattern, optimal _pattern)

3: RECURSION(minimal_interval_pattern, 0)

4: return optimal_pattern

5: end function

1: procedure RECURSION(pattern, attribute)

2: for i = attribute to nb_attributes — 1 do

3: for elem in {right,left} do

4: pattern «— minimalChange(pattern, i, elem)

5: closed_pattern «— computeClosureOnThe Positives(pattern)

6: if isCanonical(closed_pattern) then

T if tightOptEst(closed_pattern) > quality(optimal_pattern) then
8: store(closed_pattern,i) end if

9: if quality(closed_pattern) > quality(optimal_pattern) then
10: optimal _pattern < closed_pattern end if
11: end if
12: end for
13: end for
14: for each element stored ordered by optimistic estimate value do
15: if tightOptEst(element.pattern) > quality(optimal _pattern) then
16: RECURSION (element.pattern, element.attribute) end if
17: end for

18: end procedure

of the minimal interval pattern. If so, the algorithm backtracks until finding a
pattern on which a minimal change can be applied. We leverage the concept
of closure on the positives adapted to numerical labels to significantly reduce
the number of candidate interval patterns. After each minimal change (Line 4),
instead of evaluating the resulting interval pattern, we compute and evaluate the
corresponding closed on the positives interval pattern (Line 5). When carrying
out an exhaustive search of all closed on the positives interval patterns, a given
interval pattern can be generated multiple times. To avoid this redundancy and
to ensure the unicity of the pattern generation, a popular solution is the use
of a canonicity test. In the case of interval patterns, the canonicity test verifies
that the closure operation did not lead to a change on an interval preceding the
interval on which the minimal change has been applied (Line 6). However, the
successive application of left or right minimal changes on an interval can also
lead to multiple generations of the same interval pattern. A solution is to use a
constraint on the minimal changes. After a right minimal change, a right or left
minimal change can be applied. However, a left minimal change must always be
followed by a left minimal change. We also exploit advanced pruning techniques
to reduce the size of the search space. This can be done through the use of a tight
optimistic estimate of the quality of a closed on the positives interval pattern
specializations. For each subgroup, an optimistic estimate is derived (Line 7),
and, if it is lower than the best subgroup quality, the search space is pruned by
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discarding every specialization of this interval pattern. Our second implemented
technique is the coupling of forward checking and branch reordering. Given an
interval pattern, the set of all its direct specializations (application of a right
or left minimal change on each interval) are computed - forward checking - and
those whose optimistic estimate is higher than the best subgroup are stored
(Line 8). Branch reordering by descending order of the optimistic estimate value
is then carried out (Line 14). Branch reordering enables to explore the most
promising parts of the search space first. It also enables a more efficient pruning
by raising the minimal quality earlier.

5 Empirical Validation

We consider 7 purely numerical datasets described in Tablel. Source code
of implemented algorithms and used datasets are available at https://bit.ly/
3bAba8]. SD-Map* implementation is available within the VIKAMINE system?.
The first 5 datasets (Bolt, Basketball, Airport, Body Temp and Pollution) origi-
nate from the Bilkent® repository. The other 2 datasets (RecipesA and RecipesB)
are simulations of plant growth that we generated using the specialized environ-
ment Python Crop Simulation Environment PCSE*. Each growth simulation is
described by a set of numerical attributes - the growth conditions (e.g., temper-
ature, COz2) - and a numerical target label - the yield at the end of the growth
cycle. Here, a plant growth is split into several time periods of equal length called
stages. Table 2 depicts simplified examples of plant growth simulations generated
with PCSE.

Table 1. Datasets and their character- Table 2. Plant growth split in 2 stages
istics: number of attributes, number of (P1 and P2), 2 attributes (temperature

objects and size of the search space. and CO3), and a target label (yield).
Dataset Attr|Obj ||P| R|TP'|CcOoft | TP?|CcOf? Y
Bolt 8 40 8.7 x 10° r; |18 | 800 |24 |1000 |5
Basketball | 4 96 |2.3 x 10t r2|22 1000 |27 | 950 |6
Airport 4 | 135 |7.1 x 10'° r3|27 [1200 |28 | 650 |7
Body Temp| 2 | 130 |1.8 x 103 r4|19 | 600 |17 | 800 |3
Pollution |15 60 |1.7 x 10*? r5|24 | 500 |23 | 450 |9
RecipesA 9 | 100 |5.1 x 10'® re (16 | 750 |19 |1300 |2
RecipesB 9 11000 |5.1 x 10%® r7|30 |1100 |25 | 900 |8

2 http://www.vikamine.org/.
3 http://funapp.cs.bilkent.edu.tr/DataSets//.
4 https:/ /pcse.readthedocs.io/en /stable/index.html.
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Performance improvements provided by our contributions are summarized in
Table 3. Performances of the closure on the positives operator are compared to
those of a simple closure operator (Sect.2). For each dataset, we compare the
number of evaluated subgroups before finding the optimal one for the quality
measure ge,.., With a = 0.5 and a = 1. In all the cases, the closure on the
positives is significantly more efficient. In fact, our method enables to divide
the number of considered subgroups by an average of more than 20. We now
study the potential performance improvement - in terms of execution time in
seconds - provided by our new tight optimistic estimate. We compare it to the
tight optimistic estimate from [15] on all the datasets with the same quality
measures. Our optimistic estimate is more efficient in all cases and it provides
an execution time decrease of up to 30%.

Let us discuss the added-value of OSMIND w.r.t. SD-Mapx, i.e., the refer-
ence algorithm for an exhaustive strategy with numerical target labels. We com-
pare the quality of the best found subgroup with each method on the first 5
datasets of Table 1 when using the quality measure ¢%,.,,, with a = 0.5. Regard-
ing SD-Map+, a prior discretization of numerical attributes is needed. To obtain
fair results, we evaluate several discretization techniques with different numbers
of cut-points (2, 3, 5, 10, 15 and 20) for SD-Map+ and we retain only the best
solution that is compared to the OSMIND results. Selected discretization tech-
niques are Equal-Width, Equal-Frequency and K-Means. The comparison is in
Fig. 3. Our algorithm provides subgroups of higher quality for all datasets, and
this no matter the applied discretization for SD-Map*. We infer that the infor-
mation loss inherent to the attribute discretization is responsible for the poorer

Table 3. Comparison: Closure on the positives (COTP) vs Normal closure (NC) and
Tight improved (TI) vs Tight base (TB). “-” means execution time >72h.

Dataset a |COTP NC Gain (<) | TI TB Gain (%)
Bolt 0.5|25 118 4.7 0.0062 | 0.0078 | 20.5
1 |16 299 19 0.0042 | 0.0055 | 23.6
Basketball | 0.5 |143037 | 3014506 |21 80.5 104 22.6
1 42548 | 1121798 |26 30.5 39.3 22.4
Airport 0.5 | 387 12042 35 0.17 0.19 10.5
1 |57 10055 176 0.033 |0.037 |10.8
Body Temp | 0.5 | 795 1199 1.5 0.53 0.73 27.4
1 |570 865 1.5 0.47 0.53 11.3
Pollution 0.5 | 100776 | - - 23.9 25 4.4
1 1289 41662411 | 32321 0.376 10.408 | 7.8
RecipesA 0.5]18258 |430105 24 8.25 9,84 16.1
1 1147 24431 21 0.72 0,82 12.2
RecipesB 0.5 324116 | 854873 2.6 1666 | 2223 |25
1 |5261 17848 3.4 45.8 64,3 28.8
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results obtained with SD-Mapx. Next, we compare the run times of OSMIND
and SD-Map= to quantify the cost of optimality. We generate datasets - made
of plant growth simulations - with sizes ranging from 10 to 10000 objects. While
SD-Map+* and OSMIND both find the optimal subgroup in the same amount of
time for small datasets, the execution time of OSMIND grows exponentially with
the number of objects contrary to that of SD-Mapx (>40000s for OSMIND vs
<1s for SD-Map* with 10000 objects).

Algorithm
140000 { —— OSMIND

—— SD-Map*

10

120000

o
@

100000

0.6
80000

Quality

60000

Relative quality

40000
0.2 Algorithm
= OSMIND 20000
W SD-Map*

o
bolt basketball airport body_temp  pollution 0 200 400 600 800 1000
Dataset Number of objects

Fig. 3. Comparison of the best subgroup Fig. 4. Comparison of the best subgroup
quality. quality w.r.t. number of objects.

Let us now use the PCSE environment to generate 1000 random recipes. We
then successively select 10, 50, 100, 200, 500 and 1000 recipes from the dataset
and we observe the quality of the best subgroup returned for the quality measure
@ ean When a = 0.5. Regarding SD-Map+, we use again the discretization that
produces the best subgroup. Figure4 depicts the relative quality of the best
subgroup returned by each algorithm for different dataset sizes. With smaller
datasets, SD-Map= finds the optimal subgroup despite the use of discretiza-
tion. However, as datasets get larger, SD-Map+ returns consistently 10% to 25%
worse results. Another important qualitative aspect concerns the descriptions of
the optimal subgroups found by OSMIND and SD-Mapx. Table4 depicts these
descriptions for dataset RecipesA. Besides the higher quality of the subgroup
returned by OSMIND, its description also enables to extract much more informa-
tion than the description obtained with SD-Map=*. In fact, where SD-Map+ only
offers a strong restriction on attribute Irrad”?, OSMIND provides actionable
information on 5 of the 9 considered attributes.

Let us finally introduce our use case on urban farm recipe optimization that
is studied in [17]. We do not have access to real farming data yet but we found a
way to support our application scenario thanks to the inexpensive experiments
enabled by the simulator PCSE. In an urban farm, plants grow in a controlled
environment (e.g., temperature, COy concentration, etc). A growth recipe is the
set of development conditions of a plant throughout its growth. In the absence
of failure, recipe instructions are followed and an optimization objective can
concern the yield at the end of the growth cycle. Table2 features examples of
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Table 4. Comparison between descriptions of: the overall dataset (DS), the optimal
subgroup returned by OSMIND, the optimal subgroup returned by SD-Map*. “-” means
no restriction on the attribute compared to DS, Q and S denote respectively the quality
and size of the subgroup.

SubgroupRainP1 Irrad ! Wind ! Rain?2[Irrad 2 Wind2Rain?3[Irrad 3 WindP3Q S
DS [0,40] [[1000,25000][0,30] |[0,40] |[1000,25000] [[0,30] |[0,40] |[1000,25000][0,30] 0  |100
OSMIND - [4428,23285][[0,27]  |[8,40] |[16428,25000]- [2,40] - L 5014726
SD-Map*|- - - - [19000,25000]}- - - - 4006931

growth recipes and we can simulate the execution of recipes through the use of
the PCSE environment by setting the characteristics (e.g., the climate) of the
different stages. We use this simulator to generate 30 recipes with random growth
conditions. We focus on 3 variables that set the amount of solar irradiation, wind
and rain. The plant growth is split in 3 stages of equal length. We can first check
that OSMIND enables the discovery of a subgroup maximizing the yield. Next,
we validate the interpretability and actionability of the return results. Table5
features a comparison between the interval pattern of the overall dataset and
that of the optimal subgroup returned by OSMIND. These results illustrate the
capacity of OSMIND to discover a recipe subgroup with optimal yield (17819 vs
7256). We can use the description of the optimal subgroup as a new recipe that
will lead to higher yields. The optimal interval pattern is easily interpretable
and it supports the extraction of non-trivial knowledge. As an example, during
the first stage of the growth cycle, the amount of solar irradiation (Irrad”!) that
plants undergo seems to have no impact on the optimization of the yield. This
can be inferred from the weak restriction applied on the interval of values taken
by Irrad”!. Domain knowledge confirms: the capacity of plant light absorption
is severely limited during the first stage of the growth cycle meaning that the
growth cost could be cut down while keeping the same yield by restricting the
amount of light used during the beginning of the plant growth.

Table 5. OSMIND results. Interval patterns of the overall dataset (DS) and the optimal
subgroup returned (OS), and average Yield (Y) of recipes for each subgroup.

Subgroup: Rain”!|Irrad ! Wind ! Rain®2|Irrad ©2 Wind2|Rain®3|Irrad 3 Wind P3|y
DS [0,40] |[1000,25000]([0,30] [0,40] |[1000,25000] |[0,30] [0,40] |[1000,25000]([0,30] 7256
oS [0,40] |[2714,23285]|[0,21] [8,37] |[16428,25000]|[0,23] [2,40] |[6142,25000]([0,27] 17819

6 Conclusion

We investigate the optimal subgroup discovery with respect to a quality mea-
sure in purely numerical data. We motivated the reasons why existing methods
achieve suboptimal results by requiring a discretization of numerical attributes.
The OSMIND algorithm enables optimal subgroup discovery without such a loss
of information. The empirical evaluation has illustrated the added-value and
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the exploitability of the OSMIND algorithm when compared to the reference
algorithm SD-Map=+. From an applicative perspective, our future work concerns
the design of optimization methods for urban farms that push much further
the application case that was just sketched here. From an algorithmic perspec-
tive, our future work concerns the enhancement of OSMIND scalability for high-
dimensional datasets. Moreover, it would be interesting to investigate how to
exploit some sequential covering techniques for computing not only an optimal
subgroup but a collection of non-redundant optimal subgroups.
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